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Depression is currently the leading cause of disability around the world. We conducted an epigenome-wide association study
(EWAS) in a sample of 58 depression score-discordant monozygotic twin pairs, aiming to detect specific epigenetic variants
potentially related to depression and further integrate with gene expression profile data. Association between the methylation level
of each CpG site and depression score was tested by applying a linear mixed effect model. Weighted gene co-expression network
analysis (WGCNA) was performed for gene expression data. The association of DNA methylation levels of 66 CpG sites with
depression score reached the level of P < 1 × 10−4. These top CpG sites were located at 34 genes, especially PTPRN2, HES5, GATA2,
PRDM7, and KCNIP1. Many ontology enrichments were highlighted, including Notch signaling pathway, Huntington disease, p53
pathway by glucose deprivation, hedgehog signaling pathway, DNA binding, and nucleic acid metabolic process. We detected 19
differentially methylated regions (DMRs), some of which were located at GRIK2, DGKA, and NIPA2. While integrating with gene
expression data, HELZ2, PTPRN2, GATA2, and ZNF624 were differentially expressed. In WGCNA, one specific module was positively
correlated with depression score (r = 0.62, P = 0.002). Some common genes (including BMP2, PRDM7, KCNIP1, and GRIK2) and
enrichment terms (including complement and coagulation cascades pathway, DNA binding, neuron fate specification, glial cell
differentiation, and thyroid gland development) were both identified in methylation analysis and WGCNA. Our study identifies
specific epigenetic variations which are significantly involved in regions, functional genes, biological function, and pathways that
mediate depression disorder.
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INTRODUCTION
Depression is currently the leading cause of disability worldwide
[1], and it is predicted to be one of the three leading causes of
illness by 2030 [2]. Although the heavy social and economic
burden, the potential molecular mechanisms underlying depres-
sion remain poorly understood.
The depression risk is influenced by both genetic and environ-

mental factors. It is suggested that epigenetic modification could
mediate the lasting increasing depression risk resulting from exposure
to adverse life events and provide a mechanistic framework, where
genetic and environmental factors were integrated [3, 4]. DNA
methylation was one important form of epigenetic modification, and
one recent review of 67 studies concluded that there was evidence
for the association of DNA methylation variation with depression risk
[5]. Additionally, candidate gene studies discovered that BDNF and
SLC6A4 hypermethylation were related to depression or major
depressive disorder (MDD) [5]. Even currently some significant
methylation modifications were found to be associated with
depression, however, no consistent results were identified.

Nowadays, using monozygotic twins discordant for a trait or
disease has been proved to be a powerful and popular design for
EWAS in linking the environmental basis of epigenetic modifica-
tion variation to disease status while controlling for individual
genetic component [6, 7]. This design has been extensively used
to explore specific DNA methylation variation associated with
diseases, such as cognitive function decline [8], Alzheimer’s
disease [9], and rheumatoid arthritis [10]. Since the Chinese
population are different from other ethnic populations worldwide
concerning genetic constitutions, environmental exposure, a
multitude of life styles and occupations, the DNA methylation
variation may also differ. However, to our knowledge, yet no
EWAS has been performed to explore the DNA methylation
variation associated with depression using Chinese monozygotic
twin samples.
Accordingly, we aimed to conduct an EWAS to detect DNA CpG

sites associated with depression and further integrate with gene
expression data in a sample of middle and ole-aged Chinese
monozygotic twins.
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MATERIAL AND METHODS
The primary materials and methods of this study were similar to our
previously published studies [8, 11, 12].

Participants
Participants recruitment and collection were described in detail previously
[13]. Participants who suffered from cerebrovascular disorders, stroke,
traumatic brain injury, central nervous system (CNS) tumor, CNS infections,
and alcohol or drug dependence were excluded. Meanwhile, participants
who were unconscious, unable, or unwilling to cooperate were also
dropped. Finally, a total of 58 complete monozygotic twin pairs with a
mean age of 52 years (SD: 7.5) were included in the methylation analysis,
and a subsample consisted of 12 twin pairs were included in the gene
expression analysis. The median of absolute values of intrapair depression
score difference (Δ(depression score)) of all twins was 4 (range: 1–15). The
number of twin pairs for Δ(depression score) ranging in 1–5, 6–10, and
11–15 was 39, 15, and 4 in the methylation analysis and 9, 3, and 0 in the
gene expression analysis, respectively. The median of ratio difference
calculated as |Δ(depression score)|/max(depression score) was 0.41 (range:
0.14–1.00).
After providing written informed consent, all participants took a

standardized questionnaire and underwent a health examination. This
study was approved by the Regional Ethics Committee of the Qingdao CDC
Institutional Review Boards. And the ethical principles of the Helsinki
Declaration were also followed.

Assessment of depression
Depression was assessed by the Geriatric Depression Scale-30 (GDS-30)
[14]. The GDS-30 had 30 items, and participants were asked to answer “yes”
or “no” to the items based on how they felt over the past 1 week. The
higher the total score was, the more severe the participant’s mental
condition was.

Reduced representation bisulfite sequencing (RRBS) analysis
The total DNA was extracted from whole blood and sent to one biomarker
technology corporation in China for the RRBS experiment. Briefly, genomic
DNA was first digested to generate short fragments that contained CpG
dinucleotides at the ends. Then the CpG-rich DNA fragments were
extracted and bisulfite-converted. The cDNA library was constructed and
sequenced to get raw sequencing data, which was then preprocessed and
mapped by Bismark [15] and smoothed by R package BiSeq [16]. The
methylation β-value was transformed to M-value for statistical modeling.
Finally, a total of 551,447 CpG sites were included.

Cell-type composition estimation
Considering total DNA was extracted from whole blood, different
methylation profiles of distinct cell types may lead to false discoveries
[17]. We used ReFACTor method to control for the cell-type composition
effect on DNA methylation in EWAS [18]. ReFACTor is an unsupervised
reference-free method that selects methylation sites, which are informative
about the cell composition in the data to apply to principal component
analysis (PCA) and further uses the top components of PCA to construct
surrogates for the underlying cell-type compositions for adjustment in
statistical analysis. In our study, the top five components were chosen as
covariates to correct the cell-type heterogeneity.

RNA library construction, sequencing, and quality control
Briefly, after total mRNA was extracted from whole blood, the RNA-Seq
library was constructed and sequenced to get the sequenced data. The
data was then mapped to the human genome by TopHat2 [19]. The gene
expression level was estimated by FPKM value through Cufflinks software
[20].

Statistical analysis
Methylation analysis
Epigenome-wide association analysis: The association between the
methylation level of each CpG site and depression score was tested by a
linear mixed effect model, which was equivalent to the regression model
as proposed by Tan et al. [6]. The fixed effect variables of age, gender, and
cell-type composition as well as random effect variable of twin pairing
were adjusted for in the model.

Predicting functions of cis-regulatory regions and ontology
enrichments analysis: The identified epigenome CpG sites (P < 0.05)
were submitted to the Genomic Regions Enrichment of Annotations Tool
(GREAT) online to analyze the functional significance of cis-regulatory
regions and ontology enrichments [21]. The default “basal plus extension”
association rule was chosen. In this rule, a “basal regulatory region”
irrespective of the presence of neighboring genes which extended 5 kb
upstream and 1 kb downstream of the transcription start site (TSS) were
firstly assigned. Then each gene’s regulatory domain was extended up to
the basal regulatory region of the nearest upstream and downstream
genes, but no longer than 1Mb in each direction. FDR < 0.05 was set as
statistically significant in ontology enrichments analysis.

Differentially methylated region (DMR) analysis: Based on the
bisulfite sequencing data and corresponding EWAS results, the DMRs
associated with depression score were detected by using the comb-p
approach [22]. Significant enriched DMRs were evaluated by Stouffer-
Liptak-Kechris (slk) corrected P-value < 0.05.

Gene expression analysis
Weighted gene co-expression network analysis (WGCNA): The
WGCNA package is a comprehensive collection of R functions for
performing various aspects of weighted correlation network analysis
[23, 24]. Briefly, we first established a weighted adjacency matrix. Then the
topological overlap matrix (TOM) was constructed [25–27] and used as
input for hierarchical clustering analysis [28]. Gene modules were detected
by using a dynamic tree cutting algorithm. The module eigengenes (MEs)
were correlated with the trait of depression score. Relationships among
modules were illustrated by a hierarchical clustering dendrogram of MEs
[29], and a heatmap plot of the corresponding eigengene network.
Intramodular hub genes were defined following criteria of depression
score based gene significance (GS) > 0.70 and module membership (MM) >
0.90 with a threshold of P-value < 0.01 [30].
For the genes clustered in the module associated with depression score, GO

enrichment analysis and BIOCARTA, KEGG, and REACTOME pathway enrich-
ment analysis were conducted by the DAVID tool [31, 32]. The modified fisher
exact P-value < 0.05 was considered as enrichment cut-off criterion.

Differentially expressed genes analysis: Five depression cases
(depression score > 10) and eight health controls were included. The
gene expression levels of 46 genes (including the genes where the top
CpG sites and the DMRs were located) between the two groups were
compared by the Wilcoxon rank sum test. The P-value < 0.05 was
considered as statistically significant.

RESULTS
Methylation analysis
A total of 58 monozygotic twin pairs with a mean age of 52 years
(SD: 7.5) were included. The median of depression score was 8
(95% range: 0–21). Most of the clinical indicators were statistically
intrapair correlated, indicating that the co-twin design could be
beneficial (Table 1).

Epigenome-wide association analysis
As shown in the Manhattan plot (Fig. 1) and Table 2, the
association of DNA methylation levels of 66 top CpG sites with
depression score reached the level of P < 1 × 10−4. The numbers
of these top CpG sites located at chr1, chr4, chr16, chr19, chr20,
chr11, chr7, chr6, chr12, and chr17 were 9, 8, 7, 6, 6, 5, 5, 4, 3, and
3, respectively. The strongest association (β = 0.403, P = 2.951 ×
10−8) was detected for the CpG site (chr16: 90,143,728 bp) located
near PRDM7. All of the top CpG sites (P < 1 × 10−4) were located at
34 genes, and there were 5, 4, 4, 4, 3, 3, 3, 3, and 3 CpG sites
located at/near PTPRN2, HES5, PRDM7, RIOK1, FCGBP, HELZ2, HPF1,
LAMA5, and TRIM69, respectively.

Predicting functions of cis-regulatory regions and ontology
enrichments analysis
A total of 15,978 genomic cis-regulatory regions were identified to be
associated with one or more genes. (Supplementary Fig. 1) Many
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important pathway terms probably related to depression were
significantly enriched, such as Notch signaling pathway, nicotine
pharmacodynamics pathway, Huntington disease, p53 pathway by
glucose deprivation, Parkinson disease, and hedgehog signaling
pathways. Moreover, the GO enriched terms mainly highlighted DNA
binding and nucleic acid metabolic process (Table 3).

Differentially methylated region (DMR) analysis
Among the 19 DMRs identified (Fig. 2 and Table 4), the
methylation levels of 14 DMRs (1, 2, 3, 5–12, 15, 17, 19) were
positively and two DMRs (13, 14) negatively correlated with
depression score. But it was difficult to determine the trend of
associations between three DMRs (4, 16, 18) and depression score.
The DMRs were located at/near 19 genes, among which DGKA

and NIPA2 might play an important roles in regulating depression.
Interestingly, several DMRs covered the top CpG sites listed in
Table 2. The DMR1 (located at CAGE1), DMR3 (PTPRN2), and DMR9
(PRDM7) covered 4 CpG sites, and the DMR7 (located at FCGBP)
covered three CpG sites.

Gene expression analysis
There were 12 twin pairs (including seven male pairs) with a
median age of 53 years (95% range: 43–65) and a median
depression score of 7.5 (range: 1–27) included in the gene
expression analysis.

Weighted gene co-expression network analysis (WGCNA)
As Fig. 3 illustrated, genes clustered in pink module (including
3629 genes) were positively correlated with both depression score
(r = 0.62, P = 0.002) and disease status (r = 0.49, P = 0.02). For this

module, neuroactive ligand–receptor interaction, nicotine addic-
tion, calcium signaling pathway, glutam4atergic synapse, and
nervous system development were significantly enriched.
(Table 5) MM and depression score-based GS exhibited a very
significant positive correlation in pink module (r = 0.67, P < 0.001)
(Supplementary Fig. 2), and 27 hub genes were identified
(Supplementary Table 1).

The common genes and enrichment terms between
methylation analysis and WGCNA
The CpG sites (P < 0.05) were annotated to 2808 genes, of which
404 genes were also clustered in the pink module in WGCNA.
Among these common genes, DENND5B, KBTBD13, TENM3, and
BMP2 were also identified as hub genes following our strict
criteria. And genes including PRDM7, KCNIP1, PLEKHH3, GRIK2,
PROB1, PAX3 were where the top CpG sites or DMRs were located.
(Supplementary Table 2)
Many common enrichment terms were also found, including

extra cellular matrix (ECM)-receptor interaction pathway, maturity
onset diabetes of the young pathway, complement and coagula-
tion cascades pathway, DNA binding, neuron fate specification,
glial cell differentiation, thyroid gland development, and cellular
response to hormone stimulus.

Differentially expressed genes related to depression
Genes including HELZ2 (P= 0.013), PTPRN2 (P= 0.040), GATA2
(P= 0.013), ZNF624 (P= 0.019) were found differentially expressed
between the two independent groups.

DISCUSSION
In this study based on monozygotic twins, we detected some
important epigenetic variants underlying depression by EWAS. A
total of 66 interesting CpG sites (P < 1 × 10−4) and 19 DMRs were
identified. Moreover, many crucial GREAT ontology enrichments
were identified. Genes clustered in the pink module were
positively correlated with depression score in WGCNA, and
many genes and enrichment terms were overlapped between
methylation analysis and WGCNA. Finally, four genes were found
to be differentially expressed in depression cases and health
controls.
In EWAS, some genes where the top CpG sites and DMRs were

located (Tables 2 and 4) may play essential roles in regulating
depression status: (1) PTPRN2: DNA methylation variation of
PTPRN2 was found to be associated with mood state disturbances
across [33]; (2) HES5: HES5 could negatively regulate 5-HT1A
receptor gene, which was related to MDD and suicide [34]; (3)
GATA2: It was reported that overexpression of human GATA2
interfered with spine formation and produced depressive
behavior in rats [35]; (4) DGKA: Blood transcript levels of DGKA
differed significantly between participants with MDDs and
nondepressed controls [36]; (5) NIPA2: It was suggested that rare
copy number variants (CNVs) in NIPA2 could increase the risk of
MDD by disrupting regulatory regions [37]; (6) PRDM7: The protein
encoded by this gene was involved in lysine degradation pathway,
and lysine methylation was a physiological post-translational
modification of tau protein which played an important role in
aging and Alzheimer’s disease [38]; (7) KCNIP1: The protein
encoded by this gene was a member of the family of cytosolic
voltage-gated potassium (Kv) channel-interacting proteins
(KCNIPs), and could regulate rapidly inactivating (A-type) currents
and hence neuronal membrane excitability; (8) GRIK2: GRIK2, as
one glutamate-related gene, might be related to risk for mood
disorders [39], and the gene polymorphism of GRIK2 was
associated with depressive symptoms [40]. The other genes have
an unknown function in terms of depression now, whereas they
may also be interesting potential candidates to be future
researched and validated.

Table 1. Basic characteristics of the participants.

Characteristics Values Intrapair
correlation

r P-value

Number of twin pairs 58

Gender, pairs (%)

Male 29 (50) – –

Female 29 (50) – –

Age, mean (SD) (years) 52 (7.5) – –

Depression score, M (P2.5,
P97.5)

8 (0, 21) 0.36 0.006

Cognitive function score, M
(P2.5, P97.5)

21 (8, 30) 0.39* 0.002

BMI, mean (SD), (kg/m2) 25.18 (3.63) 0.63** <0.001

Systolic, M (P2.5, P97.5) (mmHg) 130 (104, 179) 0.44* 0.001

Diastolic, M (P2.5,
P97.5) (mmHg)

82 (62, 100) 0.31* 0.020

SUA, mean (SD) (μmol/L) 302 (95) 0.52** <0.001

GLU, M (P2.5, P97.5) (mmol/L) 5.4 (3.60, 10.86) 0.57** <0.001

CHOL, mean (SD) (mmol/L) 4.97 (1.18) 0.54** <0.001

TG, M (P2.5, P97.5) (mmol/L) 1.19 (0.20, 5.67) 0.58** <0.001

HDLC, M (P2.5, P97.5) (mmol/L) 1.34 (0.66, 2.71) 0.83** <0.001

LDLC, mean (SD) (mmol/L) 2.89 (0.88) 0.45** <0.001

Continuous variables were presented as mean (standard deviation (SD)) or
median (P2.5, P97.5); Categorical variables were presented as numbers with
percentages.
BMI body mass index, CHOL total cholesterol, GLU fasting glucose, HDLC
high-density lipoprotein cholesterol, LDLC low-density lipoprotein choles-
terol, SUA serum uric acid, TG triglyceride.
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As additional validation, we integrated the methylation data
with gene expression data. Genes clustered in the pink module
were positively correlated with depression score in WGCNA. And
some genes were in common with EWAS findings, like BMP2,
PRDM7, KCNIP1, and GRIK2. It was indicated that histone
deacetylases could control neurogenesis in embryonic brain by
inhibiting BMP2/4 signaling [41]. The other three genes had been
discussed above. Additionally, four genes HELZ2, PTPRN2, GATA2,
and ZNF624 were differentially expressed between depression
cases and health controls. PTPRN2 and GATA2 have been discussed
above, whereas the biological of HELZ2 and ZNF624 involved in
depression remained to be studied further.
Two strengths can be noticed in our study. Since the case co-

twin design using monozygotic twins discordant for a trait or
disease was a powerful tool for EWAS [6, 7], our results based on
the twin data would be credible. Meanwhile, considering the

various genetic constitutions, environmental exposures, and a
multitude of life styles in different ethnic populations worldwide,
our findings will specifically help elucidate the underlying
pathogenesis of depression in the Chinese population.
Nevertheless, some limitations of our study should also be

considered. First, the sample size of the present study was
relatively limited due to the challenges of recruiting and
identifying qualified twin pairs. We’ll further validate the top
CpG sites, essential genes, and biological pathways in a
community population. And we’ll also evaluate if the physical
distribution of top CpG sites at different chromosomes is over-
represented in the regulatory domain of one specific biological
pathway. Additionally, we’ll conduct a causal effect analysis
based on one specific biological pathway by integrating data of
genetic variation, epigenetic variation, and environmental
factors. Second, the Townsend deprivation index (TDI) was

Fig. 1 Circular Manhattan plot for epigenome-wide association study of depression. The numbers of chromosome and the −log10 of
P-values for statistical significance are shown. The dots represent the observed CpG sites.
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Table 2. The results of epigenome-wide association study on depression score (P-value <1 × 10−4).

Chromosome Position (bp) Coefficient P-value Ensembl gene ID HGNC symbol

chr16 90,143,728 0.403 2.951E−08 ENSG00000126856 PRDM7

chr16 90,143,720 0.402 4.592E−08 ENSG00000126856 PRDM7

chr16 90,143,734 0.361 4.714E−08 ENSG00000126856 PRDM7

chr1 2,460,431 0.054 4.083E−07 ENSG00000197921 HES5

chr16 90,143,752 0.311 1.753E−06 ENSG00000126856 PRDM7

chr4 170,696,032 0.132 2.809E−06 NA NA

chr4 170,696,037 0.131 3.123E−06 NA NA

chr7 157,794,468 −0.055 3.609E−06 ENSG00000155093 PTPRN2

chr4 170,696,018 0.131 4.001E−06 NA NA

chr4 170,696,053 0.130 4.603E−06 NA NA

chr4 170,696,014 0.131 4.857E−06 ENSG00000056050 HPF1

chr6 7,441,817 0.061 7.444E−06 ENSG00000124784 RIOK1

chr17 16,540,145 −0.274 9.447E−06 ENSG00000197566 ZNF624

chr7 157,378,324 0.052 1.138E−05 ENSG00000155093 PTPRN2

chr4 170,696,062 0.128 1.172E−05 ENSG00000056050 HPF1

chr1 231,296,670 0.089 1.202E−05 ENSG00000119283 TRIM67

chr6 7,441,838 0.065 1.218E−05 ENSG00000124784 RIOK1

chr11 114,480,748 0.041 1.337E−05 ENSG00000137634 NXPE4

chr1 231,296,663 0.089 1.358E−05 ENSG00000167333 TRIM68

chr7 157,378,313 0.046 1.398E−05 ENSG00000155093 PTPRN2

chr1 231,296,660 0.089 1.555E−05 ENSG00000185880 TRIM69

chr11 114,480,768 0.044 1.590E−05 ENSG00000137634 NXPE4

chr11 130,343,943 0.336 1.617E−05 ENSG00000166106 ADAMTS15

chr12 2,903,455 −0.058 1.622E−05 ENSG00000256150 ITFG2-AS1

chr7 157,378,307 0.044 1.699E−05 ENSG00000155093 PTPRN2

chr5 140,045,268 0.026 1.765E−05 ENSG00000120314 WDR55

chr18 18,627,551 −0.040 1.910E−05 ENSG00000124784 ROCK1

chr11 130,343,954 0.333 2.152E-05 ENSG00000166106 ADAMTS15

chr19 999,961 −0.021 2.233E−05 ENSG00000116032 GRIN3B

chr7 157,378,339 0.052 2.274E−05 ENSG00000155093 PTPRN2

chr17 16,540,132 −0.270 2.365E−05 ENSG00000197566 ZNF624

chr1 2,460,466 0.031 2.831E−05 ENSG00000197921 HES5

chr14 59,113,371 0.253 2.918E−05 ENSG00000165617 DACT1

chr20 62,194,220 0.206 3.388E−05 ENSG00000130589 HELZ2

chr6 7,441,846 0.068 3.433E−05 ENSG00000124784 RIOK1

chr1 231,296,648 0.085 3.830E−05 ENSG00000185880 TRIM69

chr1 2,475,177 0.062 4.081E−05 ENSG00000197921 HES5

chr4 170,696,067 0.127 4.084E−05 ENSG00000056050 HPF1

chr1 231,296,641 0.084 5.177E−05 ENSG00000185880 TRIM69

chr3 128,205,418 0.142 5.408E−05 ENSG00000179348 GATA2

chr19 999,937 −0.019 5.557E−05 ENSG00000116032 GRIN3B

chr9a 95,376,152 0.272 5.571E−05 ENSG00000188312 CENPP

ENSG00000127080 IPPK

chr19 40,366,323 0.163 5.666E−05 ENSG00000275395 FCGBP

chr20 60,886,354 0.031 5.690E−05 ENSG00000130702 LAMA5

chr20 60,886,357 0.031 5.912E−05 ENSG00000130702 LAMA5

chr19 40,366,308 0.163 5.921E−05 ENSG00000275395 FCGBP

chr20 62,194,213 0.203 6.059E−05 ENSG00000130589 HELZ2

chr12 2,903,464 −0.062 6.221E−05 ENSG00000256150 ITFG2-AS1

chr6 7,441,850 0.073 6.404E−05 ENSG00000124784 RIOK1

chr22 50,985,408 0.046 6.716E−05 ENSG00000130487 KLHDC7B

chr4 24,423,094 0.040 6.749E−05 ENSG00000109819 PPARGC1A

chr5 170,068,701 0.044 7.195E−05 ENSG00000182132 KCNIP1

chr16 69,969,329 0.249 7.352E−05 ENSG00000198373 WWP2

chr20 60,886,348 0.031 7.884E−05 ENSG00000130702 LAMA5

chr16 56,998,191 0.040 8.090E−05 ENSG00000087237 CETP

chr9a 95,376,137 0.283 8.368E−05 ENSG00000188312 CENPP

ENSG00000127080 IPPK

chr12 133,341,501 0.039 8.446E−05 ENSG00000176915 ANKLE2

chr16 56,998,186 0.038 8.749E−05 ENSG00000087238 CETP

chr20 62,194,202 0.202 8.765E−05 ENSG00000130589 HELZ2

chr14 54,419,615 0.028 8.799E−05 ENSG00000125378 BMP4

chr19 3,823,080 0.041 9.100E−05 ENSG00000105278 ZFR2

chr1 2,460,472 0.028 9.116E−05 ENSG00000197921 HES5
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Table 2 continued

Chromosome Position (bp) Coefficient P-value Ensembl gene ID HGNC symbol

chr19 40,366,341 0.162 9.234E−05 ENSG00000275395 FCGBP

chr10 102,822,675 0.032 9.349E−05 ENSG00000107821 KAZALD1

chr17 40,825,688 0.030 9.473E−05 ENSG00000068137 PLEKHH3

chr11 2,037,042 0.055 9.810E−05 ENSG00000130600 H19

NA not available.
aThe CpG sites annotated to two genes.

Table 3. The top GREAT ontology enrichments for regions potentially related to depression by using binomial test.

Ontology database Term name Binom FDR Q-value Binom region fold enrichment

Pathways

PANTHER Transcription regulation by bZIP transcription factor 1.94E−24 3.18

PANTHER Notch signaling pathway 2.38E−07 1.81

PANTHER Nicotine pharmacodynamics pathway 5.88E−06 1.85

PANTHER Huntington disease 5.95E−06 1.38

PANTHER p53 pathway by glucose deprivation 7.56E−05 2.03

PANTHER ATP synthesis 7.44E−05 10.97

PANTHER Parkinson disease 7.32E−05 1.45

PANTHER Hedgehog signaling pathway 1.72E−04 1.76

PANTHER Muscarinic acetylcholine receptor 1 and 3 signaling pathway 1.31E−03 1.37

PANTHER Adrenaline and noradrenaline biosynthesis 1.21E−02 1.59

BioCyc Histidine degradation III 8.26E−09 7.34

BioCyc Palmitate biosynthesis I (animals) 1.27E−08 3.92

BioCyc Catecholamine biosynthesis 1.09E−08 6.49

BioCyc Adenine and adenosine salvage I 2.15E−07 18.12

BioCyc Aspartate biosynthesis 2.86E−07 8.98

BioCyc Methylglyoxal degradation VI 4.68E−07 3.41

BioCyc Oxidized GTP and dGTP detoxification 6.76E−07 18.79

BioCyc Hypusine biosynthesis 8.58E−07 24.23

BioCyc Serine and glycine biosynthesis 2.47E−06 3.16

BioCyc Dolichyl-diphosphooligosaccharide biosynthesis 2.45E−06 3.50

MSigDB Elongation arrest and recovery 1.03E−43 6.52

MSigDB Formation of tubulin folding intermediates by CCT/TriC 6.80E−30 5.44

MSigDB Notch signaling pathway 5.63E−28 2.85

MSigDB Prefoldin mediated transfer of substrate to CCT/TriC 2.68E−26 4.43

MSigDB Thrombin signaling through proteinase activated receptors (PARs) 3.13E−25 3.45

MSigDB Formation of RNA Pol II elongation complex 3.55E−25 3.64

MSigDB Glucagon signaling in metabolic regulation 1.69E−24 2.84

MSigDB PKC-catalyzed phosphorylation of inhibitory phosphoprotein of myosin phosphatase 2.20E−23 2.67

MSigDB Prostacyclin signaling through prostacyclin receptor 4.70E−22 4.40

MSigDB G alpha (12/13) signaling events 3.12E−20 1.98

GO function

GO-MF DNA binding 1.26E−114 1.36

GO-MF Nucleic acid binding 1.06E−97 1.27

GO-MF Sequence-specific DNA binding transcription factor activity 7.48E−98 1.46

GO-MF Nucleic acid binding transcription factor activity 9.13E−96 1.46

GO-MF Sequence-specific DNA binding 1.57E−90 1.54

GO-MF Organic cyclic compound binding 1.75E−87 1.18

GO-MF Heterocyclic compound binding 5.68E−87 1.18

GO-MF Transcription regulatory region DNA binding 4.84E−58 1.61

GO-MF Regulatory region DNA binding 1.72E−57 1.60

GO-MF Transcription regulatory region sequence-specific DNA binding 1.64E−53 1.85

GO-BP RNA metabolic process 1.71E−89 1.27

GO-BP Gene expression 8.91E−88 1.26

GO-BP RNA biosynthetic process 7.09E−87 1.30

GO-BP Transcription, DNA-dependent 7.90E−86 1.30

GO-BP Regulation of macromolecule biosynthetic process 2.51E−82 1.23

GO-BP Nucleobase-containing compound biosynthetic process 5.60E−82 1.28

GO-BP Regulation of RNA biosynthetic process 1.08E−81 1.24

GO-BP Nucleic acid metabolic process 1.56E−80 1.23

GO-BP Organic cyclic compound biosynthetic process 2.66E−79 1.26

GO-BP Regulation of RNA metabolic process 7.78E−79 1.23

MF molecular function, BP biological process.
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indicated to be associated with depression [42, 43]. However,
we couldn’t add this factor as a covariate in the linear
mixed effects model, because we didn’t investigate the
corresponding information of TDI during the epidemiological

survey. We’ll consider the TDI factor in the validation analysis in
the future.
In summary, we confirm that epigenetic factors are significant in

explaining depression through twin-based analysis. We detected
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Fig. 2 Differential methylation patterns for the identified differentially methylated regions (DMRs). The horizontal axis shows the
chromosome positions with the black point indicating each CpG, and the vertical axis shows the coefficient for the association of each CpG
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Table 4. The results of annotation to significant differentially methylated regions (DMRs) (slk corrected P-value < 0.05).

DMR ID Chromosome Start End Length Stouffer-Liptak-Kechris (slk) corrected P-value Gene symbol Location

1 chr6 7,441,772 7,441,894 11 0.001 CAGE1 Near

2 chr21 10,989,962 10,991,112 59 0.002 TPTE At

3 chr7 157,378,078 157,378,360 13 0.002 PTPRN2 At

4 chr12 132,329,893 132,330,413 18 0.003 MMP17 At

5 chr5 140,045,103 140,045,416 13 0.004 WDR55 At

6 chr12 56,329,618 56,329,905 17 0.004 DGKA At

7 chr19 40,366,276 40,366,427 14 0.008 FCGBP At

8 chr22 50,985,408 50,985,540 15 0.009 KLHDC7B At

9 chr16 90,143,720 90,143,886 11 0.020 PRDM7 At

10 chr15 23,034,971 23,035,423 6 0.021 NIPA2 At

11 chr5 138,729,711 138,730,335 36 0.023 PROB1 At

12 chr1 2,475,075 2,475,337 14 0.024 TNFRSF14-AS1 At

13 chr2 95,539,959 95,540,223 9 0.032 TEKT4 At

14 chr9 37,002,619 37,002,829 24 0.036 PAX5 At

15 chr16 87,901,443 87,901,581 11 0.040 SLC7A5 At

16 chr6 101,850,301 101,850,869 22 0.043 GRIK2 At

17 chr14 54,419,545 54,419,845 16 0.044 BMP4 At

18 chr2 223,163,019 223,163,942 29 0.045 PAX3 At

19 chr1 871,143 871,655 23 0.048 SAMD11 At
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multiple CpG sites, genes, DMRs, and pathways that were
potentially associated with depression. The findings provided an
important clues to further elucidate the pathogenesis of depres-
sion and helped to identify new diagnostic biomarkers and
therapeutic targets for this disease.
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