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The role of high-conductance calcium-activated potassium
channel in headache and migraine pathophysiology
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Abstract

Migraine is a common, neurovascular headache disorder with a complex

molecular interplay. The involvement of ion channels in the pathogenesis of

migraine gathered considerable attention with the findings that different ion

channels subfamilies are expressed in trigeminovascular system, the physiolog-

ical substrate of migraine pain, and several ion channel openers investigated in

clinical trials with diverse primary endpoints caused headache as a frequent

side effect. High-conductance (big) calcium-activated potassium (BKCa) chan-

nel is expressed in the cranial arteries and the trigeminal pain pathway. Recent

clinical research revealed that infusion of BKCa channel opener MaxiPost

caused vasodilation, headache and migraine attack. Thus, BKCa channel is

involved in pathophysiological mechanisms underlying headache and

migraine, and targeting BKCa channel presents a new potential strategy for

migraine treatment.

KEYWORD S
human, ion channels as drug targets, migraine, pain, pain models, potassium channels

1 | INTRODUCTION

Migraine is a primary headache disorder,1 affecting more
than 15% of the global adult population in their most pro-
ductive years of life2 with a health and economic burden
of billions of dollars globally.3,4 The clinical manifesta-
tion of migraine is recurrent attacks with severe and usu-
ally unilateral and throbbing headache, lasting 4–72 h
and associated with nausea and/or photophobia and pho-
nophobia.5 Approximately, one third of individuals with
migraine report that the headache is preceded by an aura,
which is characterized by reversible focal neurologic
symptoms, typically comprising visual or hemisensory
disturbances.6 Despite advances in migraine research and
novel emerging therapies, signalling pathways initiating

migraine attacks remain a conundrum, and mechanism-
based pharmacological treatments are warranted.7 Trige-
minovascular system consisting of trigeminal afferents
innervating the meninges and its vessels are thought to
be the biological underpinnings of migraine headache. In
1940, Ray and Wolff showed that alteration of vascular
tone by distension of dural arteries and/or large cerebral
(pial) caused a throbbing, unilateral migraine headache.8

Interplay between several ion channel subfamilies
regulates vascular tone and nociceptive threshold. Ion
channel involvement in migraine genesis is further
strengthened by the observation that migraine is more
prevalent in patients with channelopathies including
epilepsy and episodic ataxia,9 and inherited dysfunction
of voltage-gated Ca2+ channels in the pathophysiological
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cause of familial hemiplegic migraine (FHM), a small
portion of the migraine spectrum. Whether ion channels
initiate or contribute to migraine headache is yet to be
elucidated.

High-conductance (big) calcium-activated potassium
(BKCa) channel is expressed in the cranial arteries and
the trigeminal pain pathway.10–12 Here, we review data
implicating BKCa channel in headache and migraine and
discuss targeting BKCa channel as a new potential strat-
egy for migraine treatment.

2 | BKCA (SLO1) CHANNELS

The observed prominent outward K+ current upon mem-
brane depolarization and/or after influx of Ca2+ revealed
the existence of BKCa channel. The channel is an octamer
membrane protein complex consisting of four pore-
forming subunits (α) associated with four accessory sub-
units (β) that regulate channel-gating behaviour
(Figure 1).13,14 The α-subunit encoded by a single gene
(Slowpoke [Slo], KCNMA1)15 has 10 segments divided
into a core region (S0–S6) and an extensive carboxyl
extension (S7–S10). The BKCa α-subunit has two or more

high-affinity Ca2+ binding sites: regulators of conduc-
tance of K+ domains (RCKs) within the extensive car-
boxyl extension and the calcium bowl within the tail
region (S9–S10). Of all K+ selective channels, BKCa chan-
nels have the largest single-pore conductance with a high
kinetic energy for flow of K+ current. The characteristic
feature of BKCa channels is that they become activated
(opened) by membrane depolarization alone, increasing
intracellular Ca2+ alone or both. The β-subunits are non-
covalently associated with α-subunit to form a BKCa

channel complex. Four distinct β-subunits (β1–β4) have
been discovered. The β2 and β3 subunits share sequence
similarities with β1, but unlike β1 and β4 which favour
the active conformation, β2 and β3 promote a fast-
inactive conformation in BKCa channels. The β1-subunit
is expressed primarily in smooth muscle and some neu-
rons, while the β4-subunit is highly expressed in the
brain.

3 | BKCA CHANNEL OPENERS

Numerous BKCa channel openers have been developed
including MaxiPost, andolast and cilostazol.16 MaxiPost

F I GURE 1 The structure of BKCa channels. BKCa channel is a hetero-octameric complex consisting of four pore-forming α-subunits
and four regulatory β-subunits. The α-subunit has 10 segments divided into core region (S0–S6) and an extensive carboxyl extension (S7–S10)
where the tail region (S9–S10) with the calcium bowl is located. regulators of conductance of K+ domains (RCK) within the α-subunit form
an intracellular gating involved in ligand-gating mechanism. The β-subunits are non-covalently associated with α-subunit to form a BKCa

channel complex. the BKCa α-subunit includes several high-affinity Ca2+ binding sites such as the calcium bowl and RCK domains.

Membrane depolarization registered by voltage sensors (S4) and/or binding of Ca2+ within the normal physiological range to the gating ring

result in opening of the BKCa channel. cellular kinase and phosphatase directly regulate BKCa channel activity by phosphorylation and

dephosphorylation. Phosphorylation occurs near to the C-terminal edge of the calcium bowl sequence, and the open-channel probability

increases when all four subunits of a homomeric BKCa channel are phosphorylated.
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(BMS-204352 or flindokalner) is a positive modulator of
potassium channels with a high degree of potency and
specificity at the BKCa channel.

12 The lipophilic property
of MaxiPost facilitates its crossing the blood brain barrier
(BBB) at high levels after intravenous administration.
Preclinical stroke models revealed that MaxiPost was a
promising neuroprotective agent in the treatment of
acute stroke.17–19 However, MaxiPost failed to show a sig-
nificant effect in clinical trials. Andolast (CR-2039) suc-
ceeded to phase 3 trial and has proven to be significantly
more effective than placebo in the treatment of bronchial
asthma.20 Besides being a BKCa channel opener, cilosta-
zol (Pletal) inhibits phosphodiesterase 3 degradation and
adenosine reuptake and is currently used in the treat-
ment of intermittent claudication.16 Clinical use of BKCa

channel openers led to headache as a frequent adverse
event.21 Noteworthy, cilostazol is known to induce head-
ache in healthy volunteers and migraine attack in
migraine patients.22 Yet, the several molecular targets of
cilostazol hampered to implicate adequately BKCa chan-
nel in migraine pathophysiology. BKCa channel-induced
headache has not been further investigated.

4 | BKCA CHANNEL ACTIVATION
CAUSED HEADACHE

To systemically explore headache induction upon BKCa

channel activation, we recruited and allocated 20 healthy
adults to receive a continuous intravenous of 0.05 mg/
min MaxiPost (active drug) or placebo (isotonic saline)
over 20 min on two study days separated by a washout
period of at least 1 week (Figure 2).23 The dose of

MaxiPost was chosen based on previous human studies
with MaxiPost.17 Eighteen participants (90%) reported
headache after the start of MaxiPost infusion compared
with six (30%) after placebo. The median time to onset of
headache was 40 min (range 10 min to 5 h) after Maxi-
Post. One participant reported a migraine-like attack.
The headache localization was mostly in the frontal and
temporal regions. The area under the curve (AUC) 0–
12 h for headache intensity was significantly larger after
MaxiPost compared with placebo.

5 | BKCA CHANNEL ACTIVATION
CAUSED MIGRAINE ATTACK

To explore whether BKCa channel activation induces
migraine attack, we recruited and allocated 22 adults
with migraine without aura to receive a continuous
intravenous of 0.05 mg/min MaxiPost (active drug) or
placebo (isotonic saline) over 20 min on two study days
separated by a washout period of at least 1 week
(Figure 3).24 The incidence of headache over the 12-h
reporting period was superior and significant after Maxi-
Post infusion (n = 22) (100%) compared with placebo.
The AUC for headache intensity was larger after Maxi-
Post compared with placebo. The median time to onset
of headache was 20 min (10–40 min). Twenty-one of
22 participants diagnosed with migraine without aura
(95%) reported migraine attacks after MaxiPost infusion
compared with none after placebo. The median time to
onset of migraine attacks was 3 h (range 1–9 h). The
head pain of the induced migraine attacks was mostly
localized in the frontal and temporal regions. The

F I GURE 2 Study design with healthy adults. In a crossover, double-blind, placebo-controlled and randomized design, we randomly

allocated 20 healthy participants to receive an intravenous infusion MaxiPost or placebo. To avoid accumulative physiological effect of

MaxiPost, we had a washout period of at least 1 week between the two study days.
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incidence of nausea, photophobia and phonophobia was
higher after MaxiPost compared with placebo.

6 | VASCULAR EFFECTS AND
ADVERSE EVENTS

In both experiments, we measured heart rate (HR), mean
arterial blood pressure (MAP), velocity of middle cerebral
artery (VMCA) bilaterally using transcranial Doppler,
diameter of the left radial artery (RA) and left frontal
branch of the superficial temporal artery (STA) using
high-resolution ultrasonography and facial blood flow
using speckle technique. We found that MaxiPost
decreased VMCA and increased HR, STA diameter, RA
diameter and facial blood flow during the in-hospital
phase (=2 h). While MAP remained largely unchanged.
Infusion of MaxiPost caused no serious adverse events
and was well-tolerated by healthy participants and partic-
ipants diagnosed with migraine. Adverse events observed
and reported after MaxiPost were flushing, palpitations,
unusual tiredness and warm sensation.

7 | DISCUSSION

Experimental studies demonstrated that BKCa channel is
a crucial molecule in signalling pathways underlying the
pathogenesis of headache and migraine. Infusion of BKCa

channel opener MaxiPost caused headache in healthy
participants and migraine attacks in adults diagnosed
with migraine without aura. The features of reported
migraine attacks including the intensity and localization

of headache and associated symptoms mimicked patients’
spontaneous migraine attacks. The observed vascular
effects reflect the universal and long-lasting (>2 h) vaso-
dilatory properties of MaxiPost (Figure 4). Thus, BKCa

channels are widely expressed in cephalic and non-
cephalic regions, and activation (opening) of these chan-
nels causes vasodilation, headache and migraine attack
but no extracephalic pain.

Hitherto, the exact and the order of molecular cas-
cades underlying headache and migraine are not fully
clarified; previous pharmacological human models of
migraine27 revealed two intracellular signalling pathways
to be involved in headache and migraine: stimulatory
alpha (αs) subunit associated with guanine nucleotide
binding protein (G-protein)-coupled receptors—cyclic
adenosine monophosphate (cAMP)—protein kinase A
(PKA), Gαs-cAMP-PKA and nitric oxide (NO)—cyclic
guanosine monophosphate (cGMP)—protein kinase G
(PKG), NO-cGMP-PKG. Since BKCa channels are directly
regulated by a shifting balance between cellular kinase
and phosphatase activities and become activated upon
phosphorylation by PKA and PKG, it is possible that dif-
ferent intracellular signalling cascades converge in potas-
sium channels including BKCa channel as a common
downstream pathway.

Migraine pain involves both vascular components
(dilation of cephalic arteries during a migraine attack)
and neuronal pathways (hyperexcitable sensory neurons
causing sensitization).28 Whether neuronal activation is
the primary cause of migraine pain and the vascular com-
ponent is secondary to neuronal dysfunction is yet to be
clarified. Migraine pain is believed to be initiated when
trigeminal perivascular nociceptors are sensitized and

F I GURE 3 Study design with adults diagnosed with migraine. In a crossover, double-blind, placebo-controlled and randomized design,

we randomly allocated 22 migraine patients to receive an intravenous infusion MaxiPost or placebo. To avoid accumulative physiological

effect of MaxiPost, we had a washout period of at least 1 week between the two study days.
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activated mechanically or chemically.7,29 Distension of
cranial arteries is associated with head pain and pro-
longed, in contrast to short lasting, vasodilation induced
migraine attacks in susceptible individuals.30–33 Activa-
tion of BKCa channel expressed at vascular smooth
muscle cells (VSMC)34 causes efflux and accumulation of
positively charged potassium in the extracellular space.
This, in turn, creates an electrical gradient and influx of

potassium and thus activation of trigeminal pain fibres7

(Figure 5). This speculation lacks preclinical support
including whether potassium ions from VSMC can reach
and activate neighbouring nociceptors.

Preclinical investigations showed that application of
BKCa channel opener NS1619 hyperpolarized the resting
membrane potential and reduced the frequency of spon-
taneous action potentials in trigeminal nucleus caudalis

F I GURE 4 BKCa channels in vascular smooth muscle cells. BKCa channels are found in vascular smooth muscle cells (VSMCs) in

cranial arteries and the trigeminal pain pathway including afferent fibres, trigeminal ganglion (TG) and trigeminal nucleus caudalis

(TNC).10,25,26 Membrane depolarization alone and/or Ca2+ influx through voltage-dependent Ca2+ channel (VDCCs) activate BKCa channels.

In VSMCs, BKCa channel activity regulates myogenic tone and vessel contractibility, and BKCa channel activation (opening) causes K+

outflow from VSMCs and subsequent vasodilation.

F I GURE 5 Mechanisms underlying migraine induction. BKCa channel activation causes long-lasting vasodilation resulting in

mechanically induced sensitization of perivascular trigeminal afferents. Moreover, BKCa channel activation causes a substantial potassium

(K+) outflow and accumulation of extracellular positively charged ions resulting in chemically induced sensitization of perivascular

trigeminal afferents. Mechanically and/or chemically induced activation of the trigeminal pain pathway causes headache and migraine.
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(TNC) neurons from rats, and these observations were
reversed by the co-application of BKCa channel blocker
iberiotoxin.12 Of note, modulation of neuronal activity
occurred presynaptically, on the primary sensory afferent
emanating from the trigeminal ganglion (TG), and post-
synaptically, on the second-order neuron within the TNC
itself.12,35 Moreover, activation of BKCa channel reduced
neuronal firing and the release of neurotransmitters from
trigeminal neurons that innervate the dural vascula-
ture.25 Interestingly, iberiotoxin increased the release of
calcitonin gene-related peptide (a vasoactive molecule
with a key role in migraine pathophysiology) from TNC
neurons, and this was attenuated by activation of BKCa

channel.26 Thus, preclinical data failed to support clinical
findings. This discrepancy can be explained by different
models of migraine, including interspecies differences
and various subunit expression.

Whether a direct activation of the BKCa channel in
neurons causes headache and migraine is unknown.
This, however, seems improbable since activation of
BKCa channel hyperpolarizes the resting membrane
potential in neurons and reduces the frequency of spon-
taneous action potentials.36 Hyperpolarization-activated
cyclic nucleotide-gated cation (HCN) channels are
involved in pain sensation as modulation of HCN
channels in afferents neurons causes spontaneous and
persistent pain.37–39 Whether activation of BKCa channel
alters the threshold potential of HCN channels in the
trigeminal afferents is yet to be elucidated. Additional
imaginable rationalization is that inhibitory central
neurons (either GABAergic and/or glycinergic) were
hyperpolarized and inhibited upon Activation of BKCa

channel. The result is disinhibition of excitatory
neurons and hence augmented transmission of glutama-
tergic activity.

8 | FUTURE PERSPECTIVE
TARGETING BKCA CHANNEL

Current results raise the following substantial questions:
(1) whether activation of BKCa channel causes migraine
pain by activation of meningeal nociceptors and ascend-
ing trigeminal nociceptive pathways, as proposed during
spontaneous migraine attacks; (2) whether activation of
BKCa channel initiates cortical spreading depression and
causes migraine aura in individuals diagnosed with
migraine with aura; (3) whether activation of BKCa chan-
nel dilates meningeal arteries and alters cerebral blood
flow; and (4) whether targeting BKCa channel relieves
migraine pain. Several nonselective BKCa channel
blockers such as iberiotoxin12 and paxilline40 have been
developed, but these are not approved for clinical use.

Since BKCa channels are diffusely expressed throughout
the body, selective blockers against β1 or β4 subunits—
because of its dominant presence in migraine-related
structure41—are required to avoid unnecessary side
effects. Besides being an inhibitor for ATP-sensitive
potassium (KATP) channels,42 the widely used antidia-
betic drug glibenclamide was shown to attenuate activa-
tion of BKCa channel.43 However, a series of clinical
studies applying glibenclamide failed to affect activation
of KATP channels.44–47 Whether glibenclamide would
affect activation of BKCa channel in a clinical setting is
yet to be elucidated.

9 | CONCLUSION

A considerable proportion of individuals with migraine
report a poor response and/or a lack of tolerability to avail-
able migraine drugs. BKCa channels are expressed in tri-
geminal pain pathway, and infusion of BKCa channel
opener MaxiPost triggered headache in healthy volunteers
and migraine attacks in individuals with migraine. Devel-
opment of selective BKCa channel blockers would be bene-
ficial as a candidate for future migraine therapies.
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