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ABSTRACT There are Bayesian and non-Bayesian genomic models that take into account G·E interactions.
However, the computational cost of implementing Bayesian models is high, and becomes almost impos-
sible when the number of genotypes, environments, and traits is very large, while, in non-Bayesian models,
there are often important and unsolved convergence problems. The variational Bayes method is popular in
machine learning, and, by approximating the probability distributions through optimization, it tends to be
faster than Markov Chain Monte Carlo methods. For this reason, in this paper, we propose a new genomic
variational Bayes version of the Bayesian genomic model with G·E using half-t priors on each standard
deviation (SD) term to guarantee highly noninformative and posterior inferences that are not sensitive to the
choice of hyper-parameters. We show the complete theoretical derivation of the full conditional and the
variational posterior distributions, and their implementations. We used eight experimental genomic maize
and wheat data sets to illustrate the new proposed variational Bayes approximation, and compared its pre-
dictions and implementation time with a standard Bayesian genomic model with G·E. Results indicated that
prediction accuracies are slightly higher in the standard Bayesian model with G·E than in its variational
counterpart, but, in terms of computation time, the variational Bayes genomic model with G·E is, in general,
10 times faster than the conventional Bayesian genomic model with G·E. For this reason, the proposed model
may be a useful tool for researchers who need to predict and select genotypes in several environments.
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Nowadays, genomic-assisted selection (GS) is a very attractive breeding
tool for selecting candidate genotypes early, using only densemolecular
markers without the need to phenotype the validation population for
several complex traits. However, to take advantage of all the available
information (markers, multiple-traits, multiple-environments, etc.),

more efficient statistical methods are desirable for genome-enabled
prediction models. Markov Chain Monte Carlo (MCMC) methods
provide an effective means of dealing with complex models, and are
widelyused ingenomicpredictionmodelsbecause theyallowsimulation
of high-dimensional distributions to arbitrary levels of accuracy. How-
ever, MCMC methods are computationally expensive, especially in the
presence of intractable multivariate integrals in posterior densities and
likelihood (Ormerod and Wand 2012).

For the above reasons, the variational Bayesmethod (VBM),which is
verypopular in computer science and themachine learning community,
hasbeenadoptedby the statistical sciencecommunity,because,although
variational approximations kill some accuracy of the MCMCmethods,
they offer vast improvements in terms of computational speed and time.
The VBM facilitates approximate inference for the parameters in
complex statistical models, and provides fast, deterministic alternatives
to Monte Carlo methods (Ormerod and Wand 2010). Most VBM
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applications are found in themachine learning community, and there is
enough empirical evidence that the VBM tends to be faster than classic
methods such as MCMC sampling. Also, this method is easier to scale
to large data—it has been applied to problems such as large-scale
document analysis, high-dimensional neuroscience, and computer vi-
sion, as well as in computational biology, robotics, speech recognition,
marketing, optimal control, reinforcement learning, statistical network
analysis, astrophysics, and the social sciences (Blei et al. 2016). How-
ever, the VBM has been studied less rigorously than MCMC, and its
statistical properties are less understood (Blei et al. 2016).

InGS andprediction,wehave found someapplications for theVBM,
for: (1) clustering analysis of gene-expression data (Teschendorff et al.
2005); (2) conducting genome-wide association studies (Logsdon et al.
2010; Carbonetto and Stephens 2012); (3) predicting genomic breeding
values in univariate and multiple traits (Hayashi and Iwata 2013;
Yamamoto et al. 2017); (4) estimating quantitative trait locus effects
(Li and Sillanpää 2012, 2013), and (5) estimating variance components
in the context of animal science (Arakawa et al. 2016).

Most VBMs applied in genomic-enabled prediction use a simple
linear model of the form yi ¼ mþPm

j¼1xijbj þ ei; where yi is the
phenotype of the ith individual, m is the sample mean, xij defines the
genotype of the jth marker, and ei is an error term normally distributed
with mean zero and variance s2

e (Logsdon et al. 2010; Carbonetto and
Stephens 2012; Yamamoto et al. 2017; Li and Sillanpää 2012;
Teschendorff et al. 2005). Exceptions to the use of simple linear models
in VBM were studied by Hayashi and Iwata (2013), who modeled
multiple traits without effects of environments and without interaction
terms; by Arakawa et al. (2016), who used a model for univariate
responses with mixed effects without interaction terms; and in the re-
search of Li and Sillanpää (2013), who used a model for functional
regression without random effects and without interaction terms.

Based on the above, the purpose of this study was to propose a
univariate genomic VBM that takes into account genotype · environ-
ment interaction (G·E), and could be an alternative to the existing
Bayesian and non-Bayesian models with G·E described by Jarquín
et al. (2014) in the reaction normmodel. Since animal and plant breed-
ing programs today perform genetic evaluations of large numbers of
lines, or animals in many environments, for several traits and geno-
typed with thousands (or millions) of genetic markers, complex Bayes-
ian models may take days or weeks to do this, and, as a result, the
existing models become untenable.

For this reason, in order to retain all the useful features of the Bayesian
genomic models with G·E at a reduced computational cost, we propose,
within the general framework of variational Bayes, a method for estimat-
ing the univariate genomicmodelwithG·E, whichwe call the variational
Bayes multi-environment (VBME) model. This means that the VBME
will recast the problem of computing posterior densities by the Gibbs
sampler of the conventional Bayesian methods with G·E—referred to
here as the Bayesian multi-environment (BME) model—as an optimi-
zation problem using the VBM, which consists of introducing a class of
approximating distributions of the latent variables, then optimizing some
criteria to find the distribution within this class that best matches the
posterior (Carbonetto and Stephens 2012). Also, it is important to point
out that the newly proposed method uses, as a prior for all standard
deviations (SDs), a half-t distribution that is a high noninformative prior
distribution (Huang and Wand 2013). We derived the full conditional
and variational posterior distribution of the VBME model, explained its
implementation, and applied it to eight experimental genomic (maize
and wheat) data sets with two main objectives: (1) to compare the accu-
racy of the VBME with that of the standard BME model; and (2) to
compare the computational processing time of VBMEwith that of BME.

MATERIALS AND METHODS

The variational Bayes method using the density
transform approach
The most common variants of the VBM are the density transform
approach and the tangent transformapproach.Wewill explain the basis
of the density transform approach; readers interested in understanding
the tangent transform approach can consult Ormerod and Wand
(2010). The density transform approach consists of approximating
the posterior densities through other densities for which inference is
more tractable. In Bayesian statistics, the inference problem is to compute
the conditional distribution of unknown parameters given the observa-
tions p(u│y) = p(y,u)/p(y); the denominator is known as the marginal
distribution of the observations or model evidence, u2Q is the parameter
vector, and pðy; uÞ is the joint likelihood of the data and model param-
eters. The essence of the density transform approach is to approximate the
posterior density pðu=yÞ by a function qðuÞ, for which the q-dependent
lower bound ½ pðy; qÞ�on the marginal likelihood is given by

p ðy; qÞ[ exp
Z

qðuÞlog
�
pðy; uÞ
qðuÞ

�
du (1)

Expression (1) is more tractable than the marginal likelihood, pðyÞ:
Indeed, the maximization of p ðy; qÞ with respect to q is equivalent
to minimizing the Kullback-Leibler divergence between qðuÞ and
pðu=yÞ;KLðqð�Þ; pð�=yÞÞ: This is because themarginal likelihood satisfies

pðyÞ ¼ exp
�
KL
�
qð � Þ; pð�jyÞ

��
p ðy; qÞ$ pðy; qÞ (2)

which can be derived through Jensen’s inequality, and the equality
holds if, and only if, qðuÞ ¼ pðu=yÞ almost everywhere (Ormerod and
Wand 2010). To achieve tractability, p ðy; qÞ is maximized over a
restricted, more manageable, q class of densities.

Here, for the implementation, we chose, as restrictions for the q
class of densities, themean field variational family restriction, where
the latent variables are mutually independent, and each is governed
by a distinct factor in the variational distribution, that is, qðuÞ fac-
torizes into

Qm
j¼1qjðujÞ for some partitions fu1; . . . ; umg of u: Each

uj is governed by its own distribution qjðujÞ, and, in principle, each
variational factor can take on any parametric form that is appropriate for
the corresponding random variable. In the optimization process, these
variational factors are chosen to maximize the evidence lower bound
given in Equation (2). One advantage of using the mean field variational
family restriction over qðuÞ is that it is possible to obtain explicit
solutions for each product component in terms of the others when
conjugate priors are used. These lead to an interactive scheme for
obtaining simultaneous solutions. The solutions rely on result 2.1.

Result. 2.1. Let v and w be continuous random vectors with joint
density pðv;wÞ: Then

supq

�Z
qðvÞlog

�
pðv;wÞ
qðvÞ

�
dv

�
is attained by qpðvÞ ¼ pðvjwÞ:

Onedisadvantageof themeanfieldvariational family restriction is its
tendency to underestimate the variability of parameter estimates; it is
also not a good option when the parameters under study have a high
degree of dependence, which causes degradation in the resulting in-
ference. Conversely, if the posterior dependence between parameters is
weak, then the product density restriction could lead to very accurate
approximate inferences (Ormerod and Wand 2010; Blei et al. 2016).
When conditional conjugate priors are used, given the other variational
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factor components, the optimal densities of each variational factor,
qjðujÞ; are proportional to the exponentiated expected log of the full
conditionals obtained with Gibbs sampling, that is,

qj
�
uj
	
} exp

n
E2uj

log  p
�
uj


ELSE	o (3)

where pðuj


ELSEÞ are the known full conditionals in the MCMC

literature, and the expectations on the right-hand side of Equation
(3) are computed with respect to the density q(u)/q(uj). From this
equation, an interactive scheme can be used to obtain the optimal
densities. Equation (3) allows obtaining all the variational posteriors
for implementing the VBM using mean variational approximation.

Statistical model
Since we wanted to develop a variational Bayes version of the
BME model, we used yijk to represent the normal phenotype from
the k th replication of the j th line in the i th environment
ði ¼ 1; 2; . . . I;   j ¼ 1; 2; . . . ; J;   k ¼ 1; 2; . . . ;KÞ; where K represents
the number of replicates of each line in each environment under study.
Therefore, the total number of observations is n ¼ I · J · K: There-
fore, the BME model is

yijk ¼ Ei þ g j þ gEij þ eijk (4)

where Ei represents the effect of i th environment, gi represents the
genomic effect of j th line, and is assumed as a random effect, gEij is the
interaction between the genomic effect of the j th line and the i th envi-
ronment, and is assumed a random effect, and eijk is a random error term
associated with the k th replication of the j th line in the i th environment.

Inmatrix notation, themodel given in Equation (4) including all the
information is expressed as:

Y ¼ Xbþ Z1b1 þ Z2b2 þ e (5)

where Y is the response vector of order n· J; X is the design matrix of
environment effects of order n· I; b is the regression coefficient vector of
order I · 1 associatedwith the environment effects,Z1 is the designmatrix
of order n· J; associated with the random effects of lines, b1 is the vector
of random effects of lines of order J · 1; Z2 is the design matrix of order
n · IJ; associated with the interaction random effects between lines and
environments, b2 is the vector of interaction random effects of lines and
environments of order IJ·1; and e is the vector of random error terms of
order n·1. Then, we assumed that b1 � Nð0;Gs2

1Þ; b2 � Nð0;G2s
2
2Þ,

and e � Nð0; Ins2
eÞ; also that this vector is statistically independent,

where G denotes the genomic relationship matrix, and was calculated as
suggested by VanRaden (2008). G2 ¼ II5G; 5 denotes a Kronecker
product, where II is an identity matrix of order I · I; which indicates that
we are assuming independence between environments.

BME model
The joint posterior density of the parameter vector of the BMEmodel is
given by

p
�
b; b1; b2;s

2
1;s

2
2;s

2
b;s

2
e ; ab; ab1; ab2; ae

	
} p
�
Y jb; b1; b2;s2

e

	
p
�
bjs2

b

	
p
�
s2
b



ab	p�ab	p�b1js2
1

	
p
�
s2
1



ab1	
· p ðab1Þp

�
b2js2

2

	
p
�
s2
2



ab2	pðab2Þp�s2
e



ae	p ðaeÞ
(6)

which is not a known distribution that is easy to simulate, so we will
use MCMC techniques to obtain samples of this by means of
the Gibbs sampler. The notation x � IG ðA; BÞ represents a random
variable, x, that has an inverse Gamma distribution with shape A

and scale B parameters A;B. 0; with density function P ðxÞ ¼
BAGðAÞ21x2A21exp½2ðB=xÞ�; x. 0: The following prior specifica-
tion is given:

bjs2
b � Np

�
bb;Σbs

2
b

�
;s2

b




ab � IG
�
nb
�
2; nb

�
ab
	
;

ab � IG
�
1=2; 1

.
A2
b

�
;s2

1



ab1 � IG
�
nb1
�
2; nb1

�
ab1
	
;

ab1 � IG
�
1=2; 1

�
A2
l

	
;s2

e jae � IGðne=2; ne=aeÞ;
ae � IG

�
1=2; 1

�
A2
e

	
;s2

2jab2 � IG
�
nb2=2; nb2

�
ab2
	

and  ab2 � IG
�
1=2; 1

�
A2
2

	
:

It is important to point out that the hierarchical priors given to the SDs
induce Half-t priors to achieve arbitrary high noninformativity in this
parameter (Huang and Wand 2013). Note that the use of this type of
priors of our proposed model for genomic-enabled prediction is dif-
ferent than the priors used in the context of the existing Bayesian
univariate models with G·E. Details of all full conditional distribu-
tions derived from the Gibbs sampler for implementing these BME
and VBME models are given in Appendices A and B, whereas the R
code for implementing the VBME model is provided in Appendix D.

Variational version of the BME model
As an alternative to the Gibbs sampler for estimating the parameters, in
this section, we will derive the optimal densities under the mean field
variational family restriction, assuming the following factorization of qðuÞ:

q
�
b; b1; b2;s2

b1
;s2

b2
;s2

b;s
2
e ; ab; ab1; ab2; ae

	
¼ qðbÞqðb1Þqðb2Þq

�
s2
b1

	
q
�
s2
b2

	
q
�
s2
b

	
q
�
s2
e

	
q
�
ab
	
q
�
ab1
	
q
�
ab2
	
qðaeÞ
(7)

The difficult problem of finding the exact posterior (6) became less
difficult, i.e., it now consists of finding an approximate parametric
posterior qðb; b1; b2;s2

1;s
2
2;s

2
b;s

2
e ; ab; ab1; ab2; aeÞ with moments

(i.e., parameters). Inference then reduces to finding a density q
that minimizes a measure of dissimilarity between q and p: This
can be achieved by maximizing the log of the evidence lower bound
that is an approximation of the BME model using Equation (6) with
respect to (the moments of) q: For details, see MacKay (1995), Attias
(2000), Ghahramani and Beal (2001) and Bishop (1999).

Because in the Bayesian formulation of the model given in Equation
(5),weuseconditionalconjugatepriorsoverparametersofthecorresponding
partition of u; in the factorization assumed for qðuÞ in Equation (7), all the
optimal distributions (Equation 3) of the VBME model of each variational
factor, q jðujÞ; belong to the same family as the full conditional distributions
for the BME model. Because the same Bayesian model (BME) was con-
verted to its variational counterpart (VBME), both models are comparable.
The derivation details of all these densities are given in Appendix A.

In summary, the iterative scheme used to obtain the optimal density
qðuÞ over the class of densities given in Equation (7), is given by the
following algorithm. Before presenting the algorithm, we provide some
basic notations. We will use mqðujÞ and s2

qðujÞ to denote the mean and
variance of qj distribution. For vector parameter u; we use the analo-
gously defined mqðuÞ and ΣqðuÞ: Therefore, the expected values for the
inverse of the parameters s2

b; ab;s
2
1; ab1;s

2
2; ab2;s

2
e ;   and  ae used were:

mqð1=s2
b
Þ ¼ ½0:5ðnb þ IÞ=ðBqðs2

b
ÞÞ�; mqð1=abÞ ¼ ½0:5ðnb þ 1Þ=ðBqðabÞÞ�;

mqð1=s2
1Þ ¼ ½0:5ðnb1 þ JÞ=ðBqðs2

1ÞÞ�; mqð1=ab1Þ ¼ ½0:5ðnb1 þ 1Þ=ðBqðab1ÞÞ�;
mqð1=s2

2Þ ¼ ½0:5ðnb2þ IJÞ=ðBqðs2
2ÞÞ�;mqð1=ab2Þ ¼ ½0:5ðnb2 þ 1Þ=ðBqðab2ÞÞ�;

mqð1=s2
e Þ ¼½0:5ðneþ nÞ=ðBqðs2

e ÞÞ�; and mqð1=aeÞ ¼ ½0:5ðneþ 1Þ=ðBqðaeÞÞ�;
respectively, while, for the scale parameters, we will use the notation
BqðujÞ: Therefore, Bqðs2

b
Þ;BqðabÞ;Bqðs2

1Þ;Bqðab1Þ; Bqðs2
2Þ;Bqðab2Þ; Bqðs2

e Þ;
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and BqðaeÞ represent the scale parameters of the variational posterior
distribution of s2

b; ab;s
2
1; ab1;s

2
2; ab2;s

2
e , and ae; respectively. Also,

ep ¼ Y 2XmqðbÞ 2Z1mqðb1Þ2Z2mqðb2Þ, andbb is the prior of the beta
regression coefficients.

Algorithm for implementing the VBME
Initialize: mqðbÞ ¼ 0; mqðb1Þ ¼ 0; mqðb2Þ ¼ 0; Σqðb1Þ ¼ IJ ; Σqðb2Þ ¼ IIJ ;
Bqðs2

b
Þ;BqðabÞ;Bqðs2

1Þ;Bqðab1Þ;Bqðs2
2Þ;Bqðab2Þ; Bqðs2

e Þ;BqðaeÞ. 0:Cycle:

ΣqðbÞ)
�
Σ21
b mqð1=s2

bÞ þ XT
�
Inmqðs22

e Þ
�
X
�21

mqðbÞ)ΣqðbÞ

 
Σ21
b bbmqð1=s2

bÞ þ XT
h
Inmqðs22

e Þ
i

3

"
Y 2

X2
h¼1

ZhmqðbhÞ

#!

Bqðs2
bÞ)

h
mqðbÞ2bb

iT
Σ21
b

h
mqðbÞ 2bb

i
þ tr

�
Σ21
b ΣqðbÞ

�
2

þ nbmqð1=abÞ

BqðabÞ)1
�
A2
b þ nbmqð1=s2

bÞ

Σqðb1Þ)
�
G21mqðs22

1 Þ þ ZT
1

h
Inmqðs22

e Þ
i
Z1

�21

mqðb1Þ)Σqðb1Þ
�
ZT
1

h
Inmqðs22

e Þ
ih
Y 2XmqðbÞ 2Z2mqðb2Þ

i�
Σqðb2Þ)

�
G21
2 mqðs22

2 Þ þ ZT
2

h
Inmqðs22

e Þ
i
Z2

�21

mqðb2Þ)Σqðb2Þ
�
ZT
2

h
Inmqðs22

e Þ
ih
Y 2XmqðbÞ 2Z1mqðb1Þ

i�

Bqðs2
1Þ)

mT
qðb1ÞG

21mqðb1Þ þ tr
�
G21Σqðb1Þ

�
2

þ nb1m
q
�
1
ab1

	
Bqðab1Þ)1

�
A2
b1 þ nb1m

q

�
1

s2
b1

�

Bqðs2
2Þ)

mT
qðb2ÞG

21
2 mqðb2Þ þ tr

�
G21
2 Σqðb2Þ

�
2

þ nb2mqð1=ab2Þ

Bqðab2Þ)1
�
A2
b2þ nb2mqð1=s2

2Þ

Bqðs2
eÞ)

epTe p þ tr
�
XtXΣqðbÞ

�
þ tr

�
ZT
1 Z1Σqðb1Þ

�
þ tr

�
ZT
2 Z2Σqðb1Þ

�
2

þ nem
q
�

1
ae

	

BqðaeÞ)
1
A2
e
þ nemqðs22

e Þ

until the change in the lower bound, log p
�
ðy; qÞ; between iterations is

less than a tolerance value specified a priori. For our choice of ap-
proximating distribution (see Appendix B), in each cycle of the algo-
rithm, logðp

�
ðy; qÞÞ has the following analytical expression:

log p
�
ðy; qÞ ¼ 0:5 log

�

ΣqðbÞ


	2 0:5

�
nb þ I

	
log
�
Bqðs2

bÞ
�

2 0:5
�
nb þ 1

	
log
�
BqðabÞ

�
þ m

q

�
1
ab

�nbm
q

�
1
s2
b

�
þ 0:5 log

�

Σqðb1Þ


�þ 0:5 log

�

Σqðb2Þ


�

2 0:5ðnb1 þ JÞlog
�

Bqðs2

1Þ


�

2 0:5ðnb1 þ 1Þlog
�
Bqðab1Þ

�
þ m

q

�
1

ab1

�nb1m
q

�
1
s2
1

�
2 0:5ðnb2 þ IJÞlog

�

Bqðs2
2Þ


�

2 0:5ðnb2 þ 1Þlog
�
Bqðab2Þ

�
þ m

q

�
1

ab2

�nb2m
q

�
1
s2
2

�
2 0:5ðne þ nÞlog

�

Bqðs2
eÞ


�

2 0:5ðne þ 1Þlog
�
BqðaeÞ

�
þ m

q

�
1
ae

�nem
q

�
1
s2e

�
:

(8)

To obtain (8), several substitutions were made for simplification; it is
valid only for the VBME model proposed. In this algorithm, the
updates of the parameters should be as given in the order proposed
for the algorithm.

Model implementation
Recall that the hyperparameters of the prior distributions are values given
by the user in the Bayesian paradigm. In this case, the hyperparameters
used for the BME model given in the previous section were: bb ¼ 0I ;
Σ0 ¼ II ; vb ¼ vb1 ¼ vb2 ¼ 2; and Ab ¼ Ab1 ¼ Ab2 ¼ A2 ¼ 10; 000:
All these hyperparameters were chosen to leadweakly informative priors.
The implementation of both models (BME and VBME) was done in the
R statistical software (R Core Team 2016). The full conditional and
posterior distributions given in Appendix A were used for the BME
and VBME models, respectively. Also, for the VBME model, an R code
is given in Appendix D. The BME model was implemented with the
MCMC method with 40,000 iterations with a burn-in of 20,000 and a
thinning of five; therefore, 4000 samples were used for inference.

Assessing prediction accuracy
Prediction accuracy was assessed using 20 training (trn)-testing (tst)
random partitions; we used this approach because one can obtain as
many partitions as one needs with a replicated trn-tst design. The
implemented cross-validation (CV1) mimics a situation where lines
were evaluated in some environments for the trait of interest, but some
lines are missing from all the other environments. We assigned 80% of
theobservations to the trn set, andthe remaining20%tothe tst set.Of the
variety ofmethods for comparing thepredictive posteriordistribution to
the observed data (generally termed “posterior predictive checks”), we
used the Pearson correlation. Models with higher correlation values
indicate better predictions. Under the BME, the predicted observations
were calculated as Ŷ ¼ Xb̂þ Z1b̂1;þZ2b̂2 where b̂; b̂1   and  b̂2; are
estimates of b; b1; and b2; these estimates correspond to the posterior
mean of s collected Gibbs samplers to estimate the predicted values
after discarding those used for the burning period, while under the
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VBME, Ŷ ¼ XmqðbÞ þ Z1mqðb1Þ þ Z2mqðb2Þ; as described in the algo-
rithm for implementing the VBME.

Experimental data sets
Here,wepresent the information on the data sets used for implementing
the proposed models. A total of eight data sets were used (three maize
and five wheat).

Maize data sets 1–3: A total of 309 doubled haploid maize lines was
phenotyped and genotyped; this is part of the data set used by Crossa
et al. (2013) and Montesinos-López et al. (2016), which comprised a
total of 504 doubled haploid lines derived by crossing and backcrossing
eight inbred lines to form several full-sib families. Traits available in this
data set include grain yield (Maize_GY), anthesis-silking interval
(Maize_ASI), and plant height (Maize_PH); each of these traits was
evaluated in three optimum rainfed environments (Env1, Env2, and
Env3). The experimental field design used in each of the three environ-
ments was an alpha lattice incomplete block design with two replicates.
Data were preadjusted using estimates of block and environmental
effects derived from a linear model that accounted for the incomplete
block design within environment, and for environmental effects.

Thegenomicdatawereobtainedthroughgenotyping-by-sequencing
(GBS) for each maize chromosome; the number of markers after initial
filtering and the number of markers after imputation were summarized
in Crossa et al. (2013). Filtering was first done by removing markers
that had.80% of the maize lines with missing values, and thenmarkers
with minor allele frequency #0.05 were deleted. The total numbers of
GBS data were 681,257 single nucleotide polymorphisms (SNPs), and,
after filtering for missing values and minor allele frequency, 158,281
SNPs were used for the analyses. About 20% of cells were missing in
the filtered GBS information used for prediction; these missing values
were replaced by their expected values before doing the prediction.

Wheat data sets 4–5: The first two wheat data sets came from a total of
250 wheat lines that were extracted from a large set of 39 yield trials
grown during the 2013–2014 crop season in Ciudad Obregon, Sonora,
Mexico (Rutkoski et al. 2016). The trials were sown in mid-November
and grown on beds with five and two irrigations plus drip irrigation.
Days to heading (Wheat_DTHD) were recorded as the number of days
from germination until 50% of spikes had emerged in each plot, in the
first replicate of each trial, while plant height (Wheat_PTHT) was
recorded in centimeters.

For the first two wheat data sets, GBS was used for genome-wide
genotyping. Singlenucleotidepolymorphismswere calledacross all lines
using the TASSEL GBS pipeline anchored to the genome assembly of
Chinese Spring. Single nucleotide polymorphisms were extracted and
markerswere filtered so that percentmissing data did not exceed 80 and
20%, respectively. Individuals with .80% missing marker data were
removed, and markers were recorded as 21, 0 and 1, which indicate
homozygous for the minor allele, heterozygous, and homozygous for
the major allele, respectively. Next, markers with ,0.01 minor allele
frequency were removed, and missing data were imputed with the
marker mean. A total of 12,083markers remained after marker editing.

Wheat data set 6: This data set, from CIMMYT’s Global Wheat Pro-
gram, was used by Crossa et al. (2010) and Cuevas et al. (2016a,b) and
includes 599 wheat lines derived from 25 yr (1979–2005) of Elite Spring
Wheat Yield Trials (ESWYT). The environments represented in these
trials are four agroclimatic regions (mega-environments). The pheno-
typic trait considered here was grain yield (Wheat_Yield1) of the

599 wheat lines evaluated in each of the four mega-environments.
The 599 wheat lines were genotyped using 1447 Diversity Array Tech-
nology (DArT) markers generated by Triticarte Pty. Ltd. (Canberra,
Australia; http://www.triticarte.com.au). Markers with a minor allele
frequency (MAF) (0.05) were removed, and missing genotypes were
imputed using samples from the marginal distribution of marker ge-
notypes. The number of DArT markers after edition was 1279.

Wheat data sets 7–8: These two data sets were described and used by
Lopez-Cruz et al. (2015) and Cuevas et al. (2016b) for proposing a
marker·environment interaction model. The phenotypic data con-
sisted of adjusted grain yield (tons/hectare) records collected during
three evaluation cycles of different inbred lines evaluated in different
environments, and denoted as Wheat_Yield2 and Wheat_Yield3. The
environments were three irrigation regimes (moderate drought stress,
optimal irrigation, and drought stress), two planting systems (bed and
flat planting), and two different planting dates (normal and late). All
trials were planted using a lattice design with three replicates in each
environment at CIMMYT’s main wheat breeding station in Cd. Obre-
gon, México. The phenotype used in the analysis was the Best Linear
Unbiased Estimate (BLUE) of grain yield obtained from a linear model
applied to the alpha-lattice design of each cycle-environment combi-
nation. The trait Wheat_Yield2 had 693 wheat lines evaluated in four
environments, and the trait Wheat_Yield3 included 670 wheat lines
evaluated in four environments. Genotypes were derived using GBS
technology, and markers with a MAF of 0.05 were removed. All
markers had a high incidence of uncalled genotypes, so we applied
thresholds for incidence of missing values, and focused onmaintaining
relatively large and similar numbers of markers per data set. After
editing the missing markers, we had a total of 15,744 GBS markers
for analyzing traits Wheat_Yield2 and Wheat_Yield3.

Data availability
Phenotypic and genotypic data on the eight data sets included in this
study can be downloaded from http://hdl.handle.net/11529/10907.

RESULTS
The results of this research are given in two sections. The first section
compares the parameter estimates and implementation timeunderboth
models (BME andVBME). The second section compares the prediction
accuracy of both models in each of the eight data sets under study.

Comparing parameter estimates and the
implementation time of models BME and VBME
Table 1 gives the parameter estimates under both models (BME and
VBME) of the b coefficients, variance components (s2

1; s
2
2 and s2

e ),
Pearson correlation between the observed and predicted phenotypes of
the full data sets, and the time in minutes required to implement each
model on the data sets under study. In general, the beta coefficient
estimates obtained under the BME and VBMEmodels are very similar,
but there are substantial differences in the estimates of variance com-
ponents, given that a little more than half of themwere lower under the
VBMEmodel as compared to those estimates obtained under the BME.
Also, in seven out of eight data sets, the Pearson correlation between
observed and predicted genotypes was larger under the BME, while in
seven out of eight data sets, the implementation time was �10 times
lower under the VBME than under BME.

Table 2 shows details of the comparison between the proposed
VBME model vs. the BME model. The smallest difference between
the beta coefficients was observed in b1 for data set Wheat_Yield1
(1%), while the largest difference was observed in b3 for data set
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Wheat_Yield2 (25.3%); the estimates of the BME model were lower.
With regard to the variance components, Table 2 shows that the small-
est difference was observed in s2

1 for Wheat_Yield3 (3.8%), while the
largest difference was also in s2

1 for data set Maize_PH, where the
estimated variance component of the VBME was 5.68 times higher
than the estimated variance component of the BME model.

In terms of thePearson correlation, in seven outof eight data sets, the
best correlations were observed in the BME model; the minimum
difference (1.6%) was observed in data set Wheat_Yield3, while the
maximumdifference (15.4%)was observed inWheat_PTHT. Finally, in
termsof implementationtime(inminutes), insevenoutof eightdata sets

the VBME model was faster than the BME model, with a minimum
difference of 16.9%, and amaximumdifference of 98.2%. The computer
used to implement both models for each of the eight data sets (reported
in Table 1 and Table 2) was a Windows operating system with pro-
cessor Intel(R) Core(TM) i7-4610M CPU @ 3.0 GHz under a 64-bit
operating system.

Comparing the prediction ability of models BME
and VBME
Table 3 presents prediction accuracies for both models resulting from
the 20 trn-tst random partitions implemented for each of the eight real

n Table 1 Parameter estimates, implementation time and Pearson correlation between the observed and predicted values for the
complete data sets under the BME and VBME models

Model Data Set Parameter b1 b2 b3 b4 s2
1 s2

2 s2
1 Correlation Time

BME Maize_GY Mean 6.589 4.910 6.167 — 2.127 1.970 0.428 0.879 48.9
SD 0.317 0.280 0.294 — 0.467 0.409 0.026 — —

Maize_ASI Mean 1.837 1.168 2.222 — 2.909 1.290 0.436 0.855 50.88
SD 0.361 0.340 0.352 — 0.535 0.326 0.026 — —

Maize_PH Mean 2.330 2.021 2.343 — 0.007 0.002 0.020 0.745 49.68
SD 0.044 0.043 0.043 — 0.009 0.003 0.002 — —

Wheat_DTHD Mean 23.155 24.018 20.298 — 26.381 8.015 0.403 0.999 64.62
SD 0.270 0.268 0.276 — 2.656 0.545 0.029 — —

Wheat_PTHT Mean 24.652 27.402 20.776 — 8.864 25.702 0.403 0.999 31.14
SD 0.269 0.262 0.267 — 1.725 1.687 0.029 — —

Wheat_Yield1 Mean 0.000 0.000 0.000 0.000 0.217 0.338 0.555 0.801 26.34
SD 0.536 0.536 0.538 0.536 0.049 0.042 0.023 — —

Wheat_Yield2 Mean 0.170 0.202 0.073 0.082 0.295 0.230 0.486 0.816 33.36
SD 0.476 0.475 0.476 0.477 0.039 0.027 0.018 — —

Wheat_Yield3 Mean 0.053 20.072 20.107 20.079 0.402 0.244 0.520 0.810 31.98
SD 0.587 0.585 0.584 0.586 0.055 0.032 0.021 — —

VBME Maize_GY Mean 6.391 5.017 6.113 — 1.485 0.301 0.576 0.772 5.64
SD 0.043 0.043 0.043 — 0.121 0.013 0.027 — —

Maize_ASI Mean 1.858 1.143 2.364 — 1.825 0.282 0.503 0.781 5.64
SD 0.040 0.040 0.040 — 0.148 0.013 0.023 — —

Maize_PH Mean 2.337 2.051 2.333 — 0.011 0.011 0.014 0.859 3.18
SD 0.007 0.007 0.007 — 0.0009 0.0005 0.0006 —

Wheat_DTHD Mean 23.243 24.080 20.321 — 25.063 0.451 6.161 0.943 1.2
SD 0.161 0.161 0.161 — 2.274 0.003 0.337 — —

Wheat_PTHT Mean 24.594 27.459 20.611 — 6.796 2.937 17.009 0.846 1.2
SD 0.260 0.260 0.260 — 0.627 0.132 0.893 — —

Wheat_Yield1 Mean 0.000 0.000 0.000 0.000 0.268 0.263 0.604 0.784 15.12
SD 0.044 0.043 0.044 0.067 0.013 0.002 0.029 — —

Wheat_Yield2 Mean 0.172 0.193 0.091 0.091 0.250 0.118 0.542 0.785 38.94
SD 0.027 0.027 0.027 0.027 0.014 0.003 0.015 — —

Wheat_Yield3 Mean 0.045 20.062 20.092 20.075 0.417 0.190 0.561 0.797 25.86
SD 0.028 0.028 0.028 0.028 0.023 0.005 0.015 — —

The implementation time is given in minutes. Mean and SD under the BME were obtained as the Mean and SD posteriors, and, under the VBME, the Mean and SD
were obtained as the mean and SD of the variational posterior.

n Table 2 Relative comparison using the full data sets between the BME and VBME calculated as parameter estimate under BME minus
parameter estimate under VBME divided by parameter estimate under BME

Data Set b1 b2 b3 b4 s2
1 s2

2 s2
e Corr Time

Maize_GY 0.030 20.022 0.009 — 0.302 0.847 20.346 0.122 0.885
Maize_ASI 20.012 0.022 20.064 — 0.372 0.781 20.152 0.087 0.890
Maize_PH 20.003 20.015 0.004 — 20.568 25.289 0.330 20.153 0.936
Wheat_DTHD 20.028 20.015 20.075 — 0.050 0.944 214.272 0.056 0.982
Wheat_PTHT 0.012 20.008 0.213 — 0.233 0.886 241.243 0.154 0.961
Wheat_Yield1 20.001 20.009 20.068 20.029 20.235 0.222 20.087 0.022 0.426
Wheat_Yield2 20.010 0.047 20.253 20.110 0.153 0.488 20.115 0.038 20.169
Wheat_Yield3 0.160 0.148 0.144 0.055 20.038 0.221 20.079 0.016 0.190

The smallest and largest differences in b coefficients, variance components, Pearson correlation and implementation time are in boldface.
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data sets under study. Table 3 gives the prediction accuracies for each
environment in each data set. In general, the prediction accuracies of
the BME are slightly higher than those of the VBMEmodel. However, it
is interesting to point out that, even under the VBME, the prediction
accuracies are comparable to those found under the BME.

Table 4 shows that in five out of eight data sets the predictions under
the BMEmodel were the best. Also, the lowest difference in the five data
sets in which the BMEmodel was the best was 4.2% in favor of the BME
in Env1 in data set Wheat_Yield2, while the largest difference was
52.9% in favor of the BME in Env4 in data set Wheat-Yield1. For the
three data sets in which the VBME was the best, the smallest difference
was 1.2% in Env2 in data set Wheat_DTHD, and the largest difference
was 138.1% in Env1 in data set Wheat_Yield1.

DISCUSSION
We proposed and implemented the variational Bayes version of the
BME model. We found that the b coefficients were estimated in a
similar way in both models (BME and VBME), but the variance
components were considerably underestimated in the VBME model.
However, in terms of prediction accuracy, the BME was a little better
than the VBME model. The VBME model is a quick and a good
approximation to the BME model. These results were expected, since,
under MCMC methods, we estimate the parameters using the mean
posterior from samples of the target distribution (posterior distribu-
tion), while, in the second approach for estimating the parameters, we
also use the mean, but from the approximated target distribution, here
obtained under the VBM and called variational posterior distribution.
The above is documented in some papers that reported that the VBM
showed less accuracy than its MCMC counterpart. This is due to the
fact that variational Bayes methods approximate the target posterior
distribution by a factorized distribution that has minimumKL distance
to the target posterior. The factorized distribution we used was the
mean field variational family restriction, which makes strong indepen-
dent assumptions to achieve great flexibility and scalable optimization
at the price of low accuracy and underestimation of posterior variances
(Blei et al. 2016). In contrast, MCMCmethods such as the BMEmodel
have a high computational cost with the advantage that they generate
samples directly from the target posterior distribution that are guaran-
teed to converge asymptotically to the true posterior distribution. The
new proposed VBME model for univariate phenotypes with G·E in-

teraction is a step ahead of the models proposed until now, in the
context of genomic-enabled prediction models proposed by other au-
thors and described in the Introduction. In this paper, we propose a
genomic VBM model using a half-t priors distribution, and give clear
theoretical details of the derivation of the full conditional and posterior
distributions, and account for G·E interaction.

Advances ingenetic engineeringallowcollectingandstoringmillions
of markers (SNPs, etc.) from plant and animal genomes, and many
breeding programs are interested in improving many correlated traits
simultaneously. For these reasons, in genomic selection there is a great
need to use genome-enabled prediction models that take into account
all available markers, traits, and environments under study to im-
prove the prediction of genotypes early in time for multiple correlated
traits. However, due to the large amount of input information for
Bayesian methods (such as those used in the BME model), these
statistical models and methods might become intractable, or impose

n Table 3 Prediction accuracy of the BME and VBME models resulting from the 20 trn-tst random partitions implemented

Env1 Env2 Env3 Env4

Model Data set APC SE APC SE APC SE APC SE

BME Maize_GY 0.319 0.041 0.378 0.032 0.362 0.040 — —

Maize_ASI 0.466 0.027 0.380 0.045 0.285 0.048 — —

Maize_PH 0.391 0.024 0.352 0.029 0.585 0.024 — —

Wheat_DTHD 0.905 0.011 0.835 0.012 0.897 0.008 — —

Wheat_PTHT 0.523 0.020 0.347 0.027 0.499 0.026 — —

Wheat_Yield1 0.191 0.013 0.644 0.013 0.593 0.007 0.556 0.000
Wheat_Yield2 0.690 0.015 0.785 0.010 0.617 0.021 0.637 0.020
Wheat_Yield3 0.627 0.030 0.711 0.019 0.669 0.024 0.719 0.022

VBME Maize_GY 0.341 0.025 0.383 0.027 0.283 0.021 — —

Maize_ASI 0.473 0.022 0.427 0.027 0.369 0.025 — —

Maize_PH 0.313 0.032 0.380 0.029 0.389 0.027 — —

Wheat_DTHD 0.920 0.010 0.860 0.012 0.908 0.008 — —

Wheat_PTHT 0.425 0.034 0.439 0.040 0.398 0.035 — —

Wheat_Yield1 0.455 0.015 0.527 0.012 0.434 0.010 0.262 0.006
Wheat_Yield2 0.661 0.007 0.706 0.007 0.557 0.008 0.598 0.003
Wheat_Yield3 0.432 0.012 0.490 0.011 0.480 0.011 0.514 0.010

APC, average of Pearson’s correlation; SE, standard error.

n Table 4 Relative comparison of the prediction accuracies of the
BME and VBME models calculated as APC under BME minus APC
VBME divided by the APC under BME

Data set Env1 Env2 Env3 Env4

Maize_GY 20.069 20.015 0.217 —

Maize_ASI 20.015 20.121 20.298 —

Maize_PH 0.198 20.079 0.334 —

Wheat_DTHD 20.017 20.030 20.012 —

Wheat_PTHT 0.187 20.266 0.203 —

Wheat_Yield1 21.381 0.182 0.268 0.529
Wheat_Yield2 0.042 0.101 0.097 0.061
Wheat_Yield3 0.311 0.311 0.282 0.285
Maize_GY 0 0 1 —

Maize_ASI 0 0 0 —

Maize_PH 1 0 1 —

Wheat_DTHD 0 0 0 —

Wheat_PTHT 1 0 1 —

Wheat_Yield1 0 1 1 1
Wheat_Yield2 1 1 1 1
Wheat_Yield3 1 1 1 1

The smallest and largest differences in terms of prediction accuracy for both
models are in boldface. In the bottom half of this table, 1 means that the best
model was BME and 0 means that the best model was VBME in terms of
prediction accuracy.
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a very high computational cost in terms of time. For these reasons, and
because itoffers a significant improvement incomputational speedat the
cost of a small loss in prediction accuracy, we believe that the proposed
VBME model is an attractive alternative to the BME model.

Advantages and disadvantages of the variational
model (VBME)
Asalreadymentioned, the variationalmodel (VBME)was proposed due
to theneed to improve the speedof theBME.For this reason,wepropose
the iterative algorithm given in the section Algorithm for implementing
the VBME, which approximates the BME model in a reasonable way.
Results show that the VBME method: (1) is sometimes more flexible
than its Bayesian counterpart; (2) offers a reasonable approximation to
the posterior distributions of all model parameters; (3) most of the time
is much less demanding in computational time than the BME built
using MCMC techniques; and (4) maintains most of the advantages of
Bayesian inference. However, the VBME has some limitations: (1) the
approximation cannot become more accurate by increasing computa-
tional time; (2) part of the VBME’s advantage in computing time is
because the model is simple; however, this algorithm needs to be adap-
ted to cases that are different from the one used here; (3) the VBME, like
all variational Bayes methods, does not guarantee that it will converge
to a globalmaximum; (4) the convergence time depends strongly on the
level of tolerance desired and the nature of the data; and (5) it has been
documented, and was observed here, that variational models underes-
timate some covariance parameters. However, the time reduction de-
pends strongly on the tolerance level: the lower the value, the longer the
convergence time. For this reason, although our results show a signif-
icant reduction in time, this gain can be reduced substantially if the
chosen tolerance level is smaller. Our empirical results when imple-
menting the VBME in eight real data sets show that a tolerance level of
0.00001 is enough, because when we increased it to 1E28, no signifi-
cant gain in prediction accuracy or accuracy in parameter estimates was
observed. Also, since in developing our VBME, we used the mean field
variational family restriction that approximates qðuÞ by the product of
q latent independent variables to gain tractability, this may underesti-
mate the variability of parameter estimates when there is a considerable
degree of dependence. Another important disadvantage of the VBM is
that deriving the set of equations (variational posterior and lower
bound) used to iteratively update the parameters often requires a large
amount of algebra compared with deriving the comparable Gibbs sam-
pling equations. This is evident in Appendix A for our proposedVBME
model, which, despite being a simple model, required a lot of algebra
and notation to obtain the variational posterior distribution and the
corresponding lower bound. This amount of algebra needs to be done
each time for every specific model.

To take advantageof the proposedmodel,weprovide someguidance
on when to use the VBME or the BME. The BME (anMCMCmethod)
tends to bemore computationally intense than the VBME (a variational
method) but guarantees that exact samples from the target density are
(asymptotically) produced (Robert 2004). While the VBME does not
guarantee exact samples, only approximate ones (that is, it can only find
a density close to the target), most of the time it is faster than MCMC
methods. Since the VBME is based on optimization, it can more easily
take advantages of stochastic optimization and distributed optimiza-
tion. For these reasons, the VBME is expected to be better suited to
larger data sets than the BME and for scenarios where we want to
quickly explore many models. Also, Blei et al. (2016) point out that
the VBME is preferred when the posterior of a mixture model admits
multiple modes, since MCMC techniques are not an option for this
scenario, even with small data sets.

Finally, we believe that the VBME method, as proposed here, is a
useful addition to the existing arsenal of genome-enabled prediction
models; it is also an alternative to the BMEmodel, since it considerably
reduces implementation time. Additionally, this research opens a new
branch of methodologies for fitting genomic models to genomic data
that need novel methods to take advantage of the huge amount of data
available nowadays. For these reasons, we agree with Ormerod and
Wand (2010), who pointed out that the usefulness of variational ap-
proximations increases as the size of the problem increases, andMonte
Carlo methods such as MCMC start to become untenable. We also
believe that our research contributes significantly to researchers’ un-
derstanding of the VBM, because, in developing the proposed VBME,
we provided all the details of the derivation of the variational posterior
distributions needed to derive the q-specific evidence lower bound for
building the algorithm, and the R scripts for implementing the pro-
posed VBME model. This information gives the scientist the basic
elements needed to develop new models under the variational Bayes
approach. It is also important to point out that we provide all the details
for deriving the full conditionals needed for implementing the BME
model since the proposed model uses Half-t priors that produce non-
informative variance components (Huang and Wand 2013).

Conclusions
In this paper, we propose a new alternative to the BME via variational
Bayes, which we called the VBME model. The proposed method
underestimated the variance components and similar estimates of the
beta coefficientswere found; in terms of prediction accuracy, the VBME
had lower prediction accuracies than the BME. However, according to
our results, the loss in prediction accuracy is compensated for by the
significant gain in implementation time, since the VBME ismuch faster
than the BME. However, it is important to point out that if a very low
tolerancevalue is selected, thegain in termsof implementation speedwill
vanish. For this reason, to take advantage of the proposed VBME, a
reasonable tolerance value should be chosen that guarantees the quality
of the parameter estimates and predictions, as well as a significant
reduction in implementation time.

We also believe that the proposed model should be tested on many
real data sets to obtain more empirical evidence of its performance; this
evidencewould allowus to extend the proposed variational Bayesmodel
to take into account nonnormal responses (binary, Poisson, negative
binomial, etc.), for multiple traits and multiple-environment models
(Montesinos-López et al. 2016), which would enable scientists to make
a more precise selection of candidate genotypes at early crop stages.
Also, models that avoid the product density restriction can be pro-
posed. Finally, the proposed VBME model is a useful addition to the
existing arsenal of genome-enabled prediction models, and an excellent
alternative to the BMEmodel, since it produces competitive predictions
at a lower computational cost.
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APPENDIX A

DERIVATION OF FULL CONDITIONAL AND VARIATIONAL POSTERIOR DISTRIBUTIONS FOR THE BME AND VBME
MODELS
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Variational posterior for b1
Defining h1¼XbþZ2b2, the variational posterior distribution of b1 is given as
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Variational posterior for ab1
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Variational posterior for s2
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Variational posterior for s2
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APPENDIX B

EXPRESSION OF THE LOWER BOUND OF THE LOG LIKELIHOOD FOR THE VARIATIONAL BAYES MODEL
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APPENDIX C

ALTERNATIVE VERSION OF THE ALGORITHM FOR IMPLEMENTING THE VBME
For the VBME algorithm given here is an alternative version that ignores the priors of the components Bqðs2

b
Þ; BqðabÞ since the variance

component s2
b was fixed. Also, the components Bqðab1Þ, Bqðab2Þ; BqðaeÞ were ignored since the components nb1mqð 1

ab1
Þ, nb2mqð1=ab2Þ and nemqð 1

ae
Þ

were replaced by the hyperparameters Sb1, Sb2 and Sbe. To provide informative priors for these parameters, you can use
Sb1=0.25*var(y)*ðnb1þ1Þ, Sb2=0.25*var(y)*ðnb2þ1Þ and Se= 0.5*var(y)*ðneþ1Þ.
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Initialize: mqðbÞ ¼ 0, mqðb1Þ ¼ 0, mqðb2Þ¼0, Σqðb1Þ¼IJ , s2
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until the change in the lower bound, log p
�
ðy; qÞ; between iterations is less than a tolerance value specified a priori. In this case, the corresponding

logðp
�
ðy; qÞÞ has the following analytical expression:
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APPENDIX D

R CODE FOR IMPLEMENTING THE VBME MODEL
#####Set the working directory##################################################
rm(list=ls())
setwd(“C:\\Variationa Bayes Version\\VarBayes.Univariate”)
####Data###########################
load(“DATASET1.Wheat_GY.RData”)
Env1=rep(1,599)
Env2=rep(2,599)
Env3=rep(3,599)
Env4=rep(4,599)
Entry=c(1:599)
Env.All=c(Env1,Env2,Env3,Env4)
Entry.All=c(Entry,Entry,Entry,Entry)
YY.N=matrix(Y,ncol=1,byrow=F)
Hybrids=cbind(Env.All,Entry.All,c(YY.N+0))
colnames(Hybrids)=c(“Env”,”Entry”,”y”)
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Hyb=as.data.frame(Hybrids)
##########Matrix of incidences#####################
X=model.matrix(�0+as.factor(Hyb$Env))
Z1=model.matrix(�0+as.factor(Hyb$Entry))
svda,-svd(G)
D,-diag(svda$d)
d_Inv=(1/svda$d)
D_Inv,-diag(d_Inv)
U,-svda$u
tV,-t(svda$v)
LL=U
Z1=Z1%�%LL
Gg=D
Z2=model.matrix(�0+Z1:as.factor(Hyb$Env))
y=Hyb$y
betav=c(colMeans(Y))
tX=t(X)
tZ1=t(Z1)
tZ2=t(Z2)
I=ncol(X)
n=nrow(X)
J=ncol(Z1)
S_invB=diag(I)
d2_Inv=rep(d_Inv,I)
SigmaB=Sigmab1=Sigmab2=0.2
Sig.e=0.1
vb0=vb1=vb2=ve=2
data.set,-data.frame(Hyb)
K=1
####Lower bound of the log of the marginal likelihood (logp(y;q�)################
logpyq,- function(y,Mu.q.b0,Mu.q.b1,Mu.q.b2,Sig.q.b0,Sig.q.b1,Sig.q.b2,Bq.Sig.b0,Bq.Sig.b1,Bq.Sig.b2,Bq.Sig.be,X,Z1,Z2,Gg,vb0,vb1,vb2,ve){
n.T=length(y)
J=dim(Gg)[1] #############Number of lines#######################################
I=dim(X)[2] ############Number of environments######################################
K=1 ######Number of replications######################################
Inv.Gg=Gg
###############Expected values##################################################
Mu.q.inv.sig.be=(0.5�(ve+n.T))/Bq.Sig.be
Mu.q.inv.sig.b0=(0.5�(vb0+I))/Bq.Sig.b0
Mu.q.inv.sig.b1=(0.5�(vb1+J))/Bq.Sig.b1
Mu.q.inv.sig.b2=(0.5�(vb2+I�J))/Bq.Sig.b2
Inv.IG.D2=diag(d2_Inv)
tX=t(X)
####Lower bound of the log of the marginal likelihood (logp(y;q�)################
log.lik=0.5�log(det(Sig.q.b0))+0.5�log(det(Sig.q.b1))+0.5�sum(log(diag(Sig.q.b2)))-0.5�(vb1+J)�log(Bq.Sig.b1)-0.5�(vb2+I�J)�log(Bq.Sig.b2)-
0.5�(ve+n.T)�log(Bq.Sig.be)}
YMatrix=matrix(y,ncol=4,byrow=F)
beta_zero=c(apply(YMatrix,2,mean,na.rm=TRUE))
Mu.q.b0.sv=rep(1,I)
Mu.q.b1.sv=rep(0.1,J)
Mu.q.b2.sv=rep(0.1,I�J)
Sig.q.b0.sv=diag(I)
Sig.q.b1.sv=diag(J)
Sig.q.b2.sv=diag(I�J)
Bq.Sig.b0.sv=Bq.Sig.b1.sv=Bq.Sig.b2.sv=Bq.Sig.be.sv=1
vb1=vb2=ve=5
Sb1=0.25�var(y)�(vb1+1)

Volume 7 June 2017 | A Genomic-Enabled Prediction Model | 1851



Sb2=0.25�var(y)�(vb2+1)
Se=var(y-X%�%beta_zero)�(ve+1)
Inv.Gg=D_Inv
n.T=length(y)
tX=t(X)
tZ1=t(Z1)
tZ2=t(Z2)
LL0=logpyq(y=y,Mu.q.b0=Mu.q.b0.sv,Mu.q.b1=Mu.q.b1.sv,Mu.q.b2=Mu.q.b2.sv,Sig.q.b0=Sig.q.b0.sv,Sig.q.b1=Sig.q.b1.sv,Sig.q.b2=Sig.q.b2.
sv,Bq.Sig.b0=Bq.Sig.b0.sv,Bq.Sig.b1=Bq.Sig.b1.sv,Bq.Sig.b2=Bq.Sig.b2.sv,Bq.Sig.be=Bq.Sig.be.sv,X=X,Z1=Z1,Z2=Z2,Gg=D,vb0=vb0,vb1=vb1,
vb2=vb2,ve=ve)
LL0
tolerance,-c(0.00001) # Tolerance to declare convergence
converged=FALSE
maxIter=1000
itnum=0
while(!converged){
itnum=itnum+1;
######Updating the parameters of interest########################################
if (itnum==1) previous.LL0,-LL0
if (itnum.1) previous.LL0,-current.LL0
Mu.q.inv.sig.be=(0.5�(ve+n.T))/(Bq.Sig.be.sv)
Mu.q.inv.sig.b0=1/10000
Sig.q.b0=solve((diag(I))�Mu.q.inv.sig.b0+Mu.q.inv.sig.be�(tX%�%X))
Mu.q.b0=Sig.q.b0%�%(Mu.q.inv.sig.be�(tX%�%(y-Z1%�%Mu.q.b1.sv-Z2%�%Mu.q.b2.sv))+((diag(I))�Mu.q.inv.sig.b0)%�%beta_zero)
Mu.q.inv.sig.b1=(0.5�(vb1+J))/Bq.Sig.b1.sv
DDD1=1/(d_Inv�Mu.q.inv.sig.b1+Mu.q.inv.sig.be�I)
Sig.q.b1=diag(DDD1)
Mu.q.b1=Sig.q.b1%�%(Mu.q.inv.sig.be�tZ1%�%(y-X%�%Mu.q.b0-Z2%�%Mu.q.b2.sv))
Mu.q.inv.sig.b2=(0.5�(vb2+I�J))/Bq.Sig.b2.sv
d22_Inv=c(d2_Inv)
DDD2=1/(d22_Inv�Mu.q.inv.sig.b2+Mu.q.inv.sig.be)
Sig.q.b2=diag(DDD2)
Mu.q.b2=Sig.q.b2%�%(Mu.q.inv.sig.be�tZ2%�%(y-X%�%Mu.q.b0-Z1%�%Mu.q.b1))
Bq.Sig.b1=0.5�(t(Mu.q.b1)%�%(Inv.Gg)%�%Mu.q.b1+sum(diag(Inv.Gg%�%Sig.q.b1)))+Sb1
Inv.IG.D2=d22_Inv
Bq.Sig.b2=0.5�(t(Mu.q.b2)%�%(diag(Inv.IG.D2))%�%Mu.q.b2 +sum(diag(diag(Inv.IG.D2)%�%Sig.q.b2)))+Sb2
ym0=(y-X%�%Mu.q.b0-Z1%�%Mu.q.b1-Z2%�%Mu.q.b2)
Bq.Sig.be=0.5�(t(ym0)%�%(ym0)+sum(diag((tX%�%X)%�%Sig.q.b0))+sum(diag(I�Sig.q.b1))+sum(diag(Sig.q.b2))+Se)
####Lower bound of the log of the marginal likelihood (logp(y;q�)################
log.lik=0.5�log(det(Sig.q.b0))+0.5�(sum(log(DDD1)))+0.5�(sum(log(DDD2)))
-0.5�(vb1+J)�log(Bq.Sig.b1)-0.5�(vb2+I�J)�log(Bq.Sig.b2)-0.5�(ve+n.T)�log(Bq.Sig.be)
current.LL0,-log.lik
relErr,-abs((current.LL0/previous.LL0)-1)
if (itnum.=maxIter) {
converged=TRUE
print(“Warning:maximun number of iterations exceeded.”)
}
if(relErr,tolerance) converged=TRUE
Bq.Sig.be.sv=c(Bq.Sig.be)
Mu.q.b1.sv=Mu.q.b1
Mu.q.b2.sv=Mu.q.b2
Bq.Sig.b1.sv=c(Bq.Sig.b1)
Bq.Sig.b2.sv=c(Bq.Sig.b2)
##############Estimates of variance components##################################
Sig.b1=(Bq.Sig.b1)/(0.5�(vb1+J-2))
Sig.b2=(Bq.Sig.b2)/(0.5�(vb2+I�J-2))
Sig.e=(Bq.Sig.be)/(0.5�(ve+n.T-2))
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cat(’Iteration:’, itnum, ’\n\n’)
cat(’Current LL0: ’,round(current.LL0,3), ’\n’, ’Previous LL0: ’,
round(previous.LL0,3), ’\n’, ’Tolerance: ’, round(relErr,3), ’\n’,
’Converged: ’, converged, ’\n\n’)

}
###########Printing parameter estimates#########################################
Par.estimates=rbind(Mu.q.b0,Sig.b1,Sig.b2,Sig.e)
Par.estimates
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