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Abstract. Intercellular gap junction channels are 
thought to form when oligomers of connexins from one 
cell (connexons) register and pair with connexons from 
a neighboring cell en route to forming tightly packed 
arrays (plaques). In the current study we used the rat 
mammary BICR-M1Rk tumor cell line to examine the 
trafficking, maturation, and kinetics of connexin43 
(Cx43). Cx43 was conclusively shown to reside in the 
Golgi apparatus in addition to sites of cell-cell apposi- 
tion in these cells and in normal rat kidney cells. Brefel- 
din A (BFA) blocked Cx43 trafficking to the surface of 
the mammary cells and also prevented phosphorylation 
of the 42-kD form of Cx43 to 44- and 46-kD species. 
However,  phosphorylation of Cx43 occurred in the 
presence of BFA while it was still a resident of the ER  
or Golgi apparatus yielding a 43-kD form of Cx43. 

Moreover,  the 42- and 43-kD forms of Cx43 trapped in 
the ER/Golgi  compartment  were available for gap 
junction assembly upon the removal of BFA. Mam- 
mary cells t reated with BFA for 6 h lost preexisting gap 
junction "plaques," as well as the 44- and 46-kD forms 
of Cx43 and functional coupling. These events were re- 
versible 1 h after the removal of BFA and not depen- 
dent on protein synthesis. In summary, we provide 
strong evidence that in BICR-M1Rk tumor cells: (a) 
Cx43 is transiently phosphorylated in the ER/Golgi  ap- 
paratus, (b) Cx43 trapped in the ER/Golgi  compart- 
ment is not subject to rapid degradation and is available 
for the assembly of new gap junction channels upon the 
removal of BFA, (c) the rapid turnover of gap junction 
plaques is correlated with the loss of the 44- and 46-kD 
forms of Cx43. 

AP junctions are dynamic structures as evident from 
pulse-chase studies where the constituent of gap 
junctions, connexin, possesses a half-life of 1-3 h 

in primary cultures of neonatal cardiac myocytes (Laird et 
al., 1991), chick lens epithelial cells (Musil et al., 1990a), 
and embryonic mouse hepatocytes (Traub et al., 1987,1989). 
In vivo turnover studies suggest that liver gap junction 
plaques have a half-life of 5 h (Fallon and Goodenough, 
1981) or longer (Yancey et al., 1981). Whether unassem- 
bled connexins are subject to an intracellular turnover rate 
that is distinct from assembled gap junction plaques has 
not been well studied in vivo or in vitro. The life cycle of 
connexins involves the oligomerization of subunits into 
hemichannels (connexons), translocation of assembled 
hemichannels to the cell surface, intercellular pairing of 
connexons, and channel clustering to form morphologi- 
cally identifiable gap junction plaques. Removal of gap 
junction plaques from the cell surface has been proposed 
to entail the internalization of the entire junctional corn- 
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plex as a double membrane annular junction that is tar- 
geted to lysosomes for degradation (Naus et al., 1993). Lit- 
tle is known about folding events, interaction with molecular 
chaperones or posttranslational modifications that con- 
nexins may be subjected to early in the secretory pathway. 
Falk et al. (1994) have suggested that an unidentified fac- 
tor may be necessary to prevent aberrant processing of 
connexins before or during membrane insertion. The stud- 
ies of Musil and Goodenough (1993) have indicated that 
Cx43 oligomerization into connexons occurs after the pro- 
tein leaves the ER. Hence, this integral membrane protein 
must possess intramolecular properties or intermolecular 
associations in the ER that prevent oligomerization or fur- 
ther modifications to Cx43 may be required to induce its 
assembly. It is possible that maintenance of Cx43 as a 
monomer early in the secretory pathway may be linked to 
a transient posttranslational modification. 

It is now well established that at least 4 connexins are 
phosphoproteins (S~iez et al., 1986; Traub et al., 1987, 1989; 
Yancey et al., 1989; Crow et al., 1990; Musil et al., 1990a, b; 
S~ez et al., 1990; Kadle et al., 1991; Laird et al., 1991; Naus 
et al., 1992; Goldberg and Lau, 1993; Jiang et al., 1993; 
Gupta et al., 1994; Laing et al., 1994; Nnamani et al., 1994). 
Unphosphorylated Cx43 matures to slower SDS-polyacryl- 
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amide gel migrating Cx43 isoforms (Crow et al., 1990; Mu- 
sil et al., 1990b; Laird et al., 1991) commonly designated as 
P1 and P2 (Musil et al., 1990b) and the presence of the P2 
Cx43 isoform has been correlated with gap junction plaque 
formation and communication competence (Musil et al., 
1990b; Musil and Goodenough, 1991). Cx43 phosphoryla- 
tion has also been linked to changes in gap junction chan- 
nel unitary conductance (Moreno et al., 1994). Unphospho- 
rylated and P1/P2 phosphorylated forms of Cx43 have been 
identified in many primary cell cultures (Musil et al., 
1990a; Laird et al., 1991) and established cell lines (Crow 
et al., 1990; Musil et al., 1990b; Budunova et al., 1993). It is 
also known that Cx43 is phosphorylated extensively in vivo 
(Laird and Revel, 1990). Hence, the phosphorylation of 
Cx43 has been widely observed and may be linked to both 
gap junction assembly and gating events. 

To elucidate our understanding of Cx43 maturation, traf- 
ficking, and gap junction turnover, we chose to modulate 
protein synthesis and trafficking in a fibroblastoid (BICR- 
M1Rk) cell line from a rat mammary tumor that expresses 
high levels of Cx43. Cx43 is known to be a major connexin 
in normal mammary epithelium and surrounding stromal 
cells (Lee et al., 1992; Wilgenbus et al., 1992). Modulation 
of Cx43 translocation was done by using the fungal antibi- 
otic Brefeldin A (BFA) 1, which is known to block protein 
trafficking within a fused ER/Golgi compartment (Misumi 
et al., 1986; Lippincott-Schwartz et al., 1989, 1991). BFA 
was used to uncouple events leading to gap junction as- 
sembly from those related to gap junction removal. Our 
results provide compelling evidence that: (a) Cx43 is phos- 
phorylated during its transient residency in the ER/Golgi 
compartment; (b) Cx43 that is trapped in the ER/Golgi 
compartment is long lived and upon the removal of BFA, 
available for gap junction assembly; and (c) rapid "plaque" 
turnover is accompanied by the loss of the 44- and 46-kD 
phosphorylated forms of Cx43. 

Materials and Methods 

Cell Culture and Drug Treatments 
The rat BICR-M1Rk cell line was derived from a spontaneously formed 
Marshall rat mammary tumor. This established cell line has been charac- 
terized extensively for cell growth in culture (Rajewsky and Gruneisen, 
1972) and has been the subject of several ionic and dye coupling studies 
(Hulser and Demsey, 1973; Hulser and Webb, 1973; Brummer et al., 
1991). Normal rat kidney (NRK-52E) cells were purchased from Ameri- 
can Type Culture Collection (1571-CRL; Rockville, Maryland). All cells 
were cultured in 60-mm dishes, with or without 12-mm prewashed round 
glass coverslips, containing DME supplemented with 10% fetal calf se- 
rum, 100 units/ml penicillin/streptomycin, and 2 mM glutamine (GIBCO 
BRL, Burlington, ON). The cells were maintained in 5% CO2 at 37°C and 
used 2-3 d after subculturing. In some studies, BICR-MIR k cells were 
treated with 1-2 Ixg/ml BFA (Cedarlane Labs. Ltd., Hornby, ON) for up 
to 10 h and/or 10 p~g/ml cycloheximide (CHX) (Sigma Chem. Co., Saint 
Louis, MO) for up to 6 h. In recovery studies, cells were BFA-treated for 6 h, 
washed, and then allowed to recover for 1 h in the presence or absence of 
CHX. To ensure that CHX was inhibiting all protein synthesis, rat BICR- 
M1Rk cells were 35S-trans labeled in the presence or absence of CHX for 2 h. 
After lysing the cells and resolving the radiolabeled proteins on SDS- 
PAGE in triplicate (as described below), the radioactivity associated with 
each sample was counted. CHX treatment of rat BICR-M1Rk cells was 
found to inhibit protein synthesis by 97.9%. 

1. Abbreviations used in this paper. BFA, Brefeldin A; Cx43, Connexin 43; 
NRK, normal rat kidney; PDI, protein disulfide isomerase. 

Immunofluorescent Labeling, Microinjection, and 
Confocal Microscopy 
Control, BFA- or CHX-treated BICR-M1R k cells grown on glass cover- 
slips were ethanol-fixed, blocked of nonspecific binding sites, and then im- 
munolabeled as described (Laird and Revel, 1990). In single antibody la- 
beling experiments, BICR-M1Rk cells were labeled with 1-5 p,g/ml 
affinity purified anti-Cx43 antibody (CT-360) in the presence or absence 
of the 360-382 COOH-terminal connexin peptide (20 ixg/ml) used to gen- 
erate the antibody. For experiments where cells were labeled for two pro- 
teins, 100-fold diluted monoclonal anti-Cx43 antibody (Ingram & Bell, 
Montreal, PQ) was used followed by goat anti-mouse secondary antibody 
conjugated to fluorescein or Texas red as in single labeling experiments. 
The same cells were then labeled with a 500-fold dilution of anti-MG-160 
serum (resident protein of medial-Golgi cisternae) (Gonatas et al., 1989; 
Croul et al., 1990) followed by goat anti-rabbit antibody conjugated to 
rhodamine or fluorescein. Alternatively, the cells were labeled with a 50- 
fold dilution of anti-protein disulfide isomerase (PDI) (StressGen, Victo- 
ria, British Columbia) followed by anti-MG-160 or anti-Cx43 (CT-360) 
antibodies as described above. In some cases, cells were labeled with anti-  
MG-160 antibody followed by anti-Cx43 antibody directly conjugated to 
rhodamine according to procedures described by Puranam et al. (1993). 

Untreated, 6 h BFA-treated or cells that were allowed to recover from 
BFA treatment for 1 h were pressure microinjected with 10 mM 6-carboxy- 
fluorescein (pH 7.0 made in distilled 1-120; Molecular Probes, Eugene, 
OR) to assay for gap junction coupling. Microinjected dye was allowed to 
spread for 10-20 min before the ceils were fixed in 3.5% formaldehyde in 
PBS for 5 min. Ceils were subsequently viewed on a Zeiss axiophot fluo- 
rescent microscope or a Zeiss LSM 410 confocal microscope (Carl Zeiss, 
Inc., Thornwood, NY). 

Cells immunolabeled for Cx43 or double-labeled for Cx43 and consti- 
tutive proteins of the ER (PDI) or Golgi apparatus (MG-160) were ana- 
lyzed on a Zeiss LSM 10 or 410 inverted confocal microscope. The fluo- 
rescein signal was imaged by exciting the sample with a 488-nm line from 
an argon or an argon/krypton laser and the resulting fluorescence was col- 
lected on a photomultiplier after passage through FT510, FT560, and 
BP515-540 filter sets. Likewise, the same field was excited with a helium/ 
neon (543-nm line) laser and the Texas red or rhodamine signal was im- 
aged on a second photomultiplier after passage through FT510, FT560 
and LP590 filter sets. In addition, a z-dimension correction was made be- 
fore the collection of the red images to compensate for wavelength aber- 
ration. In cases where cells were microinjected with 6-carboxyfluorescein, 
the fluorescent image was overlaid with a transmitted light image to de- 
note the morphology of the cells. All images were archived on an optical 
disk or a Bernoulli multidisk. In some cases, the fluorescein and Texas red 
images were overlaid and pseudo-colored using built-in LSM software. Fi- 
nally, images were printed on a Kodak XLS8300 high resolution (300 
DPI) color printer. 

Metabolic Labeling and Immunoprecipitation 
Near confluent cell cultures were rinsed 3x in methionine-free DME me- 
dia and starved for 30-45 min in the presence or absence of 1-2 ixg/ml 
BFA. Cells were pulsed with 35S-trans label (100 ixCi/ml; ICN Biomedicals 
Inc., Mississauga, ON) for 1.5-2 h in the presence or absence of 1-2 ~g/ml 
BFA. In some cases, cells were rinsed 3x  and chased for 1-7 h in 2 mM 
methionine supplemented medium with or without BFA. Radiolabeled 
cells were rinsed 3x  in cold PBS and lysed with 1.1 ml of cold RIPA cell 
lysis buffer supplemented with 2 mM PMSP, 2 mM sodium orthovana- 
date, 100 mM NaF, 5 ~g/ml aprotinin, and 1-10 ixM leupeptin for 5-10 
min on ice. Cells were scraped and lysates were centrifuged at 40,000 g for 
50 min. 

The lysates were immunoprecipitated with 5 ixl of immune serum 
raised against the amino terminus (AT-2) of Cx43 (Yancey et al., 1989; 
Laird et al., 1991) or 10-30 txg/ml of affinity-purified antibody (CT-360) 
specific for the carboxy terminus of Cx43 (Laird et al., 1991) overnight at 
4°C with gentle agitation. Protein A-agarose beads (100 ~zl) (Inter Med- 
ico, ON) were added and left under gentle agitation for 1 h at 4°C. The 
beads were collected by gentle centrifugation and washed 3x with Wash 
Buffer I (0.5% Tween-20, 50 mM Tris, pH 7.5, 150 mM NaCI, and 0.1 mM 
EDTA) and 3× with Wash Buffer II (0.5% Tween-20, 100 mM Tris, pH 
7.5,200 mM NaC1, and 2 M urea). After a final wash with distilled water, 
the beads were solubilized in Laemmli sample buffer (4% SDS, 10% 2-mer- 
captoethanol, 0.010% bromophenol blue, and 60 mM Tris, pH 6.8) for 15 
min at room temperature or boiled for 5 min. Finally, the samples were 
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resolved on a 10% SDS-polyacrylamide gel (Laemmli, 1970) with a 
bisacrylamide/acrylamide ratio of 0.4:30. Gels containing 3SS-labeled pro- 
teins were treated with fluorophor (En3hance; Du Pont Co., Wilmington, 
DE) before drying. In some cases, immunoprecipitated Cx43 was quanti- 
fied by exposing to a Phosphorimager overnight (Molecular Dynamics, 
Sunnyvale, CA). 

Alkaline Phosphatase Treatments 
To examine phosphorylation events, cell lysates were dialyzed in two 
changes of low detergent buffer, (100 mM Tris-C1, pH 8.0, 40 mM NaC1, 
1 mM MgCI2, and 0.1% SDS) overnight at 4°C. Molecular biology grade 
calf alkaline phosphatase (100 units; Boehringer Marmheim, Laval, PQ) 
was added to equal amounts of cell lysates in the presence or absence of 4 
mg/ml sodium orthovanadate and digestion was for 4-8 h at 4°C with gen- 
tle agitation. Finally, alkaline phosphatase treated cell lysates and controls 
were immunoprecipitated as described above. 

Western Immunoblotting 
Untreated or drug-treated BICR-M1R k cells grown to 70-90% confluency 
in 75-cm 2 flasks were rinsed several times and scraped into 10 ml of PBS. 
The cells were pelleted in a clinical centrifuge and sonicated in 800 Ixl of 
modified Laemmli sample buffer containing 0.062 M Tris, pH 6.8, 10% 
glycerol, 4% SDS, 0.01% bromophenol blue, 10% 2-mercaptoethanol, 2 
mM PMSF, 1 ~g/ml leupeptin, 10 ~.g/ml aprotinin, 2 mM EDTA, 50 mM 
NaF, and 500 um NaVO4 as described by Lampe (1994). Samples were re- 
solved on a 10% polyacrylamide gel as described above. Resolved pro- 
teins were transferred to nitrocellulose paper in transfer buffer (0.19 M 
glycine, 0.025 M Tris, 0.1% SDS, 20% methanol) for 40 min at 75 V. 

Nitrocellulose papers were blocked of nonspecific binding by incubat- 
ing 2 h or overnight in PBS containing 5% powdered milk. Blots were in- 
cubated with anti-Cx43 antibody (CT-360, 1 i~g/ml) for 1 h and washed 6 
times in 0.15 M NaCI, 1 mM EDTA, 1 mM NAN3, 0.05% Tween, and 20 
mM Tris-acetate, pH 7.4. Finally, the blots were incubated in 125I-goat 
anti-rabbit IgG (130,000 cpm/ml; ICN, Mississauga, Ontario) for 1-2 h, 
washed as before, air dried and exposed either to Amersham Hyperfilm- 
MP with an intensifying screen or a Phosphorimager. 

Results 

BICR-M1Rk Cells Express High Levels of Endogenous 
Connexin43 and Are Well Coupled 

Rat BICR-M1R k cells are fibroblastoid in nature and 
grow equally well on glass or plastic with a doubling time 
of ,'-d4 h (Rajewsky and Gruneisen, 1972). The distribu- 
tion pattern of the endogenous gap junction protein, con- 
nexin43 (Cx43) (Beyer et al., 1987), was determined by im- 
munofluorescent labeling with a site-directed anti-Cx43 
antibody (CT-360) (Laird and Revel, 1990) in conjunction 
with confocal microscopic imaging. Punctate staining was 
observed between apposing cell membranes (arrowheads) 
and at paranuclear locations (Fig. 1 A, arrows). In the 
presence of synthetic peptide used to generate the anti- 
body (amino acid segment 360-382) no labeling was ob- 
served (Fig. I B). Microinjection of 6-carboxyfluorescein 
(molecular weight 376) was used to show that BICR- 
M1R k cells are well coupled as dye spread extensively to 
1st, 2nd, and 3rd order cells (Fig. 1 C). 

Connexin43 in the Golgi Apparatus 

The identity of the Cx43-positive intracellular paranuclear 
compartment was determined by double immunofluores- 
cent labeling of BICR-M1R k cells with anti-Cx43 anti- 
body (CT-360) and an antibody directed against the me- 
dial-Golgi cisternae (MG-160) (Gonatas et al., 1989; Croul 
et al., 1990). Confocal images of the same field revealed 
that Cx43 (Fig. 2 A) and MG-160 (Fig. 2 B) were colocal- 

Figure 1. Immunolocalization of Cx43 and dye coupling in cul- 
tured BICR-M1Rk cells. Cultured cells were permeabilized and 
immunolabeled with anti-Cx43 antibody (CT-360) followed by 
goat anti-rabbit secondary antibody conjugated to rhodamine 
(A). Note the punctate labeling at sites of cell-cell apposition (ar- 
rowheads) and the paranuclear staining (arrows). N, nucleus. As 
a control, the CT-360 antibody and the peptide used to generate 
the antibody (amino acids 360-382) were coincubated with the 
cells and no immunostaining was observed when images were col- 
lected using similar conditions as in A (B). A BICR-M1Rk cell 
was microinjected with 6-carboxyfluorescein (asterisk) and dye 
was allowed to spread for 15 min before fixation (C). Note that 
dye spread to 1st, 2nd, and 3rd order cells. Bar, 10 lzm. 
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ized to the same paranuclear region indicating an intracel- 
lular pool of Cx43 located in the Golgi apparatus (Fig. 2, A 
and B, arrows). Examination of normal rat kidney (NRK) 
cells double labeled for Cx43 (Fig. 2 C) and MG-160 (Fig. 
2 D) revealed that these cells also contained an intracellu- 
lar pool of Cx43 in the Golgi apparatus. 

Cx43, MG-160 and Protein DisulfMe 
Isomerase Have Similar Distributions in BFA-treated 
BICR-MIRk Cells 

To determine if Cx43 and constitutive markers for ER and 
Golgi compartments had similar distributions in BFA- 
treated cells, B I C R - M I R  k cells were double immunola- 
beled for MG-160 (Fig. 3 A) and PDI (Fig. 3 B) or Cx43 
(Fig. 3 C) and PDI (Fig. 3 D). The effect of BFA on the or- 
ganization of the Golgi apparatus is dramatic as the para- 
nuclear distribution of MG-160 is replaced by reticular- 
like staining pattern throughout the cytoplasm of the cells. 
Consistent with at least partially fused ER and Golgi com- 
partments, MG-160 and PDI showed similar reticular stain- 
ing patterns (Fig. 3, A and B). While Cx43 and PDI also 
had similar intracellular distributions, Cx43 was found 
more widespread throughout the BFA-treated cells that 
included areas not immunostained for PDI. 

Cx43 Is Initially Phosphorylated in the Fused 
ER/Golgi Compartment 

The identity of the protein bands immunoprecipitated 
with anti-Cx43 (CT-360) antibody (Fig. 4, lane a) from 
BICR-M1R k cells was established by digesting control 
cell lysates with alkaline phosphatase. As expected, the 
protein bands between 44 and 46 kD were sensitive to al- 
kaline phosphatase indicating that they represent phospho- 
rylated isoforms of Cx43 (Fig. 4, lane b). When cells were 
metabolically labeled with 35S-trans label in the presence 
of BFA a doublet at 42-43 kD was immunoprecipitated 

Figure 3. Double immunolabeling of BFA-treated BICR-M1Rk 
cells for PDI and MG-160 or Cx43. BICR-M1Rk cells were 
treated with BFA for 6 h, washed and double immunolabeled for 
MG-160 (A) and PDI (B) or for Cx43 (C) and PDI (D). Note that 
MG-160 and PDI have similar reticular staining patterns. While 
Cx43 and PDI appear to have intracellular areas with similar dis- 
tributions, Cx43 is found more widespread in the cells. Bar, 10 Ixm. 

while slower migrating phosphorylated Cx43 isoforms were 
absent (Fig. 4, lane c). Quantitation of these Cx43 protein 
bands revealed that they were present in equal amounts. 
When cell lysates from BFA-treated cells were digested with 
alkaline phosphatase, a protein band at 42 kD remained 
while there was a complete loss of the protein band at 43 kD 
(Fig. 4, lane e), a process inhibited by sodium orthovana- 
date (Fig. 4, lane d). The anti-Cx43 antibody directed against 
the amino terminus of Cx43 also immunoprecipitated a 
Cx43 doublet at 42-43 kD (Fig. 4, lane f) and the 43-kD 
form was found to be sensitive to alkaline phosphatase 
(Fig. 4, lane g). 

Figure 2. Confocal images 
of BICR-M1Rk and NRK 
cells double immunofluores- 
cently labeled for Cx43 and 
MG-160. Permeabilized 
BICR-M1Rk cells were la- 
beled with anti-Cx43 (CT- 
360) directly conjugated to 
rhodamine (A). The same 
cells were indirectly labeled 
for MG-160 (B). Permeabi- 
lized NRK cells were indi- 
rectly double immunolabeled 
for Cx43 (C) and MG-160 
(D). The arrows and arrow- 
heads denote locations 
where Cx43 and MG-160 are 
colocalized. N, nucleus. Bar, 
10 ~m. 
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Figure 4. Inhibition of extensive Cx43 phosphorylation in the 
presence of BFA and the identification of an ER-Golgi phos- 
phorylation event. Control (lanes a and b) and BFA-treated 
(lanes c-g) BICR-M1Rk cells were 35S-trans labeled before im- 
munoprecipitation with anti-Cx43 site-directed antibody (AT-2 
or CT-360). Unnormalized immunoprecipitates were resolved on 
a SDS-polyacrylamide gel and exposed for fluorography or for 
quantitation on a phosphorimager. In control cells, Cx43 isoforms 
between 42 and 46 kD were observed (lane a). In the presence of 
BFA, equally intense 42- and 43-kD forms of Cx43 were ob- 
served and the protein bands above 43 kD were not apparent 
(lanes c and f). When control (lane b) or BFA-treated (lanes e 
and g) cells were lysed and digested with alkaline phosphatase 
before immunoprecipitation, only the 42-kD unphosphorylated 
form of Cx43 remained. In BFA-treated cells, alkaline phosphatase 
was incapable of eliminating the 43-kD protein band in the pres- 
ence of excess sodium orthovanadate (lane d). The sharp protein 
band at ~47 kD in lane b (also Fig. 5 B) was deemed not likely to 
represent Cx43 as it was not consistently immunoprecipitated and 
often seen when immunoprecipitations were done with preim- 
mune serum (Laird et al., 1991). 

BFA Delays the Turnover of Cx43 

The turnover of Cx43 was evaluated in B I C R - M 1 R  k cells 
that were pulsed with 35S-trans label and chased in excess 
methionine (Fig. 5 A). Quantitation of  radiolabeled Cx43 
revealed that nascent Cx43 (42 kD) and its phosphory- 
lated isoforms (44 and 46 kD) had an average half-life of 
~1-1 .5  h. However,  when pulse-chase studies were per- 
formed in the presence of B F A  (Fig. 5 B) little degrada- 
tion of the 42-43-kD doublet was evident for 5 h suggesting 
that Cx43 trapped within the fused ER-Golg i  compart- 
ment is stored and not subjected to degradation. 

Fate of Preexisting Gap Junctions in BFA and 
Cycloheximide-treated Cells 

To examine the spatial distribution of Cx43 upon B F A  and 
cycloheximide treatment, control and drug-treated cells 
were double immunofluorescently labeled for Cx43 and 
MG-160 before analysis by confocal microscopy. In con- 
trol cells, gap junction plaques were frequently observed 
between neighboring cells (Fig. 6 A) and the Golgi exhib- 
ited a paranuclear distribution (Fig. 6 B). When cells were 
treated with B F A  for 6 h, gap junction plaques were not 
identifiable at the cell surface (Fig. 6 D) and Cx43 was found 
distributed in a reticular-like fashion similar to MG-160 
(Fig. 6 E). The rapid clearing of  gap junction plaques from 
the surface of these cells is consistent with gap junction 
plaques having a half-life of ~1.5 h. Unlike BFA-treated 

Figure 5. Turnover of Cx43 in untreated and BFA-treated cells. 
Control (.4) or BFA-treated (B) BICR-MIRk cells were 35S-trans 
labeled before being chased in the presence or absence of BFA 
for 0-7 h. Cx43 was immunoprecipitated from lysates containing 
an equal number of cells using an affinity purified anti-Cx43 anti- 
body (CT-360) and exposed for fluorography or for quantitation 
on a phosphorimager. In control cells (A), the unphosphorylated 
form of Cx43 at 42 kD and the 44- and 46-kD phosphorylated iso- 
forms were observed to have half lives of <2 h. In the presence of 
BFA (B), the doublet of Cx43 at 42-43 kD was seen throughout 
the 7-h chase period. 

cells, B I C R - M 1 R k  cells treated with CHX for 6 h had ob- 
servable gap junctions between many neighboring cells 
(Fig. 6 G) and the Golgi remained stacked near the nucleus 
(Fig. 6 H). The retention of a finite number  of gap junction 
plaques in the presence of  CHX suggests that an intracel- 
lular pool of Cx43 resides within the ER/Golgi  apparatus 
that is able to regenerate a population of  gap junctions 
throughout the 6-h time period or CHX is inhibiting the 
synthesis or action of factors that are necessary for the re- 
moval of gap junction plaques. Combined treatments of  
B F A  and CHX resulted in a notable loss of gap junctions 
from the cell surface (Fig. 6 J) and the disruption of the 
Golgi apparatus (Fig. 6 K). Thus, all the cellular compo- 
nents or factors necessary for internalization of gap junc- 
tions are available and protein synthesis is not  required. 

Kinetics of Gap Junction Assembly and the 
Return of Intercellular Communication Upon the 
Removal of BFA 

When BFA-treated (6 h) B I C R - M 1 R k  cells were microin- 
jected with 6-carboxyfluorescein and incubated for 15 min, 
no dye transfer to neighboring cells was observed (Fig. 7 
A). However,  when BFA-treated (6 h) cells were allowed 
to recover for 1 h in the absence of BFA,  dye was ob- 
served to transfer to first and second order cells (Fig. 7 B) 
indicating that functional gap junction channels had re- 
formed. In multiple dye microinjections into BFA-trea ted  
cells, transfer was either completely blocked or only ob- 
served in a limited number  of 1st order cells. To determine 
if BFA-treated (6 h) B I C R - M 1 R k  cells could assemble 
gap junction plaques and reassemble the Golgi apparatus 
upon the removal of BFA, cells were washed and incu- 
bated in BFA-free  medium for 1 h before being labeled 
for Cx43 and MG-160. Our  results show that the cells re- 
covered from the B F A  treatment as the Golgi apparatus 
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Figure 6. Immunolocalization of Cx43 and MG-160 in control and drug modulated cells. Control (A-C), or cells treated with BFA for 6 h 
(D-F), CHX for 6 h (G-Q, or BFA + CHX for 6 h (J-L) were double labeled for Cx43 and a constituent of the Golgi apparatus, MG- 
160. The same fields of immunolabeled cells were imaged on a confocal microscope for Cx43 (A, D, G, and J) and MG-160 (B, E, H, and 
K) and the images were overlaid and pseudocolored to demonstrate the spatial distribution of both labeling patterns (C, F, / ,  and L). 
The punctate intercellular and paranuclear Cx43 staining seen in control cells (A-C) was eliminated when the cells were treated with 
BFA (D-F). However, in CHX treated cells, the Golgi remained organized around the nucleus and gap junction plaques were often 
found at locations of cell-cell contact (G-/). BFA/CHX-treated cells lost most of their gap junction plaques and the Golgi became dis- 
rupted (J-L). Bar, 10 ixm. 

reassembled  (Fig. 8 B) and numerous  gap junct ion plaques 
were found be tween apposed  cells (Fig. 8 A).  The  assem- 
bly of gap junct ions (Fig. 8 D) or  the reassembly of the 
Golgi  appara tus  (Fig. 8 E) was not  inhibi ted by C H X  over 
the 1-h BFA- recove ry  t ime period.  

Fate of  Total Cellular Cx43 and Its Phosphorylated 
Isoforms in BFA and CHX-treated Cells 

Western blots and phosphorimager  analysis were performed 

to examine the biochemical  changes to Cx43 associated 
with cel l-cel l  uncoupling and loss of gap junct ion plaques 
that was observed in BFA- t rea ted  B I C R - M 1 R k  cells. 
Western blot  analysis revealed a 42-43-kD double t  of 
Cx43 and the extensively phosphory la ted  44- and 46-kD 
forms of Cx43 in unt rea ted  cells (Fig. 9, lane a). Phosphor-  
imager  analysis revealed  that the 42-43-kD forms of Cx43 
const i tuted ~ 6 0 %  of  the total  Cx43 in these cells. When  
the cells were t rea ted  with B F A  for 6 h (Fig. 9, lane b), the 
44- and 46-kD forms of Cx43 were lost and there was an 
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Figure 7. Reversible inhibition of dye coupling in BFA-treated 
cells. BICR-M1Rk cells treated with BFA for 6 h (A) or treated 
with BFA for 6 h and recovered for 1 h (B) were microinjected 
with 6-carboxyfluorescein (asterisk) and dye was allowed to 
spread for 15 min. After fixation, confocal microscopy was used 
to overlay the fluorescent image (green) with the transmitted 
light image (gray) to illustrate the spreading of the dye to neigh- 
boring cells. Bar, 10 Ixm. 

accumulation of the Cx43 doublet at 42 and 43 kD (Fig. 9 
A, inset). As expected, when the cells were treated with 
BFA for only 2 h, there was an increase in the 42-43-kD 
forms of Cx43 and a reduction in Cx43 at 44 and 46 kD 
(Fig. 9, lane g). Cx43 was greatly reduced in BICR-M1Rk 
cells when protein synthesis was inhibited with CHX for 6 h 
(Fig. 9, lane c), however, all forms of Cx43 were clearly 
identifiable. Moreover, cells treated with BFA and CHX 
for 6 h lost the 44- and 46-kD forms of Cx43 while nascent 
Cx43 at 42 kD and immature Cx43 at 43 kD were detect- 
able (Fig. 9, lane d). 

Recovery of Cx43 Phosphorylation Is Independent of 
Protein Synthesis 

In recovery studies, after a 6-h BFA treatment Cx43 ma- 
tured to the 44- and 46-kD phosphorylated forms after a 
recovery period of only 1 h (Fig. 9, lane e). A similar re- 
covery of the more mature forms of Cx43 at 44 and 46 kD 
was seen even in the presence of CHX (Fig. 9, lane f). 

Discussion 

In this study we provide compelling evidence that Cx43 is 
a transient resident of the Golgi apparatus and is initially 
phosphorylated in this compartment or earlier in the ER. 
In addition, we have used BFA to separate the process of 

gap junction assembly from the events that lead to gap 
junction removal and demonstrated that both processes 
are rapid and independent of protein synthesis. Moreover, 
the loss of gap junction plaques at the cell surface in the 
presence of BFA is correlated with the loss of the exten- 
sively phosphorylated 44- and 46-kD forms of Cx43 and 
functional uncoupling of the cells. 

The established rat mammary tumor cell line BICR-  
M1R k was chosen to examine Cx43 trafficking and turn- 
over for the following reasons: (a) these cells are well coupled 
via gap junctions; (b) they express high levels of endoge- 
nous Cx43 with no immunofluorescently detectable con- 
nexin32 or connexin26 (results not shown); (c) mammary 
epithelium in vivo contains Cx43 (Wilgenbus et al., 1992); 
(d) growing cells have identifiable pools of intracellular 
Cx43 in paranuclear locations suggesting that the secre- 
tory and/or degradative pathways are rich in Cx43; (e) sim- 
ilar to most in vitro studies (Musil et al., 1990a, b; Laird et 
al., 1991) Cx43 has a half-life of ~1.5 h in this cell line indi- 
cating that gap junction formation and removal is an active 
process. Double immunofluorescent labeling for Cx43 and 
a constituent of the Golgi apparatus was used for the first 
time to show that a steady-state pool of this nonglycosy- 
lated integral membrane protein resides within the Golgi 
apparatus in vitro. The Golgi protein, MG-160, and Cx43 
were colocalized not only in rat mammary tumor cells but 
also in NRK cells suggesting that both tumor and normal 
rat cells have varying levels of Cx43 in the Golgi appara- 
tus. Primary cultures of cardiomyocytes appear to have a 
low level of Cx43 in the Golgi apparatus as Cx43 could 
only be clearly identified in this compartment when pro- 
tein trafficking was blocked with monensin (Laird et al., 
1993; Puranam et al., 1993). However, in one in vivo study, 
Hendrix et al. (1992) localized Cx43 to the Golgi appara- 
tus in the myometrium of a 21 day pregnant rat. While 
other reports have shown that Cx43 may have a perinu- 
clear distribution (Berthoud et al., 1992; Naus et al., 1992), 
this compartment was not previously defined. Based on 
our results and the recent findings that rat liver Golgi 
membrane fractions contain immunoreactive Cx32 (Rah- 
man et al., 1993) and Golgi membranes from transfected 
BHK cells contain Cx43 and Cx32 (Falk et al., 1994), it is 
reasonable to suggest that other members of the connexin 
family may also transiently reside within the Golgi appara- 
tus. 

During its life cycle Cx43 is subject to posttranslational 
modifications. At present, several forms of Cx43 are 
known to exist that are the result of phosphorylation of 
the nascent protein. The most well characterized of these 
is the unphosphorylated form and two phosphorylated 
species (Musil et al., 1990a, b; Laird et al., 1991), commonly 
referred to as P1 and P2 (Musil et al., 1990a). In addition, a 
novel elevated phosphorylated form of Cx43 has been 
identified in epidermal growth factor-treated T51B rat 
liver epithelial cells (Lau et al., 1992). In all cases the phos- 
phorylated species of Cx43 are retarded in SDS-polyacryl- 
amide gels. Nevertheless, it remains unresolved how many 
phosphate groups are added to Cx43 to generate these 
phosphorylated isoforms. 

In our study we used BFA to impair protein trafficking 
within the ER/Golgi to identify intermediate processing of 
Cx43 that proceeds the maturation of the protein to the 
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Figure 8. Assembly of cell surface gap junction plaques is independent of protein synthesis. Cells were treated with BFA for 6 h and al- 
lowed to recover in the absence (A-C) or presence (D-F) of cycloheximide for 1 h. Permeabilized cells were immunolabeled for Cx43 
(A and D) and MG-160 (B and E) and optical slices of double-labeled cells were overlaid (C and F). Note that gap junction plaques as- 
sembled within 1 h and this process was not inhibited by CHX. Bar, 10 i~m. 

more extensively phosphorylated and well-characterized 
Cx43 isoforms (i.e., P1 and P2). In the presence of BFA, 
high resolution gels revealed a 42--43-kD 35S-trans-labeled 
doublet while the more extensively phosphorylated forms 
of Cx43 were eliminated. Recovery from BFA treatment 
was coordinated with the reappearance of the more highly 
phosphorylated forms of Cx43 similar to that observed by 
Musil and Goodenough (1993) in NRK cells. In fact, the 
43-kD isoform of Cx43 was found to be specifically sensi- 
tive to alkaline phosphatase strongly suggesting that Cx43 
proceeds through a transient phosphorylation state within 
the ER/Golgi complex. Our data suggests that once Cx43 
is initially phosphorylated it is either rapidly subjected to 
more extensive phosphorylation or a substrate for phos- 
phatase activity. The retention of both 42- and 43-kD 
forms of Cx43 in the ER/Golgi suggests that neither form 
of the protein is recognized as being misfolded and sub- 
jected to ER degradation. We provide compelling evidence 
by immunoprecipitating Cx43 with antibodies to the amino 
and carboxy terminal ends of the molecule that the 42-43- 
kD Cx43 doublet represents the full length protein. Fur- 
thermore, the use of two specific site-directed anti-Cx43 an- 
tibodies rules out the likelihood that our results are due to 
the immunoprecipitation of a second member of the con- 
nexin family. 

Upon examination of total Cx43 in Western blots of un- 
treated BICR-M1Rk cells, a doublet at 42-43 kD is 
present but the 43-kD form of the protein is often masked 
by the intensity of the nascent form. Crow et al. (1990) 
first presented data suggesting that a transient posttransla- 
tional modification of Cx43 occurs within 15 min of its bio- 
synthesis in NIH 3T3 fibroblasts. In a previous study we 
used monensin to trap an alkaline-phosphatase sensitive 
intermediate form of Cx43 in primary cultures of cardiac 

myocytes (Laird et al., 1993). Both cardiomyocytes and 
BICR-M1Rk cells, in particular, expressed high levels of 
endogenous Cx43 enabling ER/Golgi posttranslationally 
modified forms of Cx43 to be identified particularly with 
the aid of protein translocation inhibitors. Phosphoryla- 
tion of proteins early in the secretory pathway is not an 
uncommon event. It is known that caseins are phosphory- 
lated in the Golgi apparatus and that the phosphorylation 
of alpha casein can occur in the presence of BFA (Turner 
et al., 1993). Likewise, BFA was used to show that the 
phosphorylation of chromogranin B and secretogranin II 
occurs in the trans-Golgi (Rosa et al., 1992). Moreover, 
Davidson et al. (1992) showed that protein dephosphory- 
lation is essential for vesicular stomatitis virus G protein 
transport from the ER to the Golgi. The role of an early 
Cx43 phosphorylation event in the ER or Golgi apparatus 
is unknown. It is possible that early phosphorylation of 
Cx43 is necessary to facilitate later connexin oligomeriza- 
tion that has been proposed to occur in the trans-Golgi net- 
work (Musil and Goodenough, 1993). It is also possible 
that Cx43 is phosphorylated early in the secretory pathway 
to prevent it from misfolding or being targeted for degra- 
dation before its oligomerization within the Golgi appara- 
tus and trafficking to the cell surface. Future site-directed 
mutagenesis studies may determine the amino acid resi- 
due(s) that is phosphorylated and its functional role. 

While the life cycle of Cx43 includes a transient residency 
in the Golgi apparatus, this protein is generally short-lived 
in BICR-M1Rk cells as pulse-chase experiments show that 
it has a half-life of ~1.5 h. Compared to the over 30 glyco- 
sylated and nonglycosylated plasma membrane proteins 
analyzed in cultured rat liver hepatocytes (tl/2 17-100 h) 
(Chu and Doyle, 1985) and the 35-40 proteins studied 
from plasma membranes of 3T3 fibroblasts and H4-II-E- 
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Figure 9. Western blot and phosphorimager analysis of total 
Cx43 in BFA, CHX and recovered BICR-M1Rk cells. (A) Un- 
treated (lane a), 6 h BFA (lane b), 6 h CHX (lane c), 6 h 
BFA+CHX (lane d), 6 h BFA + 1 h recovery (lane e), 6 h BFA 
+ 1 h recovery in CHX (lane)'), or 2 h BFA (lane g) BICR-M1R k 
cells were lysed in cocktail buffer and subjected to SDS-PAGE. 
After transfer to nitrocellulose, the blots were immunolabeled 
for Cx43 and exposed to hyperfilm. The insert is a Phosphorim- 
age of Cx43 from lanes a and b to clearly illustrate that there are 
protein bands at 42 and 43 kD (arrows) in both untreated and 
BFA-treated cells. (B) The gel in A was exposed to a Phosphor- 
imager and the Cx43 signal from each treatment was collected 
and arbitrary volume counts were divided into two groups (42--43 
kD and 44--46 kD) and recorded. These experiments were re- 
peated and equivalent results were found. 

C3 hepatoma cells (tl/2 > 75 h) (Hare and Taylor, 1991), 
both Cx32 and Cx43 have short half-lives of 1-3 h (Traub 
et al., 1987, 1989; Laird et al., 1991; Musil et al., 1990a, b). 
Thus, gap junction formation and removal is believed to 
be an active process and possibly a means by which cells 
regulate intercellular communication in response to physi- 
ological stimuli. To determine if fully assembled, Cx43- 
containing, gap junction "plaques" have a turnover rate 
that equals the rate observed in pulse-chase studies where 
newly synthesized connexins are followed, the secretory 
pathway was blocked with BFA and the fate of "preexist- 
ing plaques" at the cell surface was followed. BFA treat- 
ment of BICR-M1Rk cells for 6 h resulted in the accumu- 
lation of intracellular Cx43, the elimination of preexisting 
gap junction plaques from the cell surface and the functional 
uncoupling of cells. The accumulated intracellular store of 
Cx43 had a disperse reticular-like pattern very similar to 
that seen when cells were labeled for MG-160 or the ER 
protein, PDI. Colocalization of constituent proteins of the 
ER and Golgi suggests that the ER and Golgi membranes 
are fused after the BFA treatment and that this compart- 
ment is rich in the 42-43-kD species of Cx43. Over the 
course of a 6-h BFA treatment we ascertain from our pulse 

chase data that Cx43 will pass through four half-lives (tl/2 
~1.5 h) that is predicted to leave ~6% of the gap junction 
plaques on the surface. The observation that gap junction 
plaques are immunodetectably cleared from the cell sur- 
face and the cells become uncoupled strongly suggests that 
fully assembled "gap junction plaques" have a half-life of 
,-~1.5 h in these cells comparable to the calculated half-life 
of Cx43 monomer. Moreover, a 6-h BFA treatment re- 
sulted in the loss of the phosphorylated forms of Cx43 at 
44 and 46 kD. Thus, in the presence of BFA, these results 
are consistent with the loss of Cx43 from the cell surface. 
While the possibility that the 42- and 43-kD forms of Cx43 
seen in Western blots represent plasma membrane forms 
of the protein cannot be absolutely ruled out, based on the 
turnover rate of Cx43, this remains unlikely. Moreover, 
BFA has not been reported to stabilize proteins within the 
plasma membrane. 

The presence of Cx43 in the Golgi apparatus suggested 
that B I C R - M I R  k cells may be able to meet their constant 
and continual need to assemble new gap junction plaques 
by accessing this intracellular store of protein. To evaluate 
the size and availability of this intracellular repository of 
Cx43, BICR-M1Rk cells were examined under conditions 
where protein synthesis was inhibited by CHX. Somewhat 
unexpectedly, when BICR-M1Rk cells were treated with 
CHX for 6 h, a population of plaques was observed by im- 
munofluorescence, yet quantitatively there was over an 80% 
reduction in total Cx43 suggesting that immunofluorescent 
evaluations of Cx43 are strictly qualitative. Two possibili- 
ties exist for the partial retention of gap junctions after a 6 h 
CHX treatment; (a) CHX may be inhibiting the internal- 
ization of gap junction plaques; or (b) a sufficiently large 
pool of Cx43 may reside within the ER/Golgi complex that 
is able to continue to regenerate a population of plaques 
throughout the 6 h time course. Extended treatment of 
BICR-M1R k cells with CHX (>6 h) results in a progres- 
sive reduction in gap junction plaques that also correlates 
with altered cell morphology and inevitable cell death (re- 
sults not shown). It is unlikely that the CHX effect can be 
explained by the blockage of gap junction internalization 
as cells treated with BFA and CHX for 6 h lost the major- 
ity of their gap junction plaques. Thus, we conclude that 
the ER/Golgi intracellular pool of Cx43 is unavailable to 
assemble new gap junctions in BFA-treated cells but is 
available for replenishing gap junctions in CHX-treated 
BICR-M1Rk cells throughout the 6-h time course. Like- 
wise, gap junction removal is not dependent on the synthe- 
sis of proteins which may be necessary to facilitate or gov- 
ern the internalization process. We show here that BFA- 
treated cells can indeed assemble gap junctions upon the 
removal of BFA independent of protein synthesis. Immu- 
nostaining of BFA-treated B I C R - M I R  k cells strongly 
suggests that Cx43 accumulates in the diffused ER/Golgi 
membrane compartments during the 6-h treatment and 
upon the removal of the drug there is an abundance of 
Cx43 available to traffick to the cell surface and restore 
gap junction plaques and functional intercellular commu- 
nication. The assembly of gap junction plaques and the 
restoration of functional coupling is further correlated 
with the phosphorylation of Cx43 to the 44- and 46-kD 
forms. Gap junction assembly in the preimplantation em- 
bryo (McLachlin et al., 1986) and reaggregating Novikoff 
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cells (Epstein et al., 1977) has been shown to occur in the 
absence of protein synthesis. Thus, our and other studies 
are consistent with cells maintaining an intracellular store 
of connexins that are readily available for gap junction as- 
sembly. Moreover, De Sousa et al. (1993) used inhibitors 
of protein trafficking to show that the regulated step in 
gap junction plaque formation during compaction was af- 
ter Cx43 translocation. 

In summary, we provide evidence that Cx43 is initially 
phosphorylated in the ER or as it transiently resides in the 
Golgi apparatus. Blockage of the secretory pathway with 
BFA has provided a means of separating the kinetic and 
compartmental events that lead to gap junction formation 
from those related to gap junction plaque loss and func- 
tional uncoupling. Finally, the turnover of both connexins 
and fully assembled gap junction plaques is rapid and the 
loss of intercellular communication and gap junction plaques 
is correlated with the loss of the more highly phosphory- 
lated forms of Cx43. 
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