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SUMMARY

This work explores the association between interstitial cells
of Cajal (ICC) and the microvascular network in the human
colon wall using a novel high-definition three-dimensional
microscopic approach. The authors propose the existence of
a new subclass of ICC, the perivascular ICC.

BACKGROUND & AIMS: Interstitial cells of Cajal (ICC) closely
associate with nerves and smooth muscles to modulate gut
motility. In the ICC microenvironment, although the circulating
hormones/factors have been shown to influence ICC activities,
the association between ICC and microvessels in the gut wall
has not been described. We applied three-dimensional (3D)
vascular histology with c-kit staining to identify the peri-
vascular ICC and characterize their morphologic and population
features in the human colon wall.

METHODS: Full-thickness colonswereobtained fromcolectomies
performed for colorectal cancer. We targeted the colon wall away
from the tumor site. Confocal microscopy with optical clearing
(use of immersion solution to reduce scattering in optical imaging)
was performed to simultaneously reveal the ICC and vascular
networks in space. 3D image rendering and projection were digi-
tally conducted to illustrate the ICC–vessel contact patterns.

RESULTS: Perivascular ICC were identified in the submucosal
border, myenteric plexus, and circular and longitudinal muscles
via high-definition 3D microscopy. Through in-depth image
projection, we specified two contact patterns—the intimate cell
body-to-vessel contact (type I, 18% of ICC in circular muscle)
and the long-distance process-to-vessel contact (type II,
16%)—to classify perivascular ICC. Particularly, type I peri-
vascular ICC were detected with elevated c-kit staining levels
and were routinely found in clusters, making them readily
distinguishable from other ICC in the network.

CONCLUSIONS: We propose a new subclass of ICC that closely
associates with microvessels in the human colon. Our finding
suggests a functional relationship between these mural ICC and
microvessels based on the morphologic proximity. (Cell Mol
Gastroenterol Hepatol 2015;1:102–119; http://dx.doi.org/
10.1016/j.jcmgh.2014.11.003)
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n the colon as well as other parts of the digestive tract,
Iinterstitial cells of Cajal (ICC) integrate with nerves
and muscles as part of the machinery to regulate motility.1–3

In the gut wall, ICC form a three-dimensional (3D) network
to associate with circular and longitudinal muscles and
generate/propagate slow waves to maintain spontaneous
peristaltic movements.4 Although the slow-wave activity has
been shown to be influenced by both the neuronal inputs5,6

and circulating hormones,7,8 the signal transduction
pathway of the latter—that is, from the hormones to ICC—is
poorly understood. In an attempt to establish the connec-
tion, lines of evidence have emerged to indicate that ICC
may be directly influenced by the intestinal hormones: (1)
the expression of the gut hormone cholecystokinin re-
ceptors on ICC9 and (2) the discovery of serotonin receptors
5-HT3 and 5-HT4 on ICC by immunohistochemistry.10,11

Particularly, regarding the serotonin pathway, although
the source of serotonin and the function(s) of the 5-HT
receptors on ICC are unclear, the receptors are hypothe-
sized to participate in the slow wave initiation and/or
alteration based on their known functions.12

In addition to modulating the slow-wave activity, circu-
lating hormones and factors have also been shown to
maintain the population of ICC in the gut wall. For example,
the signaling pathway initiated by the binding of the stem
cell factor (SCF) to its receptor tyrosine kinase c-kit is
essential for the ICC development and survival.13 Mice with
SCF deficiency, loss-of-function mutation of c-kit, or
administration of the anti-c-kit antibody suffered from the
loss of ICC network and/or function.14–16 On the other hand,
activation of the 5-HT2B receptor on ICC by serotonin has
been shown to increase the ICC proliferation in vitro, while
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lack of this activation reduced the density of ICC in adult
mice.17,18

Based on the established and suggested influences of
circulating molecules on ICC (including cholecystokinin,
serotonin, SCF, insulin, and insulin-like growth factor-119),
study of the ICC microenvironment ideally should include
the vasculature to integrate the local ICC microenvironment
with the circulation. From a therapeutic perspective,
examining the vascular network around ICC provides an
opportunity to evaluate the efficiency of therapeutic agents
to reach ICC through blood vessels in treating motility dis-
orders such as diabetic gastroparesis20,21 and slow transit
constipation22,23 or stromal tumors with c-kit mutation.24,25

However, reports concerning the interaction between ICC
and blood vessels are lacking. This is largely because of the
dispersed nature of the ICC and vascular networks, which
cannot be easily portrayed by the standard microtome-
based two-dimensional histology to characterize their
spatial relationship.

To visualize the intestinal tissue networks, we previously
developed a penetrative 3D imaging method based on
preparation of transparent tissues with optical
clearing26–28—a technique of using a solution of high
refractive index to improve light transmission in optical
microscopy29,30—to characterize the enteric nervous sys-
tem and ICC with high definition.31–34 Using the same
approach, we also examined the microvessels in the human
colorectal carcinoma to characterize their morphologic and
density changes from those in the normal tissues.35 In this
research, we simultaneously targeted the ICC and vascular
networks using paired c-kit and CD31 immunostaining to
reveal their association in the human colon wall. Impor-
tantly, a new subclass of ICC, the perivascular ICC, is pre-
sented in this report with qualitative and quantitative
analyses to identify their unique features and population
density. The physiologic implications of the mural ICC are
discussed.
Figure 1. Deep-tissue microscopy of colonic muscularis reve
colonic wall in transverse section. Specimens were optically cle
nuclear signals derived from in-depth microscopy outline the t
sociation with vasculature. Merged projection of ICC (c-kitþ) a
overlap of the two network systems (circles). ICC-CM, ICC in th
ICC-LM, ICC in the longitudinal muscle; ICC-SM, ICC at the s
stack.
Materials and Methods
Human Specimens

Collection and use of human tissues were approved by
the institutional review board of National Taiwan University
Hospital, Hsinchu Branch, with written consent from the
patients to use the obtained tissues. Colonic tissues were
obtained from colectomies performed for nonobstructive
carcinoma. Samples of normal muscularis were obtained at
least 5 cm apart from the carcinoma. The removed tissues
were first perfused with phosphate-buffered saline (PBS)
through the mesenteric artery to flush the residual blood
and then with ice-cold 4% paraformaldehyde for 30 mi-
nutes for fixation. Afterward, the tissues were postfixed in
4% paraformaldehyde solution overnight at 4�C before be-
ing transferred to 0.1% paraformaldehyde for preservation.
Specimens were later sectioned to 300 mm in thickness by
vibratome before being applied for tissue labeling.
Tissue Labeling
The fixed specimens were immersed in 2% Triton X-100

solution for 2 hours at 15�C for permeabilization. The pri-
mary antibodies used to reveal ICC were a monoclonal
rabbit anti-c-kit antibody (cat. no. 1522–1; Epitomics, Bur-
lingame, CA) and a polyclonal rabbit anti-Ano1 antibody
(also known as anti-TMEM16A, cat. no. ab53212; Abcam,
Cambridge, MA). A monoclonal mouse anti-CD31 antibody
(cat. no. MS-353-S1; Thermo Scientific, Fremont, CA) was
used to reveal the vasculature.

Before we applied the antibodies, the tissue was rinsed
in PBS. This was followed by a blocking step, incubating the
tissue with the blocking buffer (2% Triton X-100, 10%
normal goat serum, and 0.02% sodium azide in PBS). The
primary antibodies were then diluted in the dilution buffer
(1:100, 0.25% Triton X-100, 1% normal goat serum,
and 0.02% sodium azide in PBS) to replace the blocking
buffer and incubated overnight at 15�C. Alexa-Fluor
als ICC-vasculature association. (A and B) Layers of human
ared to improve light transmission. The transmitted light and
issue microstructure. (C and D) ICC subgroups and their as-
nd vasculature (CD31þ) reveals the locations with apparent
e circular muscle; ICC-MY, ICC around the myenteric plexus;
ubmucosal border. A–D were derived from the same image
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647-conjugated goat anti-rabbit secondary antibody and
Alexa-Fluor 546-conjugated goat anti-mouse secondary
antibody (1:200; Invitrogen, Carlsbad, CA) were used to
reveal the immunostained structures. Afterward, nuclear
staining by SYTO16 (4 mmol/L; Invitrogen) was performed
at 15�C for 1 hour. The labeled specimens were then
immersed in the optical clearing solution FocusClear (Cel-
Explorer, Hsinchu, Taiwan) before being imaged via confocal
microscopy.

Confocal Microscopy
A Zeiss LSM510Meta confocal microscope (Carl Zeiss, Jena,

Germany) equipped with 10� Fluar objective lenses (numeri-
cal aperture [NA]: 0.5)wasused toacquire the gross viewof the
ICC network (Figure 1, tile-scanningmode: 2� 2 image stacks;
optical section: 10 mm; z-axis increment: 5 mm). The 40� LD C-
Apochromat water immersion lenses (NA: 1.1; working dis-
tance: 620mm;optical section: 2 or3mm; z-axis increment: 1 or
1.5 mm) were used to acquire the detailed ICC and vascular
features. The 25� LD Plan-Apochromat glycerin immersion
lenses (NA: 0.8; working distance: 570 mm; optical section: 5
mm; z-axis increment: 2.5 mm) were used to acquire the image
stacks for ICC quantitation. The laser-scanning process was
operated under the multitrack scanning mode to sequentially
acquire signals in multiple channels, including the transmitted
light channel. The Alexa Fluor 647-labeled tissue structures
were excited at 633 nm, and the fluorescence was collected by
the 650- to 710-nm band-pass filter. The Alexa Fluor 546-
labeled tissue structures were excited at 543 nm, and the sig-
nalswere collected by the 560- to 615-nmband-passfilter. The
SYTO16 signals were excited at 488 nm, and the fluorescence
was collected by the 500- to 550-nm band-pass filter.

Image Processing and Projection
The Avizo 6.2 image reconstruction software (VSG, Bur-

lington, MA; operated under a Dell T7500 workstation), the
Zen software (Carl Zeiss), and the LSM510 software (Carl
Zeiss) were used for processing, projection, and analysis of
the confocal image stacks. Avizo’s noise-filtering algorithms
were applied for background noise reduction. Signal tracing,
image segmentation, and feature extraction were performed
by the Label Field function of Avizo.34 The Voltex module and
the Camera Rotate function of Avizo were applied for the
panoramic display of ICC and vascular networks in
Figures 2D–F, 3C–F, 4D–F, and 5, and Supplementary Videos
1–3, 5, and 6. Supplementary Video 4 was recorded via the
Orthoslice and Animation functions of Avizo. Figures 1B–D,
Figure 2. (See previous page). Perivascular ICC in colonic
Perivascular ICC at the submucosal border. The (A) tissue map a
identify the perivascular ICC with its cell body and processes fol
and D) Perivascular ICC around the myenteric ganglion. An i
identifies the myenteric ganglion (yellow box) and its surrounding
the background to help locate the myenteric ganglion. (E an
myenteric ganglion. Signals of five ICC-MY (numbers 1–5; enlar
ICC-vessel contacts. The five ICC-MY were also recorded and
illustrate their spatial association with microvessels. Yellow arro
bodies. CM, circular muscle; LM, longitudinal muscle; MP, mye
2A–C, 4A–C, 6A–D, 10C–E, and 11B and C were derived from
the 3D projection module of the LSM510 software.

Image Analysis
Quantitation of ICC was performed using the image stacks

derived from the transverse sections of circular muscle. The
Landmark function of the Avizo software was applied to
digitally mark and count the ICC in the image stack. ICC were
defined as the c-kit-positive cells with at least two processes
extending from the cell body, which was specified by the c-kit
enclosed nuclear signal. Supplementary Video 4 gives an
example of identifying the type I and type II perivascular ICC
based on the contact patterns between c-kit and CD31 sig-
nals. Overall, 59 image stacks were used in quantitation
(Table 1). The c-kit staining levels of different ICC subclasses
were assessed by the Histogram module of the Zen software
with a 50-mm projection depth to estimate the fluorescence
signal intensities.

Statistical Analysis
The results are expressed as mean ± standard deviation.

The data of the intrasubject ICC subgroups were evaluated
by unpaired Student t test (Figure 6E). Data of intersubject
ICC subgroups were evaluated by regression analysis. P <
.05 was considered statistically significant.

Regression Analysis
Description. We conducted a regression analysis on the
ICC of the six subjects to assess whether type I perivascular
ICC are indeed brighter than the other two ICC subgroups.
In the analysis, we regress the c-kit staining levels on
dummy variables for type I, type II, and the six subjects
using the ICC not associated with blood vessels in Subject A
as the benchmark group (ie, the mean c-kit staining level for
this benchmark group is a0).
Regression Equation. c-kit staining level ¼ a0 þ a1 *
TypeI þ a2 * TypeII þ b1 * SubjectB þ b2 * SubjectC þ b3 *
SubjectD þ b4 * SubjectE þ b5 * SubjectF þ error
Coefficients.

a0: Intercept term of the regression
a1: Regression coefficient for the variable “Type I peri-

vascular ICC”
a2: Regression coefficient for the variable “Type II peri-

vascular ICC”
b1: Regression coefficient for the variable “Subject B”
.
b5: Regression coefficient for the variable “Subject F”
submucosal boundary and myenteric plexus. (A and B)
nd (B) zoom-in examination of ICC at the submucosal border
lowing the microvessels in space. Projection depth: 60 mm. (C
n-depth projection of ICC, vasculature, and nuclear signals
ICC and microvessels. (D) The nuclear signals were placed at
d F) Zoom-in examination of ICC-vessel contacts around

ged in F) were extracted from D to highlight the periganglionic
projected from different angles in Supplementary Video 1 to
ws in F are the ICC-vessel contacts. Asterisks denote ICC cell
nteric plexus; MY, myenteric plexus.
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error: The error term of the regression, with mean 0
Variables.

c-kit staining level: Expressed as percentage of signal
saturation (as shown in Figure 6E)

TypeI: A dummy variable of 1 if the ICC is Type I, and
0 otherwise

TypeII: A dummy variable of 1 if the ICC is Type II, and
0 otherwise

SubjectB: A dummy variable of 1 if the ICC is from
Subject B, and 0 otherwise

.
SubjectF: A dummy variable of 1 if the ICC is from

Subject F, and 0 otherwise
Estimation Results.

Cell type adjustment
a0 ¼ 41.32% (t-stat ¼ 32.90)
a1 ¼ 9.81% (t-stat ¼ 7.30)
a2 ¼ 2.80% (t-stat ¼ 1.98)
Individual adjustment
b1 ¼ 8.88% (t-stat ¼ 5.71)
b2 ¼ 8.99% (t-stat ¼ 4.93)
b3 ¼ 7.25% (t-stat ¼ 4.13)
b4 ¼ 8.40% (t-stat ¼ 4.62)
b5 ¼ �1.44% (t-stat ¼ �0.80)

Tests of Hypotheses. Hypothesis 1: a1 ¼ 0 (Type I peri-
vascular ICC and ICC not associated with blood vessels have
the same c-kit staining level.)

Result: t-stat ¼ 7.30 / Reject Hypothesis 1 at the 1%
level.

Hypothesis 2: a2 ¼ 0 (Type II perivascular ICC and ICC
not associated with blood vessels have the same c-kit
staining level.)

Result: t-stat ¼ 1.98 / Reject Hypothesis 2 at the 5%
level.

Hypothesis 3: a1 � a2 ¼ 0 (Type I and type II have the
same c-kit staining level.)

Result: F-stat ¼ 16.06 / Reject Hypothesis 3 at the 1%
level.
Conclusions of Regression Analysis. The estimate of a1
is 9.8% (t-stat ¼ 7.30), indicating that the type I peri-
vascular ICC are on average 9.8% brighter than the ICC not
associated with blood vessels, after accounting for differ-
ences across subjects. The difference is statistically signifi-
cant at the 1% level.

The estimate of a2 is 2.8% (t-stat ¼ 1.98), indicating that
the type II perivascular ICC are on average 2.8% brighter
than the ICC not associated with blood vessel. The difference
is statistically significant at the 5% level.
Figure 3. (See previous page). Perivascular ICC in colonic
muscle. Transmitted light and fluorescence images (A and B) sh
CD31þ microvessels were confirmed in A (arrows). The periva
dicates the lumen of vessel. The gross view (C) and zoom-in pr
right corner) of the image stack identify the contact of ICC with
asterisks in C and D indicate the same ICC (oval). The white arrow
the circular muscle. Merged (E) and segmented (F) signal pro
vascular ICC: (1) the type I perivascular ICC with cell body-to-ve
to-vessel contact only. E and F were derived from the same im
different angles. The arrows indicate the ICC cell bodies (identi
The result also indicates that the type I perivascular ICC
are on average 7.0% brighter than the type II perivascular
ICC. The difference (9.8%–2.8%) is statistically significant at
the 1% level (result of F test), with a F-stat of 16.06.

The three ICC subgroups (type I perivascular ICC, type II
perivascular ICC, and ICC not associated with blood vessels)
are significantly different in the c-kit staining levels.

Results
Deep-Tissue Microscopy of Interstitial Cells of
Cajal and Vascular Networks

To visualize the ICC and vascular networks in space, we
prepared transparent human colon specimens by optical
clearing to reveal the c-kit and CD31-labeled structures via
deep-tissue microscopy. Figure 1 shows the submucosa, cir-
cular muscle, myenteric plexus, and longitudinal muscle and
their associated ICC populations—the ICC at the submucosal
border (ICC-SM), ICC in the circular muscle (ICC-CM), ICC
around the myenteric plexus (ICC-MY), and ICC in the lon-
gitudinal muscle (ICC-LM)—in these domains. Importantly,
through merged projection of c-kit and CD31 signals
(Figure 1D), locations with the apparent overlap of the ICC
and vascular networks were revealed in the tissue map.

Perivascular Interstitial Cells of Cajal
in the Submucosal Border and Myenteric
Plexus Populations

Zooming into the submucosal boundary, Figure 2A and B
shows a subgroup of ICC-SM closely following the micro-
vessel in space. The cell body and processes of the peri-
vascular ICC contact the vascular walls, showing their
intimacy. The perivascular ICC can be distinguished from
the c-kitþ mast cells (Figure 2A) because the latter lack the
prolonged processes to connect other ICC in the plexus.

An association between ICC and microvessels was also
observed in the myenteric plexus (Figure 2C and D). A
zoom-in examination of the myenteric ganglion revealed
that a subclass of ICC-MY positioned their cell bodies around
the ganglion with the processes extending to and docking on
the walls of the periganglionic microvessels (Figure 2E and
F, and Supplementary Video 1).

Perivascular Interstitial Cells of Cajal in
Longitudinal Muscle

In addition to the ICC-SMand ICC-MY, the perivascular ICC
can also be found in the ICC populations in the longitudinal
smooth muscles. (A–D) Perivascular ICC in the longitudinal
ow the tissue map of the longitudinal muscle. Locations of the
scular c-kit signals were presented in B (boxes). Asterisk in-
ojections (D, three projection angles, illustrated at the upper-
the microvessel and their extended association in space. The
s in D specify the ICC cell body. (E and F) Perivascular ICC in

jections of ICC and microvessels identify two types of peri-
ssel contact and (2) the type II perivascular ICC with process-
age stack with panel F presenting the perivascular ICC from
fied by the enclosed nuclear signals, blue).
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Figure 5. Perivascular ICC in the ICC-CM network. (A–D) Gross view and zoom-in examination of ICC and vasculature in
circular muscle. Domains 1–3 (arrows) were enlarged in B–D for detailed examination. Type I and type II perivascular ICC and
other ICC in the network were projected in space and specified by colored arrows. Panoramic presentation of the image stack
was recorded in Supplementary Video 6. (E) A second example of the ICC-CM and microvessel integration. The components
of the network were labeled by colored arrows and visualized from different projection angles.
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and circular muscles (Figure 3). Using the transparent lon-
gitudinal muscle, we identified the embedded microvessels
and the perivascular ICC by overlaying and pairing the
transmitted light and fluorescence signals (Figure 3A and B).
Following the focal depth, we specified a subset of the ICC-LM
residing on the microvessel wall (Figure 3C). Zoom-in ex-
amination of the mural ICC confirmed the aligned feature of
Figure 4. (See previous page). Morphologic characterizatio
perivascular ICC with high definition. Three examples are presen
with the processes embracing the vessel wall. (C) One ICC r
presented in Figure 9. (D–F) 3D projection and panoramic visu
signals of type I perivascular ICC were segmented and pan
microvessels. Arrows indicate the ICC cell bodies.
ICC with microvessels and their extended contacts along the
vessel wall (Figure 3D and Supplementary Video 2).

Perivascular Interstitial Cells of Cajal in
Circular Muscle

Among the different layers/domains of the colon wall,
the circular muscle provides the best environment to
n of type I perivascular ICC. (A–C) Visualization of type I
ted here. (A) Two ICC clamping the microvessel. (B) One ICC
esiding at the vessel loop. Sixteen additional examples are
alization of type I perivascular ICC. CD31, c-kit, and nuclear
oramically projected to highlight the contacts of ICC with



Figure 6. Type I perivascular ICC in clusters and with elevated c-kit staining levels. (A–D) Aggregation of type I peri-
vascular ICC. Three examples are presented here. In C, the box was enlarged in D to present the clustered ICC (numbers 1–3)
with high definition. Arrows indicate the ICC cell bodies on the vessel wall. (E) c-kit staining levels in ICC-CM. Quantification
(specimens derived from six human subjects) shows that the c-kit staining levels were higher in type I perivascular ICC than in
those of the type II and ICC not associated with blood vessels; the difference was statistically significant against the latter. The
c-kit levels further increased in the type I perivascular ICC in clusters. Here, n indicates the number of cells analyzed in each
subject. *P < .05; **P < .01; ***P < .001.
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characterize the perivascular ICC because of the defined
domain boundary, homogeneity, and large area for exami-
nation (Figures 1A and B and 3E). We therefore zoomed into
this region and performed qualitative and quantitative an-
alyses of the perivascular ICC to characterize their detailed
morphologic and population features.
Before entering the detailed ICC presentation, we would
like to stress two aspects of the CD31 immunostaining to
specify the revealed vascular structure. First, the CD31
immunohistochemistry identifies the platelet endothelial
cell adhesion molecules (or PECAM-1) and thus reveals the
endothelial cells of all microvessels, including the capillary,



Figure 7. (See Figure 3F and Table 1.) Verification of the CD31-labeled microvessels. (A) Overlay of transmitted light and
confocal micrographs to confirm the CD31-labeled microvessels in circular muscle. Transmitted light image provides the
objective information to identify the size and locations of the microvessels. Matched vascular features were seen in both the
transmitted light and fluorescence images (such as the bifurcation indicated by the arrow). The same approach was used in
Figure 3A and B to identify the CD31þ microvessels in the longitudinal muscle. (B and C) Comparison of CD31 (also known
as platelet endothelial cell adhesion molecule, or PECAM-1) and lymphatic endothelial marker D2-40 labeled vascular
structures. (B) Shows the tubelike blood vessels in the myenteric plexus and circular and longitudinal muscles. (C) Shows the
saclike lymphatic vessel (arrow) at the periganglionic region in the myenteric plexus. In general, the D2-40þ lymphatic vessels
can be found at the interfaces between the different layers of the colon wall. In comparison, the CD31þ microvessels perfuse
the tissue and densely reside at all areas of the colon wall. NOTE. In the circular muscle, we avoided the boundary and
focused on the tubelike CD31þ microvessels in the intramuscle region to characterize the detailed features of the peri-
vascular ICC.
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arteriole, and venule. Second, similar to the transparent
longitudinal muscle (Figure 3A), in the transparent circular
muscle we used both the transmitted light and CD31 signals
to identify the blood vessels (Figure 7A) and to distinguish
them from the lymphatic vessels (Figure 7B and C; the latter
lack rigid vessel walls and primarily reside around the
myenteric plexus against the muscle layers).

In qualitative analysis, Figure 3F shows two contact
patterns between the ICC and microvessels: (1) the intimate
cell body-to-vessel contact and (2) the long-distance
process-to-vessel contact. We classify the ICC with the
first feature as the type I perivascular ICC (with or without
the second feature) and those with the second feature and
only the second feature as the type II perivascular ICC.
Based on the classification, we quantified the ratios of type I
(18.4% ± 2.6%) and type II (15.7% ± 3.7%) perivascular
ICC in the ICC-CM population in six individuals (Table 1)
(note that the average ICC-CM density derived from the six
individuals is 2396 cells/mm3; ICC are defined as the c-kit-
positive cells with at least two processes extending from the
cell body).34 Added together, the overall ratio of the peri-
vascular ICC in ICC-CM was as much as 34.1% (ie, one of
three ICC-CM contacting the blood vessels), reflecting the
importance of this ICC subgroup in the ICC-CM population.
Supplementary Videos 3 and 4 present the ICC analysis in a
stereo fashion.

To rule out that the association of ICC with microvessels
is due to their random contacts in space, Figure 8



Figure 7. (continued).
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illustrates our approach to evaluating the potential random
contacts of the two tissue networks in space. This test was
done by digitally swapping the ICC population (ie, the c-kit
signals) between two adjacent image stacks and then
examining the ICC-vessel contacts in an arbitrary fashion.
In five pairs of these images, only 5.7% of the ICC-CM
contacted the microvessels in their arbitrary locations.
The ratio was statistically significantly lower than the
34.1% ratio of the perivascular ICC in the ICC-CM
(P < .001).

Furthermore, Figure 4 zooms into individual type I
perivascular ICC to depict the detailed ICC morphologic
features around the microvessels. Intimate ICC-vessel as-
sociations, such as two ICC clamping the microvessel
(Figure 4A), processes of ICC embracing the vessel wall
(Figure 4B), and the ICC residing at the vessel loop
(Figure 4C), were displayed in projection and from
various angles (Figure 4D–F and Supplementary Video 5).
A gallery of 16 additional projections is presented in
Figure 9 to illustrate the ICC-vessel contacts with high
definition.

Finally, based on the overlap of the fluorescence signals
and the resolving power of confocal microscopy (laser lines
at 543 and 633-nm were used in the fluorescence
illumination), the span between the perivascular ICC and the
vessel wall was estimated to be within 300 nm.
Type I Perivascular Interstitial Cells of Cajal in
Clusters and with Elevated c-kit Staining Levels

In addition to the intimate cell body-to-vessel contact,
Figure 6 illustrates two additional features of type I peri-
vascular ICC on the microvessels. First, the type I peri-
vascular ICC were routinely found in clusters on the vessel
wall (27.0% ± 11.4% of type I perivascular ICC in circular
muscle in six subjects). Figure 6A–D shows three examples
of the ICC cluster on the microvessel with adjacent cell
bodies within a span of 50 mm. Second, the type I peri-
vascular ICC were detected with elevated c-kit staining
levels in comparison with those of the type II and ICC not
associated with blood vessels in the intrasubject ICC anal-
ysis (Figure 6E; P < .05 against the latter, unpaired Student
t test) and the intersubject regression analysis (see
Regression Analysis) (P < .01 against both groups). Partic-
ularly, in five of the six subjects, we observed a further in-
crease in c-kit signals of the clustered type I perivascular
ICC, making them readily distinguishable from other ICC in
the network.



Figure 8. (See Figure 3E and F.) Schematic illustration of
the blind control test of ICC-microvessel random con-
tacts. A pair of image stacks with c-kit-labeled ICC (green)
and CD31-labeled microvessel (red) were first acquired from
the adjacent areas in the circular muscle. To create the blind
random contacts, the c-kit signals were digitally swapped
between the adjacent image stacks using the Avizo software.
We then quantified the ICC-vessel contacts at their new
arbitrary locations. CM, circular muscle; LM, longitudinal
muscle.

Table 1.Ratio of Perivascular ICC in ICC Population in Circular

Subject Gender/age (y) Segment

Periva

Type I
(cell body-to-vessel contac

A Female/60 Transverse 21.0

B Female/65 Sigmoid 14.7

C Male/43 Sigmoid 19.1

D Male/61 Sigmoid 22.0

E Female/53 Sigmoid 16.0

F Male/63 Ascending 17.9

NOTE: Number of ICC counted from each subject: A, n ¼ 438; B
Density of ICC in circular muscle (ie, sum of the three subclass
cells/mm3 (n ¼ 14 image stacks); B, 2545 ± 763 cells/mm3 (n ¼ 8
(n ¼ 9); E, 2751 ± 1139 cells/mm3 (n ¼ 9); and F, 2667 ± 415
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Zooming out from the contacts of ICC with blood vessels,
Figure 5A–D and Supplementary Video 6 show the spatial
integration of the perivascular ICC with the entire ICC-CM.
Importantly, through in-depth projection, we were able to
trace the cell bodies and processes of the perivascular ICC to
confirm their coupling with other ICC in space. Figure 5E
presents a second example of the cell-cell coupling of ICC
from various angles.

In addition to the c-kit-labeled ICC network, Figures 10
and 11 present the Ano1-labeled ICC network to confirm
the perivascular ICC. Because the Ano1 expression has been
associated with the function of the calcium-dependent
chloride channel and the generation of the slow
waves,36–38 the Ano1 immunostaining provides an inde-
pendent assessment,39 in addition to the c-kit staining, to
specify the perivascular presence of ICC in the circular
muscle (Figure 10E). Finally, Figure 11 presents the
Ano1-labeled ICC imaged with different tissue depths to
examine the acquired fluorescence signals. Because the
projection depth of the optically cleared tissue (60 mm in
Figure 11C) is larger than the thickness of a standard tissue
section (15 mm in Figure 11B), such a difference explains
why it appears that more ICC are revealed in our images and
videos in comparison with the number of ICC derived from
the standard immunohistochemistry.39

Overall, the 3D imaging, projection, and quantitation of
the perivascular ICC in the human colon identify the inte-
gration between the ICC and vascular networks and un-
derline the presence of microvessels in the immediate ICC
microenvironment.

Discussion
The classic view of the ICC microenvironment includes

the triad of ICC, nerves, and smooth muscles that contribute
to the initiation and regulation of the spontaneous peristaltic
movements of gut wall.1–4 In addition to the three
Muscle

scular ICC (%)

ICC not associated with
blood vessels (%)t)

Type II
(process-to-vessel contact only)

12.6 66.4

22.0 63.3

15.0 65.9

18.9 59.1

15.0 69.0

11.0 71.1

, n ¼ 409; C, n ¼ 408; D, n ¼ 428; E, n ¼ 381; and F, n ¼ 391.
es of ICC per tissue volume) of each subject: A, 2091 ± 890
); C, 2063 ± 621 cells/mm3 (n ¼ 10); D, 2261 ± 416 cells/mm3

cells/mm3 (n ¼ 8).



Figure 9. (See Figure 4.) Gallery display of perivascular ICC in circular muscle (16 examples). Cell bodies of the type I and
type II perivascular ICC are labeled by arrows. Green: c-kit. Red: CD31. Blue: nuclei. Bar: 50 mm.
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components, in this research we applied high-definition 3D
microscopy to identify the vascular network as a fourth
component to directly associate with the ICC plexuses in the
human colonwall. The association was established by the ICC
cell body-to-vessel contact and/or the processes docking on
the vessel wall to integrate the two network systems. The
intimate ICC-to-vessel association together with their
elevated c-kit staining levels and clustering on the vessel wall
prompted us to propose a new subclass of ICC, the peri-
vascular ICC, to highlight their unique morphologic features.
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Unlike the conventional ICC classification based on
the locations—the ICC-SM, ICC-CM, ICC-MY, and ICC-
LM40–42—the new ICC-to-vessel classification that we
propose emphasizes the contact patterns (Table 1) and the
potential vascular influence on the perivascular ICC. The
morphologic connection of the ICC plexus to the vascular
network supports the concept that ICC rely on both the ner-
vous and circulatory signals to modulate the slow-wave ac-
tivity in response to physiologic cues. The circulatory
pathway thus represents a natural route to target ICC for
potential pharmacologic intervention to influence the ICC
function.

For the ICC maintenance, however, the situation is
complicated by the ICC microenvironment. Our high-
definition images reveal that the perivascular ICC are poten-
tially the endothelium-associated anchorage-dependent cells,
particularly the type I perivascular ICC, which receive the
substratum and likely the c-kit-mediated stimulation from
the microvessel (the latter was suggested by the high c-kit
staining levels) (Figure 6E). Because chronic diseases such as
diabetes and hypertension can cause microvascular injury
and/or dysfunction,43,44 whether the disturbances of micro-
circulation lead to the remodeling of perivascular ICC and a
change of the population density requires further investiga-
tion to understand the potential microvascular influence on
the ICC function and motility disorders.

The technical advance of preparing the transparent hu-
man colon specimens allowed us to use 3D microscopy to
simultaneously visualize the ICC and vascular networks in an
integrated fashion, which otherwise cannot be easily por-
trayed by the standard two-dimensional histology. Because
of the improved optical condition, we were able to apply
transmitted light imaging to identify the domain boundaries
and microstructures of the colon wall (Figures 1A and 3A),
which served as the landmarks to confirm the signals derived
from fluorescence labeling and confocal microscopy. How-
ever, this imaging approach has the following limitations.
First, the tissue clearing condition is not compatible with
calcium imaging to identify the functional connection be-
tween ICC and microvessels. Second, the deep-tissue imaging
approach is not compatible with super-resolution micro-
scopy to examine the membrane structures, such as the po-
tential gap junctions between the endothelium and ICC. Use
of electron microscopy to characterize the ultrastructure of
the perivascular ICC will be needed in the future to further
define the cell body (type I) and process (type II) contacts of
ICC with the endothelium. Detailed information about the
ultrastructure and contact patterns in the context of disease
(such as diabetic gastroparesis) will help link the unique
Figure 10. (See previous page). Use of paired Ano1 and CD
ICC. (A–D) Tissue map of human colonic specimen. Red: CD31
autofluorescence (images acquired at high detector gain). Six
(boxes 1–6). (E) Ano1-labeled perivascular ICC in projection. P
these regions, the perivascular ICC were identified as the Ano1
cell body and with contacts of cellular components with the ve
magenta: type II perivascular ICC). NOTE. Specimens for Ano1
acetic acid-75% ethanol (vol/vol) solution before the blocking a
anatomy of perivascular ICC with the physiology and patho-
physiology of intestine.

Despite the limitations, 3D microscopy with optical
clearing has two technical advantages. First, the method is
compatible with the standard tissue fixation and labeling
procedures, including immunohistochemistry, to identify
the tissue structures and networks of interest. Second, the
imaging approach is compatible with tile scanning in
confocal microscopy for large-area network mapping. These
two advantages have made 3D microscopy with optical
clearing an important tool in neuroanatomy for the visual-
ization and study of the central and peripheral nervous
systems,45–48 including the enteric nervous system.31–33

In characterizing the perivascular ICC, we chose to use
the CD31 immunostaining to reveal the microvessels
because the marker has been routinely used in the analysis
of microvessel density to evaluate the tumor angiogen-
esis.49,50 This practice led us to use the same approach to
identify the colonic microvessels in this research. In
reporting the ratios of the perivascular ICC (Table 1), we
assume that the CD31 immunohistochemistry identified
most, if not all, of the microvessels in the specimen
(Figure 7A). However, we do not rule out the possibility that
the apparent vessel density would change if a different
vascular marker was used, which could in turn influence the
estimated ratios of the perivascular ICC.

In quantitation of the c-kit staining levels (Figure 6E), it
should be noted that the fluorescence signals derived from
the c-kit molecules were amplified in the staining and im-
aging processes. In acquiring the signals, we assumed that
the amplification was proportional and minimally influ-
enced by the sensitivity and saturation of the antigen-
antibody binding and microscopic detection. In addition,
we assumed that the same antibody-to-c-kit binding effi-
ciency was held across the six subjects, although a slightly
different ICC population profile appears in subject F in
Figure 6E.

In summary, we applied 3D microscopy to identify a new
subclass of ICC, the perivascular ICC, in the human colon
wall. Before this study, the microvascular network had not
been demonstrated in the ICC microenvironment. We per-
formed both survey imaging and high-definition microscopy
of the colon wall to characterize the morphologic and pop-
ulation features of the perivascular ICC. The discovery of
perivascular ICC lays the foundation for future research into
the interplay between the ICC and endothelium to increase
our understanding of the mechanisms that regulate ICC
activity in health and the change of the ICC microenviron-
ment in motility disorders.
31 immunostaining to verify the presence of perivascular
. Green: Ano1. White (B)/blue (D): nuclear staining and tissue
regions of the tissue were marked for zoom-in investigation
anels 1–6 are the zoom-in examination of boxes 1–6 in D. In
-positive cells with at least two processes extending from the
ssel wall. Arrows indicate the ICC cell bodies (yellow: type I;
staining were prepared by cryosectioning and fixed in 25%
nd immunostaining procedure.



Figure 11. Ano1-labeled ICC imaged with different tissue depths to compare the acquired signals. (A) Overlay of the
transmitted light and confocal image. The confocal optical section is at 5 mm. Red: CD31. Green: Ano1. Blue: nuclear staining
and tissue autofluorescence. (B) Projection of the Ano1-labeled ICC with a depth of 15 mm. The acquired ICC signals are
comparable to those of the standard immunohistochemistry. (C) Projection of the Ano1-labeled ICC with a depth of 60 mm. The
increased tissue depth allows more signals to be collected for ICC network characterization.
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