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1  |  INTRODUC TION

Estimating the frequency of specific alleles in populations is a tech-
nique ubiquitous in population genetics, molecular ecology, evo-
lutionary biology and their areas of application. Indices of genetic 
differentiation between populations are defined based on allele fre-
quency measurement for one or more loci, on which phylogenetic 

analyses have been established (Takezaki & Nei, 1996; Wright, 
1965). Allele frequencies fluctuate between generations due to ad-
aptation or genetic drift. In evolutionary genetics, multilocus and/or 
time-series data of single nucleotide polymorphisms (SNPs) are used 
to detect natural selection (Nielsen, 2005), adaptive introgression 
(Hedrick, 2013) and historical events such as population bottlenecks 
(Luikart et al., 1999; Schwartz et al., 2007).
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Abstract
PCR techniques, both quantitative (qPCR) and nonquantitative, have been used to es-
timate the frequency of a specific allele in a population. However, the labour required 
to sample numerous individuals and subsequently handle each sample renders the 
quantification of rare mutations (e.g., pesticide resistance gene mutations at the early 
stages of resistance development) challenging. Meanwhile, pooling DNA from mul-
tiple individuals as a “bulk sample” combined with qPCR may reduce handling costs. 
The qPCR output for a bulk sample, however, contains uncertainty owing to variations 
in DNA yields from each individual, in addition to measurement errors. In this study, 
we have developed a statistical model to estimate the frequency of the specific allele 
and its confidence interval when the sample allele frequencies are obtained in the 
form of ΔΔCq in the qPCR analyses on multiple bulk samples collected from a popula-
tion. We assumed a gamma distribution as the individual DNA yield and developed an 
R package for parameter estimation, which was verified using real DNA samples from 
acaricide-resistant spider mites, as well as a numerical simulation. Our model resulted 
in unbiased point estimates of the allele frequency compared with simple averaging of 
the ΔΔCq values. The confidence intervals suggest that dividing the bulk samples into 
more parts will improve precision if the total number of individuals is equal; however, 
if the cost of PCR analysis is higher than that of sampling, increasing the total number 
and pooling them into a few bulk samples may also yield comparable precision.
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There are also growing demands for allele monitoring in biolog-
ical conservation and industrial sectors such as food production. 
Using SNP data, conservation biologists have assessed the param-
eters associated with the local extinction risk, such as effective 
population size and migration rates (Leitwein et al., 2020). The de-
tection and frequency estimation of DNA polymorphism are major 
techniques to monitor the invasion and population establishment of 
invasive species and/or a species that is close to and may hybridize 
with a cultured species (Dias et al., 2008; Zaccara et al., 2021). Field 
monitoring has also been performed to detect resistance genes of 
arthropod pests to pesticides and genetically modified insecticidal 
plants, such as Bt crops (Andow & Alstad, 1998; Sonoda et al., 2017). 
Although entomologists have traditionally estimated resistance 
allele frequencies via bioassays, molecular diagnostics have been 
developed in accordance with the recent development of genome-
wide association studies on resistance genes (Donnelly et al., 2016; 
ffrench-Constant, 2013; Samayoa et al., 2015; Snoeck et al., 2019; 
Sugimoto et al., 2020; Toda et al., 2017).

While allele frequency measurement using genetic diagnostic 
techniques is becoming widespread, finite sample size still brings 
uncertainty to estimate population allele frequencies. If the target 
population is sufficiently large, the alleles are distributed randomly 
in the population and the genotype is known for each individual or-
ganism, simple binomial assumption provides us with the point esti-
mate and its confidence interval (Fung & Keenan, 2014). However, 
individual DNA analysis, imposing the cost of sample preprocessing, 
may not be feasible for large numbers of individuals. It becomes a 
problem particularly when the frequency estimation of a rare (<1%) 
mutation is required, which is often the case, for example, in the 
early phase of resistance development.

Pooling multiple individual samples and processing a single DNA 
extract (i.e., the use of a “bulk sample”) may reduce the required time 
and cost associated with handling multiple samples (Figure 1a). In 
coordination with statistical methods such as group testing, it can 
guarantee precision and accuracy of the population allele frequency 

estimation at a certain level (Rode et al., 2018; Yamamura & Hino, 
2007).

qPCR, based on real-time PCR, has been proposed for the point 
estimation of the allele frequencies from bulk samples. To quantify 
the relative amount of two alleles on a specific locus in a bulk sam-
ple, Germer et al. (2000) adopted an index called ΔCq, which is usu-
ally defined as the difference between the cycles of quantification 
(Cq) in the real-time PCR on equal volumes of dispensed DNA solu-
tion. In their study, ΔCq was defined as the difference of the Cq val-
ues for two solutions dispensed from a bulk sample, each amplified 
with the primer sets corresponding to a specific allele on the target 
locus. This approach required a calibration curve because there was 
no guarantee that the amplification efficiencies using the two primer 
sets were equal.

Osakabe et al. (2017) developed a method called “RED-ΔΔCq 
method” (RED, restriction enzyme digestion) for the genetic diag-
nostics of resistance in the two-spotted spider mite, Tetranychus ur-
ticae Koch (Acari: Tetranychidae), to the acaricide etoxazole, which is 
conferred by an amino acid substitution in chitin synthase 1 (CHS1; 
I1017F) (Van Leeuwen et al., 2010). For the relative quantification 
of the resistant allele to the susceptible allele in a bulk sample, the 
RED-ΔΔCq method used a nonspecific primer set to amplify both 
alleles on the resistance-associated locus. At the same time, half of 
the dispensed solutions had been digested beforehand with restric-
tion endonucleases (Figure 2a). The restriction site was designed to 
recognize only the susceptible allele on the target locus; thereby, 
the ratio of the resistant to the (resistant + susceptible) alleles was 
compared. The changes in DNA concentration before and after 
the digestion were corrected using the Cq values measured for a 
housekeeping gene as an internal reference of DNA quantities for 
each treatment level, following a common method of qPCR known 
as the ΔΔCq method (Livak & Schmittgen, 2001). In the etoxazole-R 
diagnostics of Osakabe et al. (2017), glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was used as the reference gene because 
the parallelism in the PCR amplification efficiencies of CHS1 and 

F I G U R E  1  Population allele frequency 
estimation based on bulk samples. (a) 
Each bulk sample is obtained by collecting 
n (haploid) individuals, of which m 
have the resistant (R) and n − m have 
the susceptible (S) alleles. The DNA 
content in the bulk sample does not 
strictly correspond to m: (n − m) because 
they reflect differences in DNA yields 
among individuals. (b) The allelic DNA 
amounts in the bulk sample are assumed 
to independently follow the gamma 
distribution, whereas R frequency follows 
the beta distribution 0 0.5 1
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GAPDH was kept over the DNA concentration range. Although the 
calibration curve and two specific primers sets used by Germer et al. 
(2000) are no longer needed, the RED-ΔΔCq method still depends 
on the availability of the restriction enzyme. Maeoka et al. (2020) 
later demonstrated a general ΔΔCq method without restriction en-
zyme treatment for measuring allele frequency if a single specific 
primer set was designed to amplify one of the two alleles (Figure 2b).

However, the measurement of population allele frequencies via 
the qPCR methods still lacks a group testing framework for interval 
estimation. Although the ΔΔCq measure in Maeoka et al. (2020) and 
Osakabe et al. (2017) gives the point estimate for the allele frequency 
in each bulk sample, the error structure for the DNA amounts intrin-
sic in the bulk sample has not been modelled. Unlike the individual 
PCR or sequencing analyses where the genotype is determined for 
each individual, population allele frequency estimated from bulk 
samples results in a wider range of confidence intervals than that 
associated with binomial distribution because the DNA yield of each 
individual is probably not constant (Rode et al., 2018). A possible 
solution to regulate the error is modelling explicitly the individual 
DNA yields, which will follow a certain probability distribution, in 
addition to the binomial assumption on the number of individuals 
contained in each bulk sample (Figure 1b).

In this study, we propose a statistical method to obtain the 
confidence interval of the population allele frequency using ΔΔCq-
based qPCR analyses for multiple bulk samples taken from a pop-
ulation. A random error structure is introduced to approximate the 

relative abundance of the two alleles and their ratio in the bulk DNA 
sample. This structure is decomposed into two parts: the relation-
ship between the population allele frequency and the amounts of 
the template DNA in the bulk sample consisting of a certain number 
of randomly collected individuals. Another component is the error 
specific to the (RED)-ΔΔCq measures in the qPCR analyses. We 
then develop a maximum-likelihood estimation procedure to esti-
mate the frequency of a specific allele and its confidence interval in 
the population, which was evaluated with real DNA samples from 
the etoxazole-resistant spider mites and numerical simulations. 
Notably, an R package source is available online (https://github.
com/sudom​s/freqpcr).

2  |  MODEL

2.1  |  Approximation of allele quantities contained 
in a bulk DNA sample

When DNA is directly extracted from the whole body of a living 
organism, the DNA yield is roughly proportional to its body weight 
(Chen et al., 2010). For insects, the intrapopulation frequency dis-
tribution of body weight is often approximated using a unimodal 
and right-skewed continuous distribution, typically a lognormal or 
gamma distribution (Knapp, 2016; May, 1976). Although Gouws et al. 
(2011) suggested that body weights are distributed lognormally in 

F I G U R E  2  Schema for estimation of 
target mutation frequency in a bulk DNA 
sample using qPCR. (a) The restriction 
enzyme digestion (RED)-ΔΔCq analysis 
and (b) the ΔΔCq analysis using an R-
specific primer set. The lengths of the 
bars correspond to the relative DNA 
quantities of R and S alleles (XR and XS). 
In either method, the frequency of XR in a 
test sample is quantified as XR + zXS (≅ XR ) 
measured on the target gene, divided by 
XR + XS measured on a housekeeping gene 
in the sample. As the copy numbers may 
differ between genes, the relative content 
δT is also quantified using a control or 
undigested portion of the sample
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many nonsocial insect species, it is difficult to distinguish which dis-
tribution a real population obeys. The two distributions are consid-
ered interchangeable when the sample size is not large (Kundu & 
Manglick, 2005; Wiens, 1999).

In this study, we adopted a gamma, rather than lognormal, distri-
bution to approximate the DNA amount per individual organism be-
cause the sum and proportion of independent gamma distributions 
have closed forms under certain conditions (Mitchell et al., 2015). 
Using Equation 1, let X (X ≥ 0) be the DNA yield per single locus per 
individual:

where Γ ( ⋅ ) denotes the gamma function. The parameters k and θ (k, 
θ > 0) are the shape and scale parameters of the gamma distribution, 
respectively. The mean is given by kθ.

Using Equation 1, let us consider the amounts of allelic DNA in 
the sample extracted from multiple individuals at once, hereafter 
referred to as a “bulk sample.” Table 1 lists the variables and param-
eters of the model structure. For simplicity, we model the case of 
haploidy in the main text. Appendix S1 describes the approximated 
formulation for diploids. Let us assume that we have n insects, of 

which m (m = 0, 1, ..., n) are the genotypes resistant to an insecticide 
(hereafter denoted by R). The rest n − m carries S, the susceptible 
allele. When we capture insects from a wild population, the size of n 
is obvious, but m is usually unknown (Figure 1a). Assuming random 
sampling from an infinite population with the R allele at frequency p, 
m follows a binomial distribution (Equation 2):

When the bulk sample contains at least one resistant individual, 
XR =

∑m

i=1
Xi denotes the total R content where Xi is the individual 

DNA yield. If there is no systematic error in the efficiency of DNA 
extraction between the genotypes and if Xi obeys the gamma distri-
bution of Equation 1, then XR follows the gamma distribution with 
the shape parameter mk and scale parameter � based on the repro-
ducible property (Figure 1b). Conversely, the amount of the S allele is 
denoted by XS =

∑n

i=1
Xi, which follows the gamma distribution with 

(n − m) k and �.

(1)Ga (X|k, �) =
1

Γ (k)

(
1

�

)k

Xk−1exp

(
−

X

�

)
,

(2)Bin (m|n, p) =
n !

m ! (n − m) !
pm (1−p)n−m .

XR ∼ Ga (mk, �) ,

(3)XS ∼ Ga ((n − m) k, �) .

TA B L E  1  Description of variables and parameters

Symbol Description Range
Arguments in the numerical experiment and 
the R package

p Frequency of the R (resistant) allele in a population 0 ≤ p ≤ 1 P

XS, XR Amounts of DNA belonging to S (susceptible) or R alleles included 
in a bulk sample

XS ≥ 0, XR ≥ 0 —

YR The observed frequency of R in the bulk sample, defined as 
XR∕

(
XR + XS

) 0 ≤ YR ≤ 1 —

k, � Shape and scale parameters of the gamma distribution Ga (k, �) k > 0, 𝜃 > 0 K

N Number of bulk samples taken from a population N ∈ ℕ ntrap

n, nh Number of individuals constituting the (hth) bulk sample n ∈ ℕ npertrap (fixed in the numerical experiment)
∑N

h=1
nh Total sample size — ntotal

m, mh Number of R individuals included in the (hth) bulk sample 0 ≤ m ∈ ℤ ≤ n m (as an internal variable)

qPCR-related variables and parameters

� Per-cycle efficiency in the PCR amplification (as 1 + �) 𝜂 > 0 EPCR

XΘ The termination threshold of the amplification in real-time PCR XΘ > 0 Fixed 1 in the package

� Cq value: the number of PCR amplification cycles before 
termination

� ∈ ℝ �TW
h

: target0, �TD
h

: target1,
�HW
h

: housek0, �HD
h

: housek1

�T Relative content of the target gene to the internal reference 
(housekeeping gene)

𝛿T > 0 targetScale

�B (In the RED-ΔΔCq method) the locus-independent change rate 
of the template DNA quantity accompanying the restriction 
enzyme treatment

𝛿T > 0 baseChange

z (In the RED-ΔΔCq method) residual rate of restriction enzyme 
digestion, or (in general ΔΔCq analyses) portion of the off-
target allele amplified in the PCR

z > 0 zeroAmount

�c Cq measurement error (standard deviation) 𝜀c > 0 sdMeasure
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When XR and XS independently follow gamma distributions 
with the same scale parameter, the observed allele frequency 
YR = XR∕

(
XS + XR

)
 follows a beta distribution with the shape param-

eters mk and (n − m) k:

where B ( ⋅ ) is a beta function. This error structure was originally de-
veloped by Sudo et al. (2021) to model allele frequencies measured 
via quantitative sequencing, in which the gamma distributions were 
used to approximate the yield variations due to body weight plus 
post-mortem DNA degradation on a trap. Of note, the gamma dis-
tribution has recently been used to approximate the DNA release of 
aquatic animals and DNA abundance in water (Fukaya et al., 2021).

2.2  |  Relative quantification of allelic DNA by real-
time PCR

2.2.1  |  Allele frequency estimation from a single 
bulk sample: RED-ΔΔCq method

In the RED-ΔΔCq method of Osakabe et al. (2017), the control was 
prepared as an intact bulk sample containing total DNA (= XR + XS) 
on the target locus. The sample in question was the same DNA ex-
tract, whereas it was digested with restriction endonucleases prior 
to qPCR analysis (Figure 2a). The restriction site is designed to rec-
ognize the S allele on the target locus to ensure that the operation 
digests the major part of S (denoted by 1 − z: z is a small yet posi-
tive variable giving the residual rate). Consequently, we obtained 
the template amount XR + zXS at the target locus after digestion. To 
calibrate the template DNA amounts, samples before and after di-
gestion were also amplified using the primer set for a housekeeping 
gene as an internal reference.

Taken together, the single bulk sample results in a quartet of 
Cq measurements differentiating at the target loci (resistance-
associated and housekeeping genes) × restriction enzyme digestion 
(undigested and digested). We can then formulate the allele frequen-
cies by letting XHW and XTW represent the total amounts of tem-
plate DNA at the housekeeping (H) and target (T) loci, respectively, 
included in the sample without digestion, the state denoted by W.

The coefficient �T (𝛿T > 0) provides the relative content of the 
target gene to the housekeeping gene in genomic DNA (the differ-
ence in the DNA extraction efficiencies is also included). After diges-
tion (state D), XHD and XTD denote the DNA amounts at the H and T 
loci, respectively:

The common coefficient �B (𝛿B > 0) provides the rate of certain 
locus-independent changes in the quantities of template DNA ac-
companying the restriction enzyme treatment.

As a result of qPCR, the Cq quartet, �HW, �TW, �HD and �TD were 
obtained as:

Here, 1 + � (𝜂 > 0) and XΘ denote the amplification efficiency per 
PCR cycle and its threshold, respectively. According to Livak and 
Schmittgen (2001), we assume an ideal amplification, where XΘ is set 
within the early exponential amplification phase. The actual Cq data 
contain measurement errors in addition to uncertainty due to experi-
mental operations, such as sample dispensation or PCR amplification. 
We express these using the common error term �c ∼ N

(
0, �2

c

)
 , follow-

ing the normal distribution of mean = 0 and variance = �2
c
 in the scale 

of raw Cq values. The validity of this error structure is verified later.
The two ΔCq values were then defined for the undigested and 

digested samples, as Δ�W = �TW − �HW and Δ�D = �TD − �HD, respec-
tively. Their ΔΔCq are:

From Equation 8, the expected value of 
(
XR + zXS

)
∕
(
XR + XS

)
 is 

calculated as (1+�)−ΔΔ�. The coefficients �B and �T in Equations 5 and 
6 vanished by subtracting the Cq values and ΔCq values, respectively.

The point estimate of the resistance allele frequency, ŶR, is de-
fined as XR∕

(
XR + XS

)
 for each bulk sample. When z is much smaller 

than ŶR, the quantity (XR + zXS
)
∕
(
XR + XS

)
= ŶR + z

(
1 − ŶR

)
 itself 

can approximate the frequency, which will be the case with enough 
digestion time before qPCR. However, use of the point estimate may 
introduce a problem in that the size of ŶR often exceeds 1 when the 
R frequency is high, and a larger error exists in the Cq measurement 
(see Experiment 2).

Although the value of 1 + � may vary on the primer sets, both 
target and housekeeping loci share the same amplification efficiency 
in Equation 7, because practical PCR protocols were designed to be 
1 + � ≅ 2. We can also approximately cancel the effect of heteroge-
neous amplification efficiencies by fitting the �T size of the sample 
sets with known allele ratios (Experiment 1).

2.2.2  |  Measurement of ΔΔCq using allele-specific 
primer sets

Although the RED-ΔΔCq method enabled us to measure allele fre-
quency from the bulk sample, enzyme availability is a prerequisite 

(4)Beta
(
YR|mk, (n − m) k

)
=

Ymk−1
R

(
1−YR

)(n−m)k−1

B (mk, (n − m) k)
,

(5)
XHW = XR+XS,

XTW = �T
(
XR+XS

)
.

(6)
XHD = �B

(
XR+XS

)
,

XTD = �B�T
(
XR+zXS

)
.

�HW =
ln
(
XΘ

)
− ln

(
XR+XS

)
ln (1+�)

+�c,

�TW =
ln
(
XΘ

)
− ln�T− ln

(
XR+XS

)
ln (1+�)

+�c,

(7)
�HD =

ln
(
XΘ

)
− ln�B− ln

(
XR+XS

)
ln (1+�)

+�c,

�TD =
ln
(
XΘ

)
− ln�B− ln�T− ln

(
XR+zXS

)
ln (1+�)

+�c.

(8)
ΔΔ� = Δ�D − Δ�W = −

ln
(
XR + zXS

XR +XS

)

ln (1 + �)
+ �, � ∼ N

(
0, 4�2

c

)
.
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to digest the S-allele-specific restriction site at the target locus. A 
longer digestion period (3 h) was also required to quantify etoxazole 
resistance in the protocol by Osakabe et al. (2017).

Maeoka et al. (2020) demonstrated that a general ΔΔCq method 
without restriction enzyme treatment could be used for allele-
frequency measurement if a specific primer set were to be designed to 
amplify only the R allele at the target locus. Similar to the RED-ΔΔCq 
method, DNA samples with unknown mixing ratios were dispensed and 
amplified using primer sets corresponding to T and H loci, respectively. 
Unlike the RED-ΔΔCq method, the control sample was not taken from 
the test sample solution but was prepared as a DNA solution containing 
100% R, hereafter denoted as U (= pUre R line) (Figure 2b).

XHU and XTU then denote the template DNA quantities in the 
control sample:

Although the definition of �T is the same as in Equation 5, the 
quantity is denoted by X′

R
 instead of XS + XR as it no longer originates 

from the R portion of the test sample itself (i.e., not internal).
For the test sample (denoted as V), the template DNA quanti-

ties amplified at the housekeeping (XHV) and target (XTV) loci are ex-
pressed as follows:

In the PCR process of the modified ΔΔCq method, the small pos-
itive number z provides the template quantity of S, which is nonspe-
cifically amplified even with the R-specific primer set. As the primer 
set for the housekeeping gene was nonspecific, XHV was fully ampli-
fied. Assuming that all four template DNAs are amplified with effi-
ciency 1 + �, we define the two ΔCq values as Δ�U = �TU − �HU and 
Δ�V = �TV − �HV. Finally, their ΔΔCq values are ΔΔ� = Δ�V − Δ�U , 
yielding a formula identical to Equation 8.

2.3  |  Simultaneous interval estimation of allele 
frequency and experimental parameters based on 
qPCR over multiple bulk samples

Finally, we consider the likelihood model to obtain the interval es-
timate of the allele frequency based on the (RED-)ΔΔCq analysis 
over multiple bulk samples. Assume that the population has the 
R allele at frequency p from which N bulk samples are taken. The 
hth sample (h = 1, 2, 3, . . . ,N) consists of nh haploid individuals, of 
which mh are resistant mutants. As shown in Equation  7, the Cq 
values (denoted as �HW

h
, �TW

h
, �HD

h
 and �TD

h
 for each bulk sample) are 

determined not only by the DNA quantities, denoted as Xh,R and 
Xh,S, but also by parameters such as �T or �2

c
 accompanying the ex-

perimental operation. We can simultaneously estimate these if we 

have multiple bulk samples, for which the likelihood function of 
obtaining the Cq values under the parameters is defined.

We propose the joint likelihood for the two ΔCq values, 
Δ�W

h
= �TW

h
− �HW

h
 and Δ�D

h
= �TD

h
− �HD

h
, for the convenience of nu-

merical calculation:

Although Equation 11 is defined for the RED-ΔΔCq method, it can also 
be applied to the ΔΔCq method of Maeoka et al. (2020) by substituting 
Δ�W

h
 and Δ�D

h
 with Δ�U

h
= �TU

h
− �HU

h
 and Δ�V

h
= �TV

h
− �HV

h
 , respectively.

2.3.1  |  Formulation of likelihood based on the 
gamma or beta distribution

Using the relationship between mh, nh and p in Equation 2, we pro-
ceed to the likelihood function defined as the probability of observ-
ing the set of Δ�W

h
 and Δ�D

h
 under the given values of p, nh and other 

experimental parameters. In Equation 11, Δ�W
h

 is not affected by the 
R: S ratio in the bulk sample; it is only affected by the experimental 
parameters, �T, � and �2

c
. In addition, by taking the differences, there 

is no need to estimate XΘ and �B appearing in Equation 7. Moreover, 
cancellation of �B also ensures that we can apply the model of 
Equation 11 to the general ΔΔCq method of Equations 9 and 10.

Conversely, we must consider the amount of DNA in the bulk 
sample to calculate the probability of obtaining Δ�D

h
. When the size 

of mh is specified under the binomial assumption, the quantities of 
DNA in the hth bulk sample, Xh,R|mh

 and Xh,S|mh
, can independently 

take any positive values following the gamma distribution of 
Equation 3, and their proportions Yh,R|mh

= Xh,R|mh
∕
(
Xh,R|mh

+ Xh,S|mh

)
 

are Beta
(
mhk,

(
nh − mh

)
k
)
 as shown in Equation 4. If the sample con-

tains only S or R, then Xh,R|mh=0
= 0 or Xh,S|mh=nh

= 0 is guaranteed.
The likelihood function for the observed ΔCq values on the hth 

bulk sample Lh is defined as follows:

In Equation 12, �G or �B denotes the probability of obtaining Δ�D
h
 

under the template DNA quantities of Xh,R|mh
= r and Xh,S|mh

= s if we 

(9)
XHU =X�

R
,

XTU =�TX
�
R
.

(10)
XHV =XR+XS,

XTV =�T
(
XR+zXS

)
.

Δ�W
h

∼ N

(
−

ln�T
ln (1 + �)

, 2�2
c

)
,

(11)Δ�D
h
∼ N

⎛
⎜⎜⎜⎝
−

ln�T + ln
�
Xh,R + zXh,S

Xh,R +Xh,S

�

ln (1 + �)
, 2�2

c

⎞
⎟⎟⎟⎠
.

Lh = P
(
Δ�W

h
|�T, �, �2c

) nh∑
mh=0

[
Bin

(
mh|nh, p

)
P
(
Δ�D

h
|mh, �T, z, �, �

2
c

)]
,

(12)P
�
Δ�D

h
�mh, �T, z, �, �

2
c

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

N

�
−

ln
�
z�T

�
ln (1+�)

, 2�2
c

� �
mh=0

�

�G or �B

�
mh=1, 2, . . . , nh−1

�

N

�
−

ln�T
ln (1+�)

, 2�2
c

� �
mh=nh

�
.
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model the two quantities by a gamma distribution, or if we formu-
larize their mixing ratio by the single beta distribution, respectively. 
We must consider not only the possible cases of mh, but also the 
entire range of the DNA amounts. If we use the gamma distributions, 
for every case mh = 1, 2, . . . , nh − 1, we need to calculate the double 
integration for �G under the whole region of Xh,R|mh

= r and Xh,S|mh
= s 

for the interval {D: 0 ≤ r < ∞, 0 ≤ s < ∞}.

The common scale parameter of the gamma distributions, �, is 
not identifiable from the data, although we can substitute arbitrary 
values � = 1 for it because Equation 13 can also be expressed using 
Ga

(
(r∕�) |mhk, 1

)
 and Ga

(
(s∕�) | (nh − mh

)
k, 1

)
. Thereafter, � is can-

celled in (r + zs) ∕ (r + s) and has no effect on the parameter set that 
optimizes �G.

Since the computational burden for the double integration is 
large, we simplified the likelihood model with the beta distribution. 
By introducing y = r∕ (r + s), the probability of obtaining Δ�D

h
 is re-

placed with �B defined as follows:

We provide an R function “freqpcr()” to estimate the parameters 
p, k, �T and �c simultaneously when the set of Cq measurements (�HW

h
, 

�TW
h

, �HD
h

 and �TD
h

) and nh are given for each of the N bulk samples. This 
function did not work when we measured the Cq values over only 
one bulk sample because it is expected to estimate up to four param-
eters while the data is input as two difference values (Δ�W

h
 and Δ�D

h
). 

The default is freqpcr(…, beta = TRUE), where the beta distribution 
model of Equation 14 was used instead of gamma. Regardless of the 
algorithms, the asymptotic confidence intervals are calculated using 
the inverse of the Hessian matrix evaluated at the last iteration. The 
functions nlm() of R and cubintegrate() in the R package “cubature” 
(Narasimhan et al., 2019) are used for the iterative optimization and 
the (double) integration, respectively.

2.4  |  Identification of auxiliary parameters using 
DNA samples with known allele-mixing ratios

The likelihood introduced above ensures that we can estimate the 
sizes of p and k together with other experimental parameters if we have 
conducted a (RED-)ΔΔCq analysis on multiple bulk samples. However, 
the size of z, the residue rate of the S allele, is not identified and must 
be specified as a fixed parameter. The amplification efficiency, �, is 
estimated in theory over the iterative calculation of Equation 11, but 
it is the only parameter appearing in the denominators. Simultaneous 
estimation sometimes fails when � is set as unknown.

Therefore, the experimenter should identify the sizes of these 
auxiliary parameters. To estimate their plausible sizes, one can con-
duct (RED-)ΔΔCq analysis using DNA solutions with known allele 
ratios; for instance, DNA can be extracted from each of the pure 
breeding lines of S and R and mix the solutions at multiple ratios, 
or make a dilution series of R by S. As the ratio of XR to XS is strictly 
fixed, Equation  7 is directly applicable to express the relationship 
between DNA quantities and the four Cq measurements. The R 
functions knownqpcr() and knownqpcr_unpaired() appearing in the 
package provide the maximum-likelihood estimation for �B, �T, �c, z 
and �. These values can be used as fixed parameters in the freqpcr() 
function. The “knownqpcr_unpaired” function was developed to 
handle incomplete data (i.e., the observations of �HW, �TW, �HD and 
�TD have different data lengths). If the four Cq measures are available 
for all samples, then “knownqpcr” is used.

Another objective of the analysis with known-ratio samples is 
to test the homoscedasticity of the qPCR data at the scale of Cq 
measures. Regarding the relationship between the etoxazole-R allele 
frequency in Tetranychus urticae and the corresponding 2−ΔΔCq mea-
sures (the approximate point estimate of the frequency), Osakabe 
et al. (2017) demonstrated linearity using a sample series of DNA 
with multiple mixing ratios on CHS1 (I1017F). In the next section, we 
recycled the same data to compare whether the Cq measurements 
in the RED-ΔΔCq analysis obey the homoscedasticity in the scale of 
ΔΔCq or (1 + η)−ΔΔCq.

3  |  MATERIAL S AND METHODS

3.1  |  Experiment 1: Estimation of auxiliary 
parameters and verification of homoscedasticity in 
Cq measurements based on mite DNA samples with 
known allele-mixing ratios

3.1.1  |  Experimental setup

In the experiment by Osakabe et al. (2017), the resistant mite strain 
(SoOm1-etoR strain) originated from a field population collected 
in Omaezaki City, Shizuoka, Japan (34.7°N, 138.1°E) in January 
2012. The susceptible strain was obtained from Kyoyu Agri Co., Ltd 
(Kyoyu-S strain). For each strain, two pairs of females and males were 
used separately. Each pair was allowed to mate and oviposit on a kid-
ney bean leaf square (2 × 2 cm) for 4 days. The mites were then con-
firmed to be homozygous on the CHS1 locus using sequence analysis. 
Genomic DNA extracted from the offspring of each pair was used for 
qPCR analysis. For each pair, the DNA extracts were prepared twice, 
each of which was a mixture from 50 adult females homogenized 
together, that is, four extracts (replicates) for each strain.

To verify the validity of the RED-ΔΔCq method, qPCR analysis 
was performed with heterogeneous DNA solutions with 10 mixing 
ratios of XR∕

(
XR + XS

)
 = {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 

0.75, 1}. The net DNA concentration of each mixed solution was 

(13)

�G = D{
̂

∬
N

⎛
⎜⎜⎜⎝
−

ln�T + ln
�
r + zs

r + s

�

ln (1 + �)
, 2�2

c

⎞
⎟⎟⎟⎠
Ga

�
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�
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�
s� �nh − mh

�
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adjusted to 1 ng µl−1, from which 15 ng was dispensed into each of 
the two tubes. Only one was digested with the restriction enzymes 
before qPCR. For digestion, the samples were treated with a mixture 
of two enzymes, MluC I (10 units) and TaqαI (20 units; New England 
BioLabs), at 37°C for 3 h, followed by incubation at 65°C for 3 h, 
which is due to the polymorphism of the CHS1 loci; the 1017 codon 
of Tetranychus urticae displays ATT (Kyoyu-S strain) or TTT (SoOm1-
etoR) sequences, whereas the upstream 1016 codon displays a 
synonymous TCG or TCA independent of the strains (Van Leeuwen 
et al., 2012). Therefore, we need to digest both TCGATT (underline 
shows the restriction site of TaqαI) and TCAATT (MluC I) to diminish 
the entire S allele.

qPCR analysis using the intercalator method was performed 
using the LightCycler Nano System (Roche Diagnostics) with 
SYBR Fast qPCR Mix (Takara) as described previously (Osakabe 
et al., 2017). The primer sets were tu03CHS1 (forward: 5 -́
GGCACTGCTTCATCCACAAG-3ʹ and reverse: 5 -́GTGTTCCCCAA​
GTAACAACGTTC-3ʹ) and tu25GAPDH (forward: 5 -́GCACCAAGTG​
CTAAAGCATGGAG-3ʹ and reverse: 5 -́GAACTGGAACACGGAAA​
GCCATAC-3ʹ) for the resistance-associated and housekeeping loci, 
respectively.

3.1.2  |  Statistical analysis

The maximum likelihood of �B, �T, �c, z and � was conducted with 
the “knownqpcr_unpaired” function of the freqpcr package (version 
0.3.5). The raw Cq data are available as Appendix S3 (ESM) 1 along 
with a step-by-step guide for statistical analyses (ESM 2). Due to the 
limitation of the handling capacity of the thermal cycler, qPCR analy-
sis was not conducted on undigested samples of the nine mixing ra-
tios other than XR∕

(
XR + XS

)
= 1 (i.e., pure R solution). Thus, in each 

replicate, Osakabe et al. (2017) used the observed Δ�W value when 
the ratio  =  1 for other ratios to calculate the conventional ΔΔCq 
indices. As we have shown in Equation  7, this operation does not 
affect the point estimates of p, although the size of the Cq measure-
ment error (�c) will be underestimated if we recycle the observed Cq 
value multiple times.

Regarding the relationship between the true mixing ratio and the 
RED-ΔΔCq measures in the sample, the linearity was analysed using 
a linear model via the function “lm” running on R version 3.6.1 (R 
Core Team, 2019), where the response variables were put into the 
model at the scale of Cq or (1 + η)−ΔΔCq. Based on the linear models, 
we tested heteroscedasticity using the Breusch-Pagan test via the 
bptest() function of the R library “lmtest” (Hothorn et al., 2019).

3.2  |  Experiment 2: Evaluation of the simultaneous 
estimation method with randomly generated data

Since the experiment by Osakabe et al. (2017) used a sample se-
ries with strict mixing ratios, the effect of individual differences in 
DNA yield was not evaluated. Instead, we conducted a numerical 

experiment to verify the accuracy of the simultaneous parameter 
estimation under uncertainty in the individual DNA yield. The fre-
quency of the R allele in the population, p, was set to 0.01, 0.05, 0.1, 
0.25, 0.5 or 0.75.

For the sampling strategy, N bulk samples (the parameter 
“ntrap” in the R source code), each comprising n individuals (n was 
fixed among the samples: the parameter “npertrap” in the code), 
were generated by assuming random sampling from a wild popu-
lation of a haploid organism. To assess how the estimation inter-
val responds to the sample sizes, we evaluated the combination of 
N = {2, 4, 8, 16, 32, 64} and n = {4, 8, 16, 32, 64}, though the com-
binations with Nn > 128 were excluded (Nn corresponds to “nto-
tal” in the code). The DNA quantities (XR and XS) present in each 
bulk sample were generated as random numbers that followed the 
gamma distributions of Equation 3. To cover a plausible variability 
range of the DNA yield, the gamma shape parameter was varied as 
k = {1, 3, 9, 27}. Depending on the size of k, the gamma scale pa-
rameter was set at � = 1 × 10−6∕k to fix the mean of the individual 
DNA yield to 1 × 10−6 . The termination threshold for qPCR, XΘ, was 
fixed at 1.

We fixed the other parameters due to the limitations of the 
computing resources. From the results of Experiment 1, �T = 1.2, 
�B  =  0.24, z  =  0.0016 and �  =  0.97 were presupposed. As for 
the random errors in the PCR amplification process and/or the 
Cq measurement, �c  =  0.2 was assumed regardless of the ini-
tial template quantity. For each of the 624 parameter regions, 
the dummy data sets comprising N bulk samples were generated 
1000 times independently with different random number seeds 
(i.e., 1000 replicates), for which the parameter estimation with 
freqpcr(…, beta  =  TRUE) of the freqpcr package version 0.3.1 
was run on the R 3.6.1 environment. The simulation code is avail-
able in ESM 3.

For each parameter region, the success of the interval esti-
mation was defined as the empirical probability that the freqpcr() 
function returned certain values other than NA (i.e., the diagonal of 
the Hessian matrix was not negative). There was no guarantee that 
the estimated confidence interval was accurate in each trial. The 
accuracy of the maximum-likelihood estimate and the 95% con-
fidence interval (i.e., the precision of the interval estimate) were 
assessed for each parameter region by pooling the estimates and 
the upper/lower limit values for the 1000 replicates to obtain the 
quantiles.

We also implemented the gamma distribution model as fre-
qpcr(…, beta =  FALSE). A numerical experiment with the gamma 
model was also conducted for the first 250 replicates, and the es-
timation accuracy was compared between the two assumptions. 
Furthermore, we also fitted the function with the settings fre-
qpcr(…, K = 1), that is, assuming the gamma shape parameter was 
fixed at 1 (a.k.a. exponential distribution), in addition to the default 
simulation with all parameters (p, k, �T and �c) unknown. Further, 
the easiest way to estimate p derived from Equation 8 is to average 
the observed ΔΔCq values for N bulk samples and transform them 
as p̂ = (1+�)(−ΔΔ�).
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4  |  RESULTS

4.1  |  Estimation of auxiliary parameters and 
verification of homoscedasticity

Based on the Cq measures, the auxiliary parameters were esti-
mated based on the RED-ΔΔCq analysis of the I1017F mutation of 
Tetranychus urticae. As for the initial quantity of template DNA (the 
parameter “meanDNA” on the R code; defined as X∕XΘ), the maximum-
likelihood estimate was 1.256  ×  10−6 (95% confidence interval [CI]: 
7.722 × 10−7 to 2.041 × 10−6). The relative quantity of the target gene 
to the housekeeping gene �T (targetScale) was estimated to be 1.170 
(95% CI: 1.069–1.280). The locus-independent change rate in the 
template quantity accompanying the restriction enzyme treatment �B 
(baseChange) was 0.2361 (95% CI: 0.2040–0.2731). The measurement 
error in the scale of Cq �c (SD) was 0.2376 (95% CI: 0.2050–0.2755). 
The residue rate of the S allele after digestion z (zeroAmount) was 
0.001564 (95% CI: 0.001197–0.002044). The efficiency of amplifica-
tion per PCR cycle � (EPCR) was 0.9712 (95% CI: 0.9231–1.022).

In the RED-ΔΔCq analysis of the etoxazole resistance of T. urticae, 
the relationship between the true R allele frequency (YR = XR∕

(
XR + XS

)
 

in the sample) and the corresponding Cq measures exhibited higher ho-
moscedasticity in the scale of the measured ΔΔCq values rather than in 
(1 + η)−ΔΔCq, the transformation to ̂YR (Figure 3). The linear regression of 
the ΔΔCq values on − ln

[
0.001564 ×

(
1 − YR

)
+ YR

]
∕ln (1 + 0.971) 

showed high linearity (intercept = −0.07694, coefficient = 1.025, ad-
justed R2 = 0.9936). The homoscedasticity of the coefficient of determi-
nation was not rejected at the 5% level of significance (Breusch–Pagan 
test: BP = 3.1577, df = 1, p = .07557) (Figure 3a). Conversely, the lin-
ear regression of 1.971−ΔΔCq on 

[
0.001564 ×

(
1 − YR

)
+ YR

]
 showed 

a slightly lower linearity (intercept = −0.008625, coefficient = 1.092, 
adjusted R2  =  0.9709). The Breusch–Pagan test was highly signifi-
cant (BP = 13.978, df = 1, p = .0001849), rejecting homoscedasticity 
(Figure 3b). These results suggest that it is easier to model the error 
structure of the RED-ΔΔCq method on the scale of Cq values (loga-
rithm) rather than frequency (linear scale).

4.2  |  Evaluation of the simultaneous estimation 
method with randomly generated data

For interval estimation of the population allele frequency, the es-
timation success probability was improved by fixing the size of the 
gamma shape parameter. Among the numerical simulations using 
freqpcr(…, beta  =  TRUE), conducted for 624 parameter regions 
with 1000 replicates, the 95% confidence intervals of p were re-
turned in 70.6% and 94.5% when all parameters were unknown, 
and when the shape parameter was fixed as k = 1, respectively. 
The estimation success for the Cq measurement error, �c, was 
69.6% and 97.6% in the beta distribution model with unknown k 
and k = 1, respectively. The relative quantity of the target gene, 
�T, was 68.1% and 96.1%, respectively. The estimated success 
of k (when set unknown) was 59.9% with the beta distribution 

model, showing a lower performance than the other parameters. 
Conversely, the estimation of p is robust to the size of k, as we 
show later in this section.

The estimation success of freqpcr()depended largely on the total 
sample size (Nn corresponding to the facet “ntotal” in the figures), 
as well as the level of p (Figures S1 and S2 for the beta and gamma 
models, with all parameters unknown). In each parameter region, the 
quantity Bin (0|Nn, p) generally gives the probability that the whole 
sample contains no R individuals. When Nn is large enough, Nn > 3∕p 
is approximately the requirement for the total sample size to con-
tain at least one R individual with 95% confidence, called the “rule 

F I G U R E  3  Relationship between the allele frequency in the 
sample and (a) the RED-ΔΔCq measures and (b) the observed 
frequency calculated as (1 + η)(−ΔΔCq), showing the results of 
etoxazole resistance in the two-spotted spider mites. The lines are 
not the regression on the actual Cq measurement (shown as points), 
but the theoretical relationship between the true frequency of the 
R allele and the quantity defined as (a) − ln

(
z + YR (1 − z)

)
∕ln (1 + �) 

or (b) z + YR (1 − z), where YR = XR∕
(
XR + XS

)
. Parameters are 

z = 0.00156 and η = 0.971
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of three” (Eypasch et al., 1995). The grey backgrounds in the facets 
of Figures 4 and 5 and S1–S7  signify the regions where the total 
sample sizes are smaller than the thresholds (e.g., 60 haploid individ-
uals are required when p = .05). As shown in Figures S1 and S2, the 
parameter estimation often failed when Nn did not meet the rule of 
three. Once we exclude the parameter regions of Nn ≤ 3∕p, the esti-
mation success rate of p with freqpcr(…, beta = TRUE) improved to 
84.3% and 99.9% with all parameters unknown and assuming k = 1, 
respectively.

For the estimation accuracy of p, the freqpcr() function, which 
assumes a beta distribution, provides an unbiased estimator. Figure 4 
and S3 show the estimated sizes of p using the beta model with all 
parameters unknown and assuming k = 1, respectively. Both settings 
demonstrated that the estimator converged to the true R frequency; 
the upper/lower bounds of the estimated 95% confidence intervals 
(yellow/blue boxes in each plot) became narrower as we increased 
the total sample sizes (Nn). According to the summary table (ESM 
1: worksheet “Simulation_Result_Beta_all”), the 95% CI of p roughly 
falls within the range [p/3, 3p] when Nn > 3∕p. If the total sample size 
was doubled (Nn > 6/p), we obtained a narrower 95% CI between 
p/2 and 2p, which is considered satisfactory for practical interval 
estimation.

Although there was a larger contribution of increasing the total 
sample size (Nn), we obtained a narrower confidence interval of p 
as the samples were more divided under the given total sample size 
(N∕ (Nn) was large). However, if every individual was analysed sepa-
rately, the interval estimation was only possible when k was fixed (see 
the regions of “sample division = ntotal” cases in Figure 4). In con-
trast, fixing the size of the gamma shape parameter to k = 1 scarcely 
affected the point estimates and intervals of p, as long as Nn > 3∕p 
is satisfied (Figure S3).

When we used the gamma distribution model (the number of 
replicates was 250), the interval estimation of p was also possible 
and unbiased (Figure S4). However, when we defined the point esti-
mator of p as a simple average, that is, ̂p = (1+�)(−ΔΔ�), it was strongly 
underestimated as the samples were more divided (Figure 5). The 
upper limit of the 95% CI often violated 1, suggesting that the “sim-
ple average of ΔΔCq” ± 1.96 SE is inadequate for the interval estima-
tion based on the RED-ΔΔCq method.

The calculation time and the number of iterations before con-
vergence varied largely in the model settings and sample sizes 
(Figures S5–S7). Among the settings we tried, the beta model 
with fixed k was the fastest and converged within a few seconds 
in most parameter regions (median and 75th percentile: 0.32 and 

F I G U R E  4  Estimation accuracy of the population allele frequency, p, with freqpcr() when the beta distribution was assumed, and all 
estimable parameters (P, K, targetScale and sdMeasure) were set as unknown. The result of numerical experiments is based on 1,000 dummy 
data sets per parameter region. The x-axes correspond to N, or the “ntrap” parameter, the extent to which the collected individuals (ntotal) 
were divided into the bulk samples. The three box plots (white thin, blue and yellow wide) in each region show the maximum-likelihood 
estimates (MLE), lower bound of the 95% confidence interval (CI) and the upper bound, respectively. In each boxplot, the horizontal line 
signifies the median of the simulations, hinges of the box show 25th and 75th percentiles, and the upper/lower whiskers correspond to the 
1.5× interquartile ranges. The shaded facets show that the total sample sizes (ntotal) are smaller than 3/p
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0.69 s: Figure S6). It was three and >10 times faster than the beta 
(0.91 and 2.4 s: Figure S5) and gamma (3.0 and 15 s: Figure S7) 
model, respectively, with all parameters unknown. The calcula-
tion time generally increased as the data set size increased (larger 
Nn). It also increased as the sample was more divided in the beta 
distribution model because the marginal likelihood was calcu-
lated for each bulk sample (Figures S5 and S6). Conversely, the 
gamma distribution model (Figure S7) requires increased calcula-
tion time as the size of each bulk sample becomes larger (larger 
nh). This was considered because the combination of Bin

(
mh|nh, p

)
 

exploded when nh was large.
Furthermore, the estimation accuracy of the shape parameter, 

k, was underestimated as the real size of the parameter increased 
(e.g., k = 27) when the gamma distribution model was applied (Figure 
S8B). Since the iterative fitting of the parameter in freqpcr() al-
ways starts internally from k = 1 (this was determined due to the 
calculation stability), this bias suggests that the likelihood function 
of �G (Equation 13) has little information on the size of k compared 
with p. Thereafter, k tends to stay at its initial value, suggesting that 
the gamma model is less suitable for the simultaneous estimation 
of p and k. Unlike the gamma version, the fitting of k with freqp-
cr(beta = TRUE) was satisfactory when we divided the total sam-
ples into more bulk samples. However, the initial value dependence 
was still observed, especially when p or N was small (Figure S8A), 
which may be because the estimation of k via Beta

(
mhk,

(
nh − mh

)
k
)
 

in Equation 14 is comparable with measuring the overdispersion of 
Yh,R|mh

, which is only possible when multiple bulk samples contain 
both R and S alleles.

5  |  DISCUSSION

In the present study, we developed a statistical model to estimate 
the population allele frequency based on qPCR across multiple bulk 
samples to address the issues facing the conventional point estima-
tor for allele frequency which averages the observed ΔΔCq values 
p̂ = (1+�)(−ΔΔ�). This conventional method sometimes exceeds 1 
when the frequency of the target allele is close to 1. Furthermore, 
when quantifying the rare mutant allele in a population, most bulk 
samples contain only the wild-type allele. The conventional p̂ is vul-
nerable to many zero samples, which makes the frequency estima-
tion more difficult when p is small. To circumvent these problems, 
our interval estimation explicitly models the number of individuals 
contained in each bulk sample (the binomial assumption) as well as 
the individual DNA yields (the gamma assumption), thereby obtain-
ing the interval estimate over the entire range 0 < p < 1.

The explicit modelling of individuals also allows sample division 
to various degrees, which helps us balance our sampling strategy 
on the cost–precision tradeoff. We can achieve higher precision 
(narrower confidence interval) by increasing the total sample size, ∑N

h=1
nh, although it also increases the costs of sample collection 

and laboratory work, including library preparation and PCR analysis. 
Although it is possible to extract DNA from dead bodies obtained 
via mass trapping, a larger sample size still imposes a higher handling 
cost if we analyse the collected organisms individually via nonquan-
titative PCR (Toda et al., 2017; Uesugi et al., 2016).

The combination of mass trapping and bulk qPCR analysis offers 
a solution by collecting more individuals and pooling them, resulting 

F I G U R E  5  Estimation accuracy 
of the population allele frequency by 
simple averaging of ΔΔCq measures. The 
frequency was underestimated compared 
to its true value (horizontal broken line 
in each facet) as the samples were more 
divided. The three box plots (white thin, 
blue and yellow wide) in each region 
show the mean, lower bound of the 95% 
confidence interval (CI) and the upper 
bound, respectively. The Cq data set was 
derived from the numerical experiment 
of “beta distribution, all parameters 
unknown”
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in higher precision with less work than individual PCR. For instance, 
we sampled 16 individuals from the population with an allele fre-
quency of p = .05 and analysed two individuals once in the numerical 
experiment (Figure 4: facet of ntotal = 16, sample division = 8). The 
lower and upper limits of the 95% CI p were estimated to be  .0087 
and .34, respectively, using freqpcr(…, beta = TRUE) (as the medi-
ans of the 1000 independent trials). We also simulated the case of 
ntotal = 64 and sample division = 4 (i.e., analysed 16 individuals to-
gether) and found the upper and lower limits to be 0.015 and 0.15, 
respectively. Thus, we improved the precision of the interval esti-
mate with half the handling effort.

In nonquantitative PCR, sample pooling is considered as a tool for 
the detection of rare (c)DNA in the population with practical labour 
requirements and has been used as a high-throughput prescreening 
system for many samples, such as in clinical examinations (Taylor 
et al., 2010; Yelin et al., 2020). In some fields, such as plant quaran-
tine, frequency estimation is not realistic as the assumed frequency 
range is low (p ≤ . 001). According to the “rule of three,” the required 
sample size is 3,000 to contain at least one product contaminated 
with pests or unapproved genetically modified seeds when p = .001. 
In the inspection routine of plant quarantine, group testing based 
on nonquantitative PCR is designed to ensure the contamination 
is not detected at a certain consumer risk (Yamamura et al., 2019). 
Yamamura and Hino (2007) proposed a semiquantitative method to 
estimate the upper limit of the population allele frequency based on 
the proportion of bulk samples detected as “positive.”

Overall, there has been a gap in methodology between the fre-
quency estimation based on the individual PCR and the non- or semi-
quantitative PCR based on the nonquantitative bulk PCR. Although 
individual PCR provides the highest estimation precision following 
binomial distribution, it is only available at a higher p; it becomes 
labour-intensive once we try to quantify rare alleles. The nonquan-
titative bulk PCR can be applied to a lower range of p, but the preci-
sion is generally low. Bridging the gap, ΔΔCq-based qPCR analyses 
for multiple bulk samples offer an allele frequency estimation in the 
mid- to low range (p = .01 to .25), which is considered a critical range 
for decision-making in some fields like pesticide resistance manage-
ment (Sudo et al., 2018; Takahashi et al., 2017).

Although this study exemplified resistance genes, the likelihood 
model of Equation 11 can also be applied for other qPCR protocols; the 
prerequisite is that the point estimate of the sample allele frequency 
is obtained in the form of the ΔΔCq measure. If both the nonspecific 
and specific primer sets are available to amplify the “wild type + mu-
tant” and “mutant” alleles at the target locus, they can replace the 
control (undigested) and test (digested) samples, which are equivalent 
to XTW in Equation 5 and XTD in Equation 6, respectively. However, 
there is a caveat in determining which allele should be amplified with 
a specific primer set and which affects the estimation accuracy due to 
the intrinsic nature of (1 + η)−ΔΔτ. As shown, the 95% CIs were broader 
when p = .75 than when p = .25 (Figure 4), and the precision was not 
symmetric around 0.5, but more precise when the frequency was low; 
that is, one should design a specific primer set to amplify the allele that 
would be rare in the population to improve the signal-to-noise ratio.

The maximum-likelihood estimation with freqpcr() relies on the 
assumption that the quantities of the S and R alleles in each bulk 
sample independently follow a gamma distribution and that their 
quotient is expressed using a beta distribution. Although the fre-
qpcr() function with the gamma and beta distributions both showed 
an unbiased estimation of p, the beta model was advantageous re-
garding calculation time and the number of iterations before con-
vergence. Fixing the size of the gamma shape parameter k further 
accelerated the optimization, owing to the robustness of p to the 
size of k. However, once the size of k was fixed much larger than the 
actual size of the gamma shape parameter (i.e., the individual DNA 
yield was regarded as almost a fixed value), the iterative optimization 
using the nlm() function sometimes returned an error. Therefore, 
one should start with a smaller shape parameter, for example k = 1 
(the exponential distribution: Figure S3), which is currently the de-
fault setting of the freqpcr package.

In qPCR applications for diagnostic use, ΔΔCq is often used with 
calibration. One popular method involves technical replicates; each 
sample is dispensed and analysed using qPCR multiple times, which 
negates the Cq measurement error. The measurement error obeys 
a homoscedastic normal distribution in the Cq scale, as shown in 
Experiment 1. Thus, a simple solution is to average the Cq values 
measured for each bulk sample before the estimation with freqpcr(), 
although the estimated size of �c changes from its original definition 
in Equation 7. However, it is trivial if the number of technical repli-
cates is unified between bulk samples. Besides, the comparison of 
Cq values is sometimes conducted on more than one internal refer-
ence as there is no guarantee that the expression level of a “house-
keeping gene” is always constant (Vandesompele et al., 2002). 
Future updates of freqpcr() will handle multiple internal references.

Recent development in next-generation sequencing (NGS) en-
ables us to conduct individual-based analysis on hundreds of sam-
ples in a single run (sample multiplexing) (Quail et al., 2012). Although 
high-throughput genotyping might replace the PCR-based allele-
frequency estimation in the future, it has not yet become fully avail-
able for many practitioners, especially of agricultural, environmental 
and public health sectors of local governments as well as small busi-
nesses. As genotyping with NGS is often performed in a large lot due 
to cost considerations, it may not be suitable when the user needs to 
know the results in short time intervals, such as in plant quarantine 
and regional pesticide resistance monitoring (Sonoda et al., 2017; 
Yamamura & Hino, 2007). As long as qPCR is used to estimate pop-
ulation allele frequency, the use of statistical inferences on the bulk 
samples, as presented in this study, will continue to be a realistic 
option for regional/temporal allele monitoring. Likewise, our model 
approach to the individual DNA yields can also be extended to the 
NGS-based estimation procedures since the gamma distribution 
has been used to quantify environmental and forensic DNA (Cowell 
et al., 2007; Fukaya et al., 2021).
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