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A possible role for sterols in the development of autism spectrum disorder (ASD) has not been proven, but studies in disorders
of sterol biosynthesis, chiefly Smith-Lemli-Opitz syndrome (SLOS), enable hypotheses on a causal relationship to be discussed.
Advances in genetic technology coupled with discoveries in membrane physiology have led to renewed interest for lipids in the
nervous system. This paper hypothesizes on the role of sterol dysfunction in ASD through the framework of SLOS. Impaired
sonic hedgehog patterning, alterations in membrane lipid rafts leading to abnormal synaptic plasticity, and impaired neurosteroid
synthesis are discussed. Potential therapeutic agents include the development of neuroactive steroid-based agents and enzyme-
specific drugs. Future investigations should reveal the specific mechanisms underlying sterol dysfunction in neurodevelopmental
disorders by utilizing advanced imaging and molecular techniques.

1. Introduction

The autism spectrum describes a group of disorders with
early childhood onset, characterized by persistent core
deficits in socialization, language, and stereotypic and repet-
itive behavior [1]. Over 50 years has passed since Leo Kanner
pioneered a description of infantile autism [2]. The defini-
tion of autism has expanded to include a wide spectrum of
clinically and biologically heterogeneous disorders, each with
variable degrees of core autistic feature expression, which we
now describe as autism spectrum disorder (ASD) [3]. The
estimated prevalence of ASD in the United States is 1 in 110
children [4]. The list of well-defined genetic disorders with
ASD continues to expand, with commonly studied examples
including fragile X syndrome, tuberous sclerosis, untreated
phenylketonuria (PKU), Rett syndrome, and Smith-Lemli-
Opitz syndrome (SLOS). Thus, studies involving relatively
homogenous populations with well-described genetic disor-
ders have begun to reveal the neurobiologic underpinnings

of behavioral phenotypes such as ASD. Evidence supporting
a role for sterols in the development of ASD was based on
studies in disorders of sterol biosynthesis, chiefly SLOS [5–8].
Furthermore, a study of 100 serum samples from the Autism
Genetic Resource Exchange (AGRE) demonstrated that a
subset (about 20%) of unrelated children from multiplex
families with ASD had mild hypocholesterolemia (i.e., lower
than 100 mg/dL), which is in contrast to very low cholesterol
levels (<10 mg/dL) often seen in severe SLOS cases [6].
The findings of Tierney et al. were replicated when an
additional 100 AGRE subjects were tested by the same group
(unpublished data), but have not as yet been replicated by
other research teams.

Cholesterol serves many essential roles in the developing
nervous system. It is a structural component of myelin
and membrane lipid rafts, serves as a substrate for neuros-
teroid formation, and facilitates hedgehog signaling [9, 10].
Impaired function of these activities is likely responsible for
the anatomic and neurobehavioral manifestations in SLOS.
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Figure 1: Effect of sterol precursor substitution in Smith-Lemli-Opitz syndrome. (Adapted with permission from Richard Kelley, M.D. and
Forbes Porter, M.D.).

Recent advances in gene technology and membrane biology
have contributed to a better understanding of the complex
mechanisms underlying impaired cognition and behavior
in cholesterol-deficient conditions. This paper hypothesizes
on the role of sterol dysfunction in ASD and proposes
future directions for targeted therapeutics. We hypothesize
that cholesterol dysfunction may lead to ASD by three
mechanisms working in concert during brain development:
(1) impaired sonic hedgehog patterning, (2) alterations
in membrane lipid raft structure and protein function
resulting in abnormal synaptic plasticity, and (3) impaired
neurosteroid synthesis.

2. Sonic Hedgehog and Cholesterol
Dysfunction in SLOS

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal reces-
sive disorder of cholesterol biosynthesis caused by muta-
tions in the gene encoding 7-dehydrocholesterol reduc-
tase (DHCR7) located on chromosome 11q12-13 [11,
12] (Figure 1). SLOS has an estimated incidence among
individuals of European ancestry of 1 in 15,000 to 1 in
60,000 births and a carrier frequency of 1 in 30 to 1
in 50 [13–17]. Individuals with SLOS have abnormally
elevated plasma 7-dehydrocholesterol (7-DHC) or its isomer

8-dehydrocholesterol (8-DHC) and often low serum total
cholesterol. There is a broad range of cholesterol seen in
SLOS (less than 10 mg/dL to greater than 200 mg/dL). It
remains uncertain whether morphologic and behavioral
manifestations of SLOS are caused by decreased cholesterol
levels, increased 7-DHC, or both. SLOS is associated with
ASD in 50–75% of cases [6, 18, 19]. To date, the neuro-
biologic relationship between SLOS and ASD has not been
explained.

Sonic Hedgehog (SHH) is a morphogen involved in the
patterning of the nervous system and limbs, along with
other transcription factors and secreted proteins [20–25].
During embryonic development, SHH is covalently modified
with both palmitate and cholesterol and secreted as part of
a lipoprotein complex that regulates brain morphogenesis
through the patched/smoothened signaling system [26–
29]. SHH is secreted from the notochord and ventral
floor plate cells and forms a concentration gradient along
the entire dorsal-ventral axis [29]. The posttranslational
effect of SHH after covalent modification by cholesterol
is the establishment of a morphogenic SHH concentration
gradient that moves from the ventral (high concentration)
to dorsal regions (lower concentration). Variations in the
SHH gradient affect intracellular cell signaling systems and
ultimately determine the expression of future cell types
by sequential induction of transcription factors in ventral
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Figure 2: The sonic hedgehog gradient in embryonic neural patterning. SHH-regulated gradient defines neuronal subtypes during
embryonic patterning. Sonic hedgehog (SHH) (yellow) is secreted from cells of notochord (Nc) and ventral floor plate to create a ventral-
dorsal concentration gradient along the neural tube (Nt). Spatial organization of six progenitor-cell domains is established by the SHH
gradient restricting the expression of various protein-marker profiles. The initiation of these markers at successive developmental time
periods results in V0–V3 and motor neuron (MN) subtype patterning along the ventral midline in the neural tube.

progenitor cells [29]. The formation of discrete cell precursor
domains in the neural tube as a result of the SHH mor-
phogenic front is one determinant of the structural fate of the
maturing brain [30–32] (Figure 2). In animal studies, during
late embryonic and postnatal brain development, neural
precursor and stem cell proliferation in dorsal neocortical,
hippocampal, tectal, and cerebellar regions is regulated by
SHH signaling [33, 34]. In humans, failure of midline
brain structures to form appropriately can result from a
loss of SHH processing, as evidenced in holoprosencephaly
[35]. Incomplete formation of midline structures including
the corpus callosum and cerebellum is the most common
neuroimaging abnormality found in individuals with SLOS
[36]. Interestingly, reduction in corpus callosum size is
among the most common neuroimaging abnormality in
autism and supports the aberrant connectivity hypothesis
that autism is a disorder of connectivity, involving inter- and
intrahemispheric communications with possible alterations
of intracortical connections [37–39]. In both autism and
SLOS, it is uncertain whether callosal hypoplasia is due to
a primary patterning defect or later dysfunction of neuronal
cortical connectivity and axonal migration or both.

We hypothesize that in SLOS, low cholesterol or elevated
sterol precursors result in establishment of an abnormal
SHH gradient, which may alter the fate of cells in the
developing brain. Further studies are required to support
this hypothesis. While the hypothesis may be plausible for
SLOS and certain cholesterol-dependent ASD, incomplete
formation of midline structures is present in numerous
disorders of cognition and behavior without abnormal sterol
biosynthesis. In addition, there are many individuals with
ASD that do not have midline structural brain abnormalities.
For these reasons, multiple mechanisms are likely to arise as
etiologies of the ASD phenotype. In sum, regional differences

in the establishment and advancement of the SHH gradient
and its effects on transcription factors, may provide an
explanation for the development of cognitive and behavioral
impairment in disorders with diffuse neural abnormalities,
such as autism and SLOS.

3. Membrane Lipid Rafts and ASD

Studies on cholesterol and lipid organization in disease
have led to progress in understanding the molecular basis
of neurologic disorders [40]. As a result, autism research
involving sterols and other metabolites continues to gain
popularity. For over a decade, lipid rafts or specialized mem-
brane microdomains have been investigated for their key
role in cellular communication [41, 42]. Rafts are dynamic
structures enriched with cholesterol, sphingomyelin, and
phosphatidylcholine [43]. The primary raft subtype called
caveolae comprised of scaffolding proteins (caveolin), is
distinguished by flask-shaped invaginations of the plasma
membrane [44]. These platforms serve as signaling regions in
clatharin-independent endocytosis, lipid homeostasis, signal
transduction, and tumorigenesis [45]. Caveolae are widely
expressed in brain endothelial cells, astrocytes, oligodendro-
cytes, Schwann cells, dorsal root ganglia, and hippocampal
neurons [46]. Lipid rafts play a critical role in many
neurologic disorders including SLOS, Huntington disease,
Alzheimer’s disease, Tangier disease, and Niemann-Pick
disease type C [40, 47, 48]. The essential role of cholesterol
in formation of lipid rafts and membrane organization is
highlighted in studies of membrane physiology. Cholesterol
content is extremely important for cell membrane lateral
organization and protein function [49–51]. Samuli Ollila
et al. [49] report that lipid membrane lateral pressure profiles
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were significantly altered when cholesterol was replaced
with sterol precursors, desmosterol, 7-DHC, or ketosterol.
Furthermore, 7-DCH and 8-DHC have been shown to accu-
mulate in membrane lipid rafts of liver tissue in individuals
with SLOS [52]. The accumulation of sterol precursors in
rafts depletes cholesterol from structures such as hippocam-
pal membranes and limits ligand-binding activity of the
serotonin 1A receptor [53]. Functional changes at the cellular
level may be explained by studies showing that DHCR7-
deficient neuronal cell lines downregulate genes critical to
lipid synthesis such as sterol-regulatory element binding
protein 2 (SREB-2), SREBF chaperone, site-1 protease, fatty
acid synthase, and squalene synthase [47]. Decreased DHCR7
has also been shown to alter expression of key molecules for
intracellular signaling and vesicular transport such as Egr1,
Snx, and Adam19 [47]. These studies support a possible role
for abnormal neuronal cell membrane protein signaling in
DHCR7 mutations that lead to behavioral manifestations
in SLOS. More studies are needed to determine if these
mechanisms are involved in the human pathophysiology of
SLOS and other neurodevelopmental disorders. Rafts may
represent one of the many biologic substrates that shape
neuronal networks in the brain. Recent data has shown
that reduction in cholesterol levels impair exocytosis of
synaptic vesicles [54]. Numerous questions are surfacing
about the clinical manifestations of neuronal and glial mem-
brane alterations caused by altered lipid raft composition
in humans. For example, it remains unknown whether
membrane proteins important for synaptic plasticity such as
AMPA kainate, GABAA, and NMDA receptors are affected
by abnormal sterol levels or whether these abnormalities are
present either transiently or for longer periods in regions of
the developing brain for individuals with autism. Therefore,
we hypothesize that neuronal or glial expression of autism
candidate genes and their resulting membrane proteins may
be altered in disorders of abnormal cholesterol homeostasis.

4. Neurosteroids and ASD

Neurosteroids are steroid molecules produced by the central
nervous system to rapidly augment neuronal excitabil-
ity through membrane-bound, ion-gated neurotransmitter
receptors [55, 56]. While classic steroid hormones typically
exert endocrine function on the order of hours to days,
neuroactive steroids can act rapidly in a nontranscriptional
mechanism to produce behavioral effects in seconds to
minutes [56–59]. Neuroactive steroids are synthesized from
cholesterol in neurons and glia or steroid precursors from
peripheral tissues [60, 61]. Expression of steroidogenic
enzymes is developmentally regulated [62]. There are many
different types of neurosteroids resulting in an array of
functional diversity including positive allosteric modulation
of GABAA and NMDA receptors, myelin formation, axonal
guidance, and dendrite growth [55, 62, 63]. These molecular
activities enable moment-to-moment modulation of neu-
roendocrine functions and behavior.

Because of their broad psychiatric characteristics, neu-
rosteroids have been implicated in the behavioral profile

of SLOS [64]. Biochemical studies have demonstrated that
neurosteroids possess pharmacologic properties applicable
to anesthesia and epilepsy [57, 65]. Benzodiazepines inhibit
the enzymes responsible for neurosteroid metabolism, per-
haps due to shared pharmacologic action at the GABAA

receptor [66]. Interestingly, some antidepressant agents
such as fluoxetine have been found to increase circulating
neurosteroid levels [67, 68]. The molecular effects of these
medications on the nervous system in SLOS have not been
investigated.

Since cholesterol does not cross the blood-brain barrier,
neurosteroids are synthesized with cholesterol de novo [69].
For nearly a decade, it has been proposed that increased 7-
DHC levels might inhibit neurosteroid formation or lead
to synthesis of an inhibitory analog in the brain [70].
Marcos et al. [64] studied urinary steroids and found that
dehydrocholesterols provided the substrate for formation of
allopregnanolone and dehydroallopregnanolone in patients
with SLOS. While only providing evidence for extraneural
synthesis of 7- and 8-dehydroallopragnanolones, there is a
high likelihood that abnormal synthesis occurs in the brain
given the low tissue specificity of 5α-reductase and 3α-
hydroxysteroid dehydrogenase [64]. Currently, mouse model
studies are investigating the prospect that reduced levels
of neurosteroids possessing anxiolytic properties, such as
allopregnanolone, impact behavior in SLOS.

5. Targeted Therapeutics and Conclusions

Current treatment of SLOS involves endogenous cholesterol
supplementation in the form of crystallized purified choles-
terol suspended in Ora-Plus, microencapsulated powdered
purified cholesterol (brandname SLOesterol), or egg yolks.
Several publications discuss the role of simvastatin therapy
[71–73]. Efficacy for either of these therapies remains
unclear. Endogenous cholesterol biosynthesis is the primary
mechanism for nervous system cholesterol homeostasis,
making a role for extrinsic cholesterol in altering nervous
system function questionable [47]. As we look ahead,
pharmacologic agents derived from neuroactive steroids or
steroid analogues may provide targeted therapy for behav-
ioral symptoms in SLOS and ASD. Currently, clinical trials
are examining the therapeutic effects of neurosteroids on
mood disorders, schizophrenia, substance abuse, traumatic
brain injury, and cognitive disorders. Lipids such as 7-
DHC may undergo perioxidation to form bioactive products
called oxysterols that have been shown to reduce prolifer-
ation of Neuro2a cells and induce cell differentiation [74].
Oxysterols have long been hypothesized in the pathology
of SLOS and remain a promising area for interventional
trials to reduce oxygen free radicals [75–78]. Enzyme-
specific candidate drugs are being investigated in SLOS.
Appropriate modulation of embryonic SHH patterning and
lipid rafts are not likely to be achieved until future studies
elucidate the specific mechanisms and biologic substrates
underlying brain development. These studies may be aided
by advances in functional neuroimaging and molecular
imaging techniques. Furthermore, discussion on the ethics
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involving embryologic or childhood neuromodulatory ther-
apy in patients with abnormal neural patterning should be
considered if technology advances toward such a therapeutic
option. In conclusion, we propose that ASD in SLOS,
and perhaps other disorders of cholesterol homeostasis,
occurs because of impairments in sonic hedgehog patterning,
altered lipid raft structure resulting in aberrant synaptic
plasticity, and impaired neuroactive steroid synthesis. Future
investigations to explore these hypotheses are encouraged
and may enhance our understanding of sterols in autism and
other neurodevelopmental disorders.
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