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Universality of Schmidt 
decomposition and particle identity
Stefania Sciara1,2, Rosario Lo Franco2,3 & Giuseppe Compagno2

Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for 
distinguishable particles in scenarios such as entanglement characterization, theory of measurement 
and state purification. Yet, its formulation for identical particles remains controversial, jeopardizing its 
application to analyze general many-body quantum systems. Here we prove, using a newly developed 
approach, a universal Schmidt decomposition which allows faithful quantification of the physical 
entanglement due to the identity of particles. We find that it is affected by single-particle measurement 
localization and state overlap. We study paradigmatic two-particle systems where identical qubits 
and qutrits are located in the same place or in separated places. For the case of two qutrits in the same 
place, we show that their entanglement behavior, whose physical interpretation is given, differs from 
that obtained before by different methods. Our results are generalizable to multiparticle systems and 
open the way for further developments in quantum information processing exploiting particle identity 
as a resource.

Systems of identical particles constitute the basic building blocks of quantum information theory, being present 
in Bose-Einstein condensates1,2, quantum dots3–6, superconducting circuits7 and optical setups8,9. Completely 
characterizing the quantum features of these composite systems is thus a crucial requirement from both funda-
mental and technological viewpoint. Investigation of bipartite entanglement for identical particles started some 
time ago10–15 but, differently from the case of distinguishable particles, the subject has remained controversial10–27. 
The controversy mainly arises from the way identical particles are ordinarily treated in quantum mechanics by 
the standard particle-based approach, that is by making them artificially distinguishable with the attribution of 
nonobservable labels27,28. This practice has the consequence that the structure of the states inevitably is, with 
respect to labels, that of an entangled state. As a consequence, some viewpoints has been advanced12,14,16–25 dif-
fering both in interpretation and, in some cases, in the quantification of the part of entanglement attributable to 
particle identity. The last aspect can hardly be considered devoid of importance in view of entanglement being in 
general a resource for quantum information and communication12,14,18,29–37. Differences among the viewpoints 
clearly emerge in the simple paradigmatic case of identical particles independently prepared in far regions, such 
that they are expected not to have any correlations, and then allowed to merge spatially without any other change. 
In one viewpoint, as epitomized in a textbook27, the entanglement due to indistinguishability is present for far 
particles but nevertheless is physically no matter of concern because it cannot be exploited. In a widely held sec-
ond viewpoint18,26, this entanglement is a merely formal artifact even when the particles are brought to overlap. 
In order to characterize it in the latter situation, a third viewpoint has been proposed which resorts to extraction 
procedures17. The consequent conclusions may be however subject to criticism on the ground that the extracted 
entanglement does not represent the one in the overlapping condition being instead produced by the extraction 
operation itself.

Among tools which are at the heart of quantum information and quantum computation, there is the Schmidt 
decomposition (SD) for bipartite systems of multilevel particles in pure states. It is of general application to entan-
glement characterization, theory of measurement, state purification, quantum erasure29,30 and also in black-hole 
physics38,39. Despite its wide utilization in systems of distinguishable particles, even the SD remains debated for 
identical particles10,16,26 where it is replaced by Slater decomposition. The associated Slater rank witnesses entan-
glement but its interpretation is different for bosons or fermions26. For distinguishable particles, the SD unveils 
the entanglement of the system by the von Neumann entropy of the reduced density matrix, whose eigenvalues 
are the squares of the Schmidt coefficients appearing in the decomposition30. Instead “the relationship between 
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Schmidt coefficients and the eigenvalues of the reduced density matrix breaks down in the case of identical par-
ticles”26. Therefore, the ordinary notion of partial trace to get the reduced state has not been considered suitable 
for assessing the entanglement of identical particles16,18,26. Attempts to provide a SD for indistinguishable particles 
give wrong results, as nonzero entropy and thus the presence of entanglement for uncorrelated fermions10.

Using a recent non-standard particle-based approach40, here we develop a SD valid for both bosons and fermi-
ons, which allows the direct characterization of the physical entanglement of the particles. Differently from previ-
ous viewpoints, application of this method to the paradigmatic example exposed above allows, without resorting 
to extraction, to demonstrate that entanglement is zero for separated particles and nonzero when they overlap. 
Moreover, our SD overcomes the problems occurring in other proposals of SD within the second quantization10, 
being the Schmidt coefficients always the square roots of the eigenvalues of the reduced density matrix, exactly 
as for distinguishable particles. This SD gives the novel tool to straightforwardly characterize the entanglement 
for identical particles.

Results
Theory.  We recall the notation of the intrinsically symmetric particle-based approach introduced in ref. 40. 
Hereafter, we mean by “symmetric states” (or “symmetric Hilbert space”) the symmetric or antisymmetric behavior 
of the system states depending on the bosonic or fermionic nature of the particles, respectively. The overall state of 
two identical particles, one in the state φ and one in ψ, is completely characterized by enumerating the one-particle 
states and represented as |φ, ψ〉​. Two particles in |φ, ψ〉​ are not independent and their overall state is a whole which 
cannot be written as a tensorial product of one-particle states, i.e. φ ψ φ ψ≠ ⊗, . However, a nonseparable 
external symmetric product of one-particle states (wedge product) can be introduced as φ ψ φ ψ= ×, : . 
Analogously, we have φ ψ φ ψ ψ φ= × = ×†, : ( )  (this wedge product will be crucial in demonstrating the 
theorem below). The probability amplitude of finding the two particles in ϕ ζ,  if they are in |φ, ψ〉​, is obtained by 
the symmetric two-particle scalar product defined in terms of one-particle amplitudes as40

ϕ ζ φ ψ ϕ φ ζ ψ η ϕ ψ ζ φ= +, , , (1)

where η is +​1 for bosons and −​1 for fermions. This probability amplitude immediately shows that the generic 
state |φ, ψ〉​ is symmetric, i.e. φ ψ η ψ φ=, , . The state |φ, ψ〉​ spans a linear symmetric two-particle Hilbert 
space ηH (2). A symmetric inner product between state spaces of different dimensionality (one-particle projective 
measurement) can also be introduced as40

ψ φ ψ ψ φ ψ ψ φ ψ η ψ ψ φ⋅ ≡ = + ., , (2)k k k k

In ηH (2) it is possible to choose an orthonormal two-particle basis |i j{ , }, |i〉​ and |j〉​ being single-particle states, 
where an arbitrary state of two identical particles can be expressed as Ψ = ∑ c i j,ij ij

(2) . By Eq. (2), one then gets 
the reduced (single-particle) density matrix via partial trace as40 ρ ρ= ∑ Ψ Ψ =j j Trj

(1) 1
2

(2) (2) 1
2

(1) , where 
ρ = Ψ Ψ(2) (2) . We emphasize that now partial trace depends on the single-particle basis being local or nonlocal, 
as we shall show in the following. This behavior differs from the case of distinguishable particles where, since a 
single-particle basis always addresses a given particle, the partial trace is not affected by the local or nonlocal 
nature of the basis. We can now give the following theorem.

Theorem 1.  Within a symmetric two-particle Hilbert space ηH(2), a pure state of two d-level identical particles  
|Ψ​〉​ can always be written in the Schmidt decomposition (SD)

∑ ∑λ λ λΨ = .




> =






˜i i1
2

, 0, 1
(3)i

i i
i

i

The “Schmidt coefficients” λi  are the square roots of the eigenvalues of the reduced density matrix and the states 
i{ } its eigenstates. The state ĩ  belongs to the basis i{ } and the symmetric two-particle basis ˜i i{ , } is the 

“Schmidt basis”.

Proof. We express the state |Ψ​〉​ in terms of the symmetric two-particle basis i j{ , } as Ψ = ∑ Ψi j i j, ,i j
1
2 , , 

where the symmetric two-particle identity matrix ∏ = ∑ i j i j, ,i j2
1
2 ,  has been inserted. By defining 

≡ ∑ Ψi i j j,j , the state can be further cast as ψ = ∑ i i,i
1
2

. Generally, the states i{ } are not orthonormal. 
Nevertheless, as for distinguishable particles29, there exists a basis i{ } where they are orthogonal, i.e. δ′ ∝ ′i i ii . 
We thus write

∑ ∑

∑ ∑ ρ

′ = ′ Ψ ′ ′ Ψ = Ψ Ψ ′

= × Ψ Ψ × ′ = ′

′

′

i i j i j i j j j i j i

i j j i i i

, , , ,

2 ,
(4)

j j j

j i i

,

,

(1)

where we have used the partial trace ρ = ∑ Ψ Ψj jj
(1) 1

2
. When the states i{ } are the eigenstates of ρ(1), i.e. 

ρ λ=i ii
(1) , the states i{ } are orthogonal and satisfy λ δ′ = ′i i 2 i ii . Denoting by i{ } the set of orthonormal 

states associated to i{ }, we have
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∑
λ λ

= = Ψ .˜ ˜i i i j j1
2

1
2

1 ,
(5)i i j

Both i  and ĩ  are eigenstates of ρ(1) with the same eigenvalue λi (as proven in Methods). Thus, given a set of 
eigenstates i{ }, each ĩ  is one of the states within the set. For bosons, if the eigenvalues are nondegenerate then 
= ˜i i ; for fermions, Pauli exclusion principle dictates =˜i i 0 and the eigenvalues are always degenerate. 

Substituting λ= ˜i i2 i  of Eq. (5) in Ψ = ∑ i i(1/2) ,i , the SD of Eq. (3) is finally demonstrated.	  ◽
When the states are characterized by more than one observable, for instance when the single-particle basis is 
≡ = ⊗i ab a b  (|a〉​ and |b〉​ being two independent observables), one can be interested in studying the 

system for a fixed value of one of the observables. In such cases, the theorem above needs to be specialized. Let us 
take a two-particle state of the form Ψ = ′ ′uv u v, , where u, v are arbitrary single-particle states. This means 
that the SD of ρ = Ψ Ψ  is obtained by following the theorem above with the difference that the partial trace is 
now performed on the subspace of b (a) with the observable a (b) fixed. The corresponding reduced density 
matrix is indicated as ρa b( )

(1)  (see Methods). The universality of SD just proven entails its application to identical 
particles in many scenarios of quantum information (entanglement characterization, purification, measurement 
theory) in analogy with distinguishable particles30. Knowledge of the Schmidt basis is essential to find the suitable 
set of measurements (Schmidt observables41) to acquire information on correlated identical particles in experi-
mental contexts42–44.

The SD of Eq. (3) defines an entangled state in terms of nonseparability, whatever the overlap between the 
particles. As for distinguishable particles29, we define the positive integer “Schmidt number” s as the number of 
terms appearing in Eq. (3), that is the number of nonzero eigenvalues of ρ(1). If s =​ 1, ρ(1) is pure and identifies a 
nonentangled state; if s >1, ρ(1) testifies an entangled state. The Schmidt number thus acts as entanglement wit-
ness. Analogous considerations hold for ρa b( )

(1) . In particular, the (symmetric) basis state i j,  with single-particle 
states |i〉​, |j〉​ containing only one observable results to be unentangled when =i j , while it is maximally entan-
gled when =i j 0 (see Methods). Being the Schmidt coefficients λi  the square roots of the eigenvalues of the 
single-particle reduced state, they immediately lead to the von Neumann entropy

∑ρ ρ ρ λ λ= − = −S ( ) Tr ( log ) log ,
(6)i

i i
(1) (1) (1)

2
(1)

2

as a quantifier of entanglement for identical particles, exactly as happens for nonidentical particles29. Given any 
pure state ρ = Ψ Ψ , its SD is obtained in a recipe format as follows:

(i) 	� perform the trace of ρ on a chosen single-particle basis to get the reduced single-particle density matrix ρ(1) 
(or ρa b( )

(1) );
(ii)	 calculate eigenvalues, λi, and eigenstates, i , of ρ(1) (ρa b( )

(1) );
(iii)	construct the states ĩ  and express the state Ψ  in terms of the Schmidt basis ˜i i{ , }.

Applications.  In the following, we apply this recipe to some states of interest (see Fig. 1). The first one is a 
situation already known40 which is here particularly useful to present how our method works. The other ones are 
new examples which evidence the usefulness of SD in finding novel entanglement features of identical particles.

Two qubits in two separated sites (Bell-like state).  We consider two identical particles (bosons or fermions) with 
orthogonal internal degrees of freedom (pseudospins) located in separated sites, described by

α β|Ψ〉 = | ↑ ↓〉 + | ↓ ↑〉L R L R, , , (7)

where α β+ = 12 2  (α real, β β= θei  with θ being the relative phase). The site M (Left (L) or Right (R)) and the 
pseudospin σ (↑​, ↓​) are independent observables. The two sites are nonoverlapping, behaving thus as “physical” 

Figure 1.  (a) Two identical qubits in two spatially separated places with opposite pseudospins. (b) Two 
identical qubits in the same spatial mode with arbitrary pseudospins. (c) Two identical qutrits (three-level 
quantum systems) in the same spatial mode. The shaded ellipses indicate that the particles are entangled.
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labels. The state of Eq. (7) recalls Bell-like states26,45. It permits us to discuss the role of local and nonlocal meas-
urement in the structure of the SD for identical particle states. When a single-particle property (e.g., the pseudos-
pin) is measured in a localized region of space (e.g., L), the measurements itself and the corresponding partial 
trace are local40. According to the recipe above, this measurement corresponds to project ρ(1) on the local basis, 
i.e. on the subspace ↑ ↓L L{ , }. The reduced single-particle density matrix is

ρ β α= ↑ ↑ + ↓ ↓|.R R R R (8)L
(1) 2 2

It has eigenvalues λ β=1
2, λ α=2

2, and eigenstates = ↑R1 , η= ↓˜ L1 , = ↓R2 , η= ↑ L2 , which 
define the Schmidt basis. We notice that =˜i i 0 and that the particle statistics is intrinsically included by the 
presence of η. The SD of Ψ  is

β αΨ = + ˜1, 1 2, 2 , (9)

with von Neumann entropy

ρ α α α α= − − − − .S ( ) log ( ) (1 )log (1 ) (10)L
(1) 2

2
2 2

2
2

This result coincides with the known von Neumann entropy for two distinguishable particles in a Bell-like state, 
giving maximal entanglement ρ =S ( ) 1L

(1)  for a Bell state (α β= = 1/ 2)31.
When nonlocal (one-particle) measurements are performed simultaneously on both sites (L and R) where the 

particle has nonzero probability of being found, the trace is nonlocal. Operationally, it corresponds to perform the 
partial trace of ρ on the global single-particle basis, i.e. on ↑ ↓ ↑ ↓L L R R{ , , , }. Following the recipe above by 
a global partial trace, we get a SD of the Bell-like state Ψ  different from Eq. (9) (see Methods) leading to

ρ α α α α
= −










− −





− 



.S ( ) log

2
(1 )log 1

2 (11)
(1) 2

2

2
2

2

2

The difference between ρS ( )L
(1)  and ρS ( )(1)  highlights the importance of measurement localization on the 

structure of the SD and in turn on the entanglement between two identical particles located in different sites. To 
further clarify this aspect, we consider the particular case α​ =​ 1 when the state Ψ  becomes Ψ′ = ↑ ↓L R, , 
which is unentangled40 since the particles are in separated sites and behave as uncorrelated distinguishable parti-
cles31. For this state, ρ =S ( ) 1(1)  and ρ =S ( ) 0L

(1) . For systems of identical particles, local single-particle measure-
ments supply the intrinsic entanglement40, whilst nonlocal measurements yield “measurement-induced 
entanglement”26,46. This feature must be contrasted with what happens for distinguishable particles, where 
single-particle measurements always address individual particles. We point out that these results overcome the 
issue existing with previous proposals of Schmidt decomposition and entanglement measure for identical parti-
cles which give nonzero entanglement for uncorrelated separated particles10,11.

Two qubits in the same site with arbitrary pseudospins.  Entanglement is a measure of nonseparability of the 
state47. When the particles are in the same site, their internal states (pseudospins) establish such nonseparability. 
A recent experiment showed that the entanglement in a Cooper pair can be extracted by means of graphene quan-
tum dots, so that it can be possibly used as a resource for quantum information in the solid state4. Moreover, it was 
recently observed48 that it is possible to prepare two maximally entangled ultra-cold atoms with opposite spin 
states by bringing them into the same optical tweezer (site). In general, one physically expects that situations may 
occur where particles are in the same site M with pseudospins in arbitrary directions. Such a condition is possible 
only for bosons, since for fermions the only allowed state by the Pauli exclusion principle is that with opposite 
pseudospins which is maximally entangled40. We hence study two identical boson qubits (e.g., photons) with one 
pseudospin along z-direction (↑ ≡ ↑z ) and the other one along the direction θ φ≡u (1, , ), as displayed in Fig. 2 
(this situation generalizes that of two bosons with opposite pseudospins treated previously40). By exploiting line-
arity and omitting the spatial index M, this state has the (unnormalized) form

θ θΦ = |↑ ↑ 〉 = |↑ ↑〉 + |↑ ↓〉φe, cos( /2) , sin( /2) , , (12)i
u

where |↑ 〉 = |↑〉 + |↓〉θ φ θecos sini
u 2 2

. Following the recipe above by performing the partial trace on the basis 
|↑〉 | ↓〉{ , } (see Methods), we obtain its (normalized) SD

θ θ
|Φ〉 =



 +





˜2 cos
4

1, 1 sin
4

2, 2 ,
(13)

2 2



where = + θ1 cos2
2

 , = = ↑ + ↓θ θ˜1 1 cos sin
4 4

 and = = − ↑ + ↓θ θ
 ( )i2 2 sin cos

4 4
. Notice the 

dependence of SD on θ , which represents the pseudospin state overlap of the two particles.  
Ent ang lement  of  t he  t wo  b os on  qubit s  i s  qu ant i f i e d  by  t he  von  Neumann ent ropy 

  ρ θ θ θ θ= − +S ( ) (2/ )[cos ( /4) log (2 cos ( /4)/ ) sin ( /4) log (2 sin ( /4)/ )](1) 4
2

4 4
2

4  and plotted in Fig. 3. It is max-
imum for θ =​ π (opposite pseudospins) and zero for θ =​ 0 (same pseudospins).

Two indentical qubits in the same site can thus be physically entangled40, a result which is indirectly confirmed 
by extraction procedures17 and is instead uncaught by other entanglement measures for identical particles, like 
the detection-level concurrence26.
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Two identical qutrits in the same site.  Systems of three-level particles (also called qutrits) are promising alterna-
tive candidates to be used in quantum processors instead of the standard two-level qubits49,50. We apply our 
method to two identical qutrits in the same site, each characterized by the basis | 〉 | 〉 | 〉e e e{ , , }1 2 3  (the spatial index 
is omitted for simplicity). Specifically we take this system, which is equivalent to that of two spin-1 bosons, in the 
previously analyzed state16.

θ φ θ φ θΨ = + + .e e e e e esin cos , sin sin , cos , (14)1 2 1 3 3 3

By the partial trace on the above one-particle basis, we obtain the following reduced density matrix

ρ
θ

θ θ θ φ

θ φ θ φ φ

θ θ φ θ φ φ θ φ θ

=
+





 +







1
2(1 cos )

sin 0 2sin cos sin
0 sin cos sin sin cos

2 sin cos sin sin sin cos sin sin 4 cos

,

(15)

(1)
2

2

2 2 2

2 2 2 2

from which one can calculate the eigenvalues and eigenvectors required for constructing the SD. Since their 
explicit expressions are cumbersome, we focus on a simple particular case which allows us to make the compari-
son to another method16 that provides different entanglement predictions for this state. In particular, we choose 
θ π= /2 in the state of Eq. (14), which thus reduces to

φ φΨ = + .φ e e e ecos , sin , (16)1 2 1 3

By following the usual recipe (see Methods), we get its SD

Figure 2.  The two-qubit state is expressed by Φ ↑ ↑= = ↑ ↑ + ↑ ↓θ φ θe, cos , sin ,i
u 2 2

 ↑ ≡ ↑( )z . One 
spin (red arrow) is along z-direction and the other (blue arrow) in the direction determined by the angles θ and φ.

Figure 3.  Entanglement quantified by the von Neumann entropy of the state |Φ〉 = |↑ ↑ 〉, u , 
|↑ 〉 = | ↑ 〉 + | ↑ 〉θ φ θcos e sinu 2

i
2

 is plotted as a function of θ.
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Ψ =




+


φ

˜1
2

1
2

1, 1 1
2

2, 2 ,
(17)

where φ φ= = + e e1 2 cos sin2 3 , = =˜ e1 2 1 , φ φ= − +e e3 sin cos2 3 , =3 0. Expressing Ψφ  in 
the single-particle basis i  (i =​ 1, 2, 3) and exploiting the linearity of the symmetric Hilbert space40, we get 
Ψ =φ 2, 1 . The von Neumann entropy of Eq. (6) is ρ =S ( ) 1(1) , which represents a maximally entangled state 
independently of φ . We provide a physical motivation to support this result. We notice that 

φΨ = =φ e2, 1 ,1 , where φ φ φ= +e ecos sin2 3 . The independence of φ is due to the fact that the 
amount of entanglement only rests on the scalar product and hence on the angle between the single-particle states 
e1 , φ , as depicted in Fig. 4. Moreover, entanglement is maximum because e1 , φ  are orthogonal (as mentioned 
in Theory section and demonstrated in the Methods). This situation is analogous to the case of two identical 
qubits in the same site with pseudospin states in arbitrary directions |↑ ↑ 〉( , )u  treated before. Our result 
(φ-independent) contrasts with the previous one (φ-dependent)16.

Discussion
We observe that a difference exists from an operational viewpoint between nonidentical and identical parti-
cles. For distinguishable particles, SD and its corresponding entanglement are known to be exploitable within 
a resource theory by local operations, addressing each individual particle, and classical communication 
(LOCC)29,30. Differently, indistinguishable particles are not individually addressable. Nevertheless, the SD here 
presented for identical particles identifies an entanglement still exploitable by LOCC, which then allows quantum 
information protocols like teleportation. As an instance, this can be achieved by resorting to extraction proce-
dures which make the overlapping identical particles tunnel with certain probabilities into two separated spatial 
modes17. For particles in the same site, where an intrinsic entanglement can be defined40, it is straightforward to 
realize that the original Schmidt decomposition is reproduced, in a conditional fashion, into the two-particle state 
of the two accessible separated modes. The operational aspects will be treated elsewhere in detail, including the 
case of partially overlapping identical particles where the definition of entanglement is more subtle40.

Summarizing, we have supplied, within a non-standard approach to identical particles40, a universal SD of 
bipartite quantum systems, holding for particles of any nature. This result shows that the problems arising with 
other attempts of SD for identical particles within the second quantization, which are solved here in a natural 
way, are not therefore to be settled by arguments related to quantum information coding and processing10. In 
our approach the Schmidt number maintains its role of entanglement witness and the Schmidt coefficients can 
be faithfully used to calculate the von Neumann entropy. These aspects permit, differently from what has been 
claimed12,26,31, unambiguous quantification of entanglement for indistinguishable particles by ordinary notions, 
like the von Neumann entropy after partial trace.

We have first tested the reliability of the SD by using it to study the well-known condition of two identi-
cal qubits with opposite pseudospins in spatially separated sites. The SD and the corresponding entanglement 
entropy give the physically expected results, as zero entanglement for a product state and maximal entanglement 
for a Bell state, also showing that nonlocal measurements induce entanglement in the system. We have then 
applied the SD to analyze two boson qubits in the same site, finding how the amount of their entanglement 
depends on their pseudospin overlap: the entanglement increases as the two internal states tend to be orthog-
onal. This behavior generalizes previous results limited to orthogonal pseudospins40, which appear to confirm 
recent experimental observations of entanglement extraction in Cooper pairs4 and of entanglement generation 
between two cold atoms in the same optical tweezer48. We have finally studied a system of two identical qutrits, 
which are relevant for storing quantum information49,50. We have straightforwardly obtained their entanglement 

Figure 4.  The two-qutrit state is expressed by Ψ = φ + φ = φφ cos e , e sin e , e e ,1 2 1 3 1 , where 
φ = φ + φ ecos e sin2 3 . The single-particle states e1  and φ  are orthogonal.
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and provided a physical interpretation in the case when they are in the same site. Our result differs from that 
determined for the same system by an alternative approach16. The origin of this difference in the entanglement 
measurement remains to be understood, requiring experimental verification and comparison of both theoretical 
approaches.

Our result allows the natural generalization of the SD to arbitrary bipartitions of systems of N  identical parti-
cles. Our work enables the exploitation of this tool for characterizing composite quantum systems in theoretical 
and experimental relevant conditions where identical particles live in partially overlapping sites (e.g., electrons in 
quantum dots3–6, Bose-Einstein condensates1, solid-state qubits in circuit quantum electrodynamics7 and 
wave-guided and integrated photons8,9), which remain little explored. Our research demonstrates that, differently 
from what stated before, two identical particles prepared independently in spatially separated sites are not entan-
gled and that, when these particles are brought to overlap with no other change, there is a physical entanglement 
which is to be attributed to quantum indistinguishability. This fact settles the ambiguity on the interpretation of 
identical particle entanglement and establishes that entanglement between identical particles is not a mere math-
ematical artefact, as has been argued26,18. As a further novel aspect, our approach evidences how the local and 
nonlocal nature of single-particle measurements, which define the partial trace operation, and the single-particle 
state overlap influence the structure of the SD and therefore the quantification of the entanglement. The Schmidt 
decomposition for identical particles here reported supply methods to exploit the resources of entanglement 
coming from particle identity for applications such as state teleportation, quantum metrology and quantum 
cryptography.

Methods
Eigenstates ĩ  of the reduced density matrix.  Here we demonstrate that the states ĩ  are eigenstates of 
ρ(1) with eigenvalues λi, analogously to the eigenstates i . We start by using Eq. (5) of the manuscript and remind-
ing that ρ = ∑ ′ Ψ Ψ ′′ i ii

(1) 1
2

 to have

∑

∑

ρ
λ

λ

= ′ Ψ Ψ ′ Ψ

= ′ Ψ × Ψ Ψ × ′ .

′

′

ĩ i i i j j

i i j j i

1
2

1
2

,

1
2

1
2 (18)

i j i

i i j

(1)

,

,

Since ρ∑ Ψ Ψ =j j 2j
(1) and ρ λ δ′ = ′i i i ii

(1) , we obtain

ρ
λ
λ= Ψ .ĩ i1

2
1

(19)i
i

(1)

At this point, inserting the two-particle identity matrix ∏ = ∑ ′ ′ ′ ′′ ′ i j i j, ,i j2
1
2 ,  between i  and Ψ  and using 

Eq. (2) of the main text to get δ ηδ′ ′ = ′ + ′′ ′i i j j i, ii ij , we find

∑ ∑ρ
λ

η

λ
λ

=








′ Ψ ′ + ′ Ψ ′








=

′ ′

˜

˜

i i j j i i i

i

2
1
2

, ,

2
1
2

[2 2 ],
(20)

i

j i

i
i

(1)

where the last equality is due to Eq. (5) of the manuscript and to the symmetry property η′ = ′i i i i, ,  (η = 12 ). 
Hence, we conclude that

ρ λ=˜ ˜i i , (21)i
(1)

that is what we intended to demonstrate. Notice that the states ĩ  belong to the basis i{ } of the eigenstates of the 
reduced density matrix.

Relationship between the eigenstates i  and ĩ .  According to Eq. (5) of the manuscript, one has

∑
λ λ

= Ψ = Ψ .˜i i i i j j i i1
2

, 1
2

,
(22)j i i

Expressing Ψ  by the SD of Eq. (3) of the main text, we obtain

∑
λ

λ
η= = +˜ ˜ ˜i i i i j j i i1

2
,

2
, 1

2
(1 ) ,

(23)i j

j

where we have used η η〈 〉 = + 〈 〉〈 〉 + 〈 〉〈 〉˜ ˜ ˜i i j j i j i j i j i j, , (1 )( ) (see Equation (1) of the manuscript) and 
δ=i j ij.

From the previous equation, it is immediately seen that for fermions, as expected, it is always =˜i i 0, since 
two of them cannot occupy the same state (Pauli exclusion principle). The orthogonality of the eigenstates i  and 
ĩ  implies that the eigenvalues λi of the reduced density matrix for a state of two fermions must be degenerate. For 
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states of two bosons, instead, both cases of degenerate and non-degenerate eigenvalues can occur. In particular, if 
the eigenvalues λi of the reduced density matrix are non-degenerate, it immediately follows =˜i i 1: the eigen-
states i  and ĩ  coincide. We stress that these properties are always true when the eigenvalues of the reduced 
density matrix are calculated within the complete single-particle basis (including all possible outcomes of the 
observables which define a single-particle state) or in the specific case when the single-particle state is described 
by an observable alone, which are the conditions assumed in proving the theorem of the manuscript. Wider sce-
narios arise when the reduced density matrix is instead calculated by fixing a given value of an observable.

Partial trace on a given subspace of an observable.  Let us consider a single-particle state 
≡ = ⊗i ab a b  and a two-particle state Φ = ′ ′uv u v, , where a, b, u, v, ′u , ′v  are arbitrary states corre-

sponding to two independent observables A and B (e.g., the site and the spin of the particle). We show a general 
criterion to perform the partial trace of Φ Φ  on the subspace of an observable (e.g., a) by varying the other one 
(e.g., b). We first calculate the one-particle projective measurement (see Equation (2) of the manuscript)

ηΦ = ′ ′ = ⊗ × ′ ′ + ′ × ′ .ab ab uv u v a b v u u v b v uv u, ( ) (24)

The action of b  on the state Φ  can be thus defined as

η′ ′ = × ′ ′ + ′ × ′ .b uv u v b v u u v b v uv u, (25)

The reduced single-particle density matrix performed on the subspace a of the observable A (that is, obtained by 
fixing a and summing on b) reads

∑
ρ

η

= 〈 Φ〉〈Φ 〉 = 〈 〉〈 ′ ′ 〉

= 〈 ⊗ 〈 〉 〉〈 × ′ ′〉〈 ′ ′|

+ 〈 ′〉 ′〉〈 ′ × | 〉〈 |
+ 〈 〉〈 ′〉 〉〈 ′ × ′ ′〉〈 + . . ⊗ | 〉

ab ab ab uv u v ab

a b v u u u v u v

b v u u uv uv
b v b v u u u v uv h c a

{

( )} (26)

a

b

(1)

Once the reduced density matrix is so obtained and normalized, the entanglement can be quantified by von 
Neumann entropy, as usual.

Entanglement of a two-particle basis state ,i j .  Here we calculate the entanglement of a basis state 
i j,  within the complete single-particle basis, showing that it depends on the scalar product between i , j . We 
thus consider the two-identical particle state Ψ = i j,(2) , where i  and j  are generic single-particle states. The 
reduced single-particle density matrix, performed on the basis ′i{ }, reads

∑ρ = Ψ Ψ = ′ ′ .
′

i i j i j i1
2

Tr 1
2

, ,
i

(1) (1) (2) (2)

By using Eq. (2) of the manuscript, we obtain

∑ ∑

∑ ∑

ρ

η

=




| | ′ ′ | | + | | ′ ′ | |+

+




 | | ′ ′| | | + | ′ ′ | |












.

′ ′

′ ′

i i i i j j j i i j i i

j i i i j i i i i j i j

1
2 i i

i i

(1)

Recognizing the presence of the single-particle identity ∑ ′ ′ = ∏′ i ii , the reduced density matrix ρ(1) reduces to

ρ η= 〉〈 + 〉〈 + 〈 〉 〉〈 + 〈 〉 〉〈 .j j i i j i j i i j i j1
2

{ ( )} (27)
(1)

If i  and j  are orthogonal, i.e. =i j 0, one obtains

ρ = 〉〈 + 〉〈 .i i j j1
2

( ) (28)
(1)

Since the eigenvalues of ρ(1) are λ λ= = 1/21 2 , entanglement as quantified by the von Neumann entropy is max-
imum (see Equation (6) of the main text). Moreover, the presence of entanglement (independently of its amount) 
is witnessed by the number of the nonvanishing eigenvalues, that is by the Schmidt number.

On the other side, when the states i , j  coincide, that is =i j 1, one obtains

ρ η= + .i i1
2

(1 ) (29)
(1)

Such a condition, allowed only for bosons (η = + 1), leads to ρ = i i(1)  which is a pure state whose unique 
nonvanishing eigenvalue is λ = 11 . Entanglement of this state is thus zero (the von Neumann entropy vanishes), 
as already witnessed by the presence of only one nonvanishing eigenvalue in the reduced density matrix.
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We then conclude that the entanglement of a two-particle basis state i j,  depends on the scalar product (and 
thus on the angle, from a geometrical viewpoint) between the single-particle states i  and j . It is maximum when 
they are orthogonal and zero when they are the same. Furthermore, we have here confirmed that the Schmidt 
number is an entanglement witness, as for distinguishable particles29. We remark that these results are valid when 
the partial trace is performed within the complete single-particle basis in the specific case when the single-particle 
state is described by an observable alone. We have already seen (see section above and the case of two spatially 
separated particles of the manuscript) that for a single-particle state described by a number of observables, new 
scenarios surface for determining the entanglement of the identical particle system.

Schmidt decomposition of the Bell-like state by a global partial trace.  We give here the Schmidt 
decomposition of the Bell-like state Ψ  of Eq. (7) of the manuscript, by following the recipe in the main text. We 
first perform the global partial trace of ρ on the total single-particle space ↑ ↓ ↑ ↓L L R R{ , , , }, and obtain

ρ α β

β α

= ↑ ↑ + ↓ ↓

+ ↑ ↑ + ↓ ↓ .

L L L L

R R R R

1
2

(

) (30)

(1) 2 2

2 2

It has eigenvalues λ λ α= = /21 4
2 , λ λ β= = /22 3

2 , and eigenstates η= = ↑ L1 4 , = = ↓˜ R1 4 , 
η= = ↓ L2 3 , = = ↑ R2 3 , which define the Schmidt basis. The Schmidt decomposition of the Bell-like 

state thus results

α β
|Ψ〉 =







+ + +






˜1
2 2

(1, 1 4, 4)
2
(2, 2 3, 3) ,

(31)

and it permits to write the von Neumann entropy ρS ( )(1)  of Eq. (11) of the manuscript. Notice the difference 
between the SD given here and that reported in Eq. (9) of the main text.

Schmidt decomposition of the two-boson state |Φ〉.  We here provide the Schmidt decomposition of 
the two-boson state Φ = ↑ ↑, u defined in Eq. (12) of the manuscript. The reduced density matrix ρ(1), obtained 
by performing the partial trace of ρ = Φ Φ  on the basis | ↑ 〉 | ↓ 〉{ , }, is


ρ = ⁎( )a c

c b
1

2
,

(32)
(1)

where = +θ θa 4 cos sin2
2

2
2

, = θb sin2
2

, θ= φc e sini  and  = + θ( )1 cos2
2

. It is straightforward to find its 
eigenvalues

λ θ λ λ θ
= = − =

4 cos
4

, 1 4 sin
4

,
(33)1

4
2 1

4

 

and the corresponding eigenstates

θ θ θ θ
= ↓ + ↓ =



− ↑ + ↓



.i1 cos

4
sin

4
, 2 sin

4
cos

4 (34)

As we see, they only depend on the angle between the pseudospins (θ). Since we are dealing with two bosons 
in the same site, whose single-particle states are described by only an observable (the pseudospin), and the eigen-
values are nondegenerate, the single-particle states i , ĩ  defining the Schmidt basis ˜i i,  are = ˜1 1  and 
= 2 2 . Therefore, the (normalized) Schmidt decomposition of the state Φ , obtained by Eq. (3) of the manu-

script, is given by

λ λ|Φ〉 = | 〉 + | 〉 .˜1
2

( 1, 1 2, 2 )
(35)1 2

The corresponding entanglement is quantified by the von Neumann entropy ρ λ λ= −∑ =S ( ) logi i i
(1)

1
2

2 .

Schmidt decomposition of the state |Ψφ〉 of two qutrits in the same site.  We give the Schmidt 
decomposition of two identical qutrits in the same site, each characterized by the basis | 〉 | 〉 | 〉e e e{ , , }1 2 3 . This sys-
tem is equivalent to that of two spin-1 bosons in the same hole, previously analyzed by an alternative method16. 
We consider the state

φ φ|Ψ 〉= | 〉 + | 〉φ e e e ecos , sin , , (36)1 2 1 3

where the spatial index has been omitted for simplicity. By performing the partial trace of ρ onto the basis 
| 〉 | 〉 | 〉e e e{ , , }1 2 3 , we obtain the reduced density matrix
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ρ φ φ φ

φ φ φ
=













1
2

1 0 0
0 cos sin cos
0 sin cos sin

,

(37)

(1) 2

2

which has eigenvalues λ λ= = 1/21 2 , λ = 03  and eigenstates φ φ= = + e e1 2 cos sin2 3 , = =˜ e1 2 1 , 
φ φ= − +e e3 sin cos2 3 , =3 0, which define the Schmidt basis. From Eq. (3) of the main text, the SD of 

the state is

Ψ =




+


.φ

˜1
2

1
2

1, 1 1
2

2, 2
(38)
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