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Abstract: Graphene oxide (GO) is one of the most studied nanomaterials in many fields, including the
biomedical field. Most of the nanomaterials developed for drug delivery and phototherapies are based
on noncovalent approaches that lead to an unspecific release of physisorbed molecules in complex
biological environments. Therefore, preparing covalently functionalized GO using straightforward
and versatile methods is highly valuable. Phototherapies, including photothermal therapy (PTT)
and photodynamic therapy (PDT), have shown great potential as effective therapeutic approaches
against cancer. To overcome the limits of a single method, the combination of PTT and PDT can lead
to a combined effect with a higher therapeutic efficiency. In this work, we prepare a folic acid (FA)
and chlorin e6 (Ce6) double-functionalized GO for combined targeted PTT/PDT. This conjugate can
penetrate rapidly into cancer cells and macrophages. A combined effect of PTT and PDT is observed,
leading to a higher killing efficiency toward different types of cells involved in cancer and other
diseases. Our work provides a simple protocol to prepare multifunctional platforms for the treatment
of various diseases.

Keywords: Carbon nanomaterials; phototherapy; targeting; chlorin e6; macrophages

1. Introduction

Phototherapies, including photothermal therapy (PTT) and photodynamic therapy
(PDT), have attracted tremendous scientific interest for the treatment of various diseases,
especially cancer, due to their unique advantages, such as minimal invasiveness, limited
side effects, negligible drug resistance and high efficiency [1–4]. PTT requires photothermal
materials to convert the energy of absorbed photons into heat, resulting in a local hyperther-
mia, which leads to the death of cells by triggering necrosis or apoptosis [5,6]. In the case
of PDT, cancer cells are instead killed by the reactive oxygen species (ROS) generated by
photosensitizers, which transfer energy to the adequate oxygen contents in tissues under
light irradiation [3,7,8].

Although many studies have proven the promising potential of individual PDT or
PTT in disease treatment [1,9], there is a growing interest in combining PDT and PTT in a
single system for a combined therapy aiming to improve the therapeutic efficacy [10–12].
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In the case of the single photodynamic treatment, an important therapeutic problem is
that the depletion of tissue oxygen would exacerbate the local hypoxia, decreasing the
efficiency of reactive oxygen species (ROS) generation due to the insufficiency of molecular
oxygen [13–15]. To overcome the hypoxia effect, PDT could be combined with PTT to
improve the delivery of oxygen since the localized hyperthermia can enhance the blood
circulation to the tumor site, leading to an increased oxygen content [16]. In the case of
PTT, a laser with high intensity (normally higher than 0.5 W per cm2) is usually required
to ensure sufficient hyperthermia [17]. However, intense light irradiation might induce
side effects to healthy tissues penetrated by light [18]. By combining with PDT, PTT can
be applied using a lower laser power. Milder hyperthermia can sensitize cells to the
influence of other treatments by improving the cellular uptake of drugs and reducing tissue
hypoxia [10,19,20]. Thus, the combination of PDT and PTT could lead to better therapeutic
efficiency with minimal side effects.

To date, most of the photothermal agents are based on inorganic materials, such as
metal oxides and gold nanoparticles [12,19,21]. However, their low biodegradability and
potential long-term cytotoxicity severely limit their future translation in the clinics [11].
Graphene oxide (GO) is one of the alternative nanomaterials for photothermal therapy
thanks to its biocompatibility and biodegradability [22], high colloidal stability [23] and
good photothermal conversion efficiency [17,24]. GO is the oxidized form of graphene,
consisting of a hexagonal ring-based carbon network with abundant oxygen-containing
functional groups, which provide GO with abundant reactive sites for the loading of
functional molecules through an epoxide ring opening [25], esterification [26] or other
covalent reactions [27,28]. The high surface area associated with the presence of oxygenated
groups allows the loading of molecules, including photosensitizers for PDT [29]. GO was
also used in photothermal therapies against cancer [30–32]. By derivatizing with targeting
ligands and photosensitizers, GO can be used for both PTT and PDT to target cancer cells
for a higher therapeutic effect [33].

Herein, we designed and synthesized a multifunctionalized GO conjugate for cancer
treatment, combining PTT and PDT. A double-functionalized GO containing folic acid (FA)
and chlorin e6 (Ce6) was first prepared. FA has a high affinity toward the folate receptor
(FR) in cancer cells. The FR is overexpressed in several human tumors, including breast,
ovary, lung, kidney cancer and tumor-associated macrophages, while its expression in
normal tissues is low [34,35]. Ce6 was selected as a photosensitizer for the photodynamic
treatment. This molecule can generate singlet oxygen under laser irradiation at 660 nm [36].
Both FA and Ce6 were covalently grafted onto GO through a polyethylene glycol (PEG)
linker. We demonstrated that the GO–FA/Ce6 conjugate had good photothermal properties
and the ability to generate ROS triggered by Ce6 irradiation. This system was able to target
the MCF-7 cancer cell line via ligand–receptor interactions with a good killing efficiency by
PTT and PDT alone. After combining PTT and PDT, a high combined effect was observed,
leading to a better therapeutic outcome.

Moreover, we also extended the use of this nanomaterial against macrophages, which
are potential targets for cancer therapy [37,38] and autoimmune diseases [39–41]. It
is reported that FR is highly overexpressed in tumor-associated macrophages [42] and
inflammation-activated macrophages, such as in rheumatoid arthritis joint, making them a
potential target for anti-inflammatory therapy [43]. For example, FR on RAW 264.7 cells
could specifically recognize FA-conjugated nanomaterials leading to a receptor-mediated
endocytosis [44]. In this study, RAW 264.7 macrophages resulted in being more sensitive to
PTT than PDT. On the other hand, a combined effect was observed on macrophages with a
higher killing efficiency when PTT and PDT were subsequently applied.

This work provides a flexible method for a mild functionalization of the GO surface,
allowing the design of conjugates with a variety of therapeutic molecules and targeting
ligands to tackle and treat various types of diseases. Our robust and controlled function-
alization strategy leads to a higher loading efficiency than the noncovalent method with
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similar or better therapeutic efficiency using a lower amount of photosensitizer, which is
crucial for minimizing side effects during cancer therapy.

2. Materials and Methods
2.1. Synthesis of the Building Blocks, Precursors and Final GO Conjugates
2.1.1. Preparation of GO Suspensions

GO material was prepared by the modified Hummers’ method [45]. Briefly, graphite
was added to H2SO4 with the slow addition of KMnO4 at 10 ◦C while stirring at 200 rpm.
The mixture was kept at 35 ◦C for 2 h and quenched with water, while temperature was
kept under 50 ◦C. H2O2 was slowly added, with continuous stirring, for 30 min at ambient
temperature. The reaction mixture was purified by centrifugation.

All GO suspensions were prepared by sonication in a water bath (20 W, 40 kHz) with
a controlled temperature between 20 ◦C and 30 ◦C.

2.1.2. Synthesis of Boc-PEG10-FA

441 mg (1 mmol) of folic acid and 200 µL of triethylamine (TEA) were dissolved in
5 mL of DMSO by continuous stirring at room temperature for 10 min under argon. The
solution was cooled to 4 ◦C, and EDC·HCl (191 mg, 1 mmol) and NHS (143 mg, 1.2 mmol)
were added, and the mixture was stirred for 24 h. The mixture was dropped to cold DCM
(200 mL), and the precipitate was filtered over a polytetrafluoroethylene (PTFE) Millipore®

membrane with 0.1 µm pore size, obtaining a yellowish solid, subsequently used without
further purification. The recovered solid was washed with DCM and dissolved in 5 mL
DMF under argon. The solution was cooled to 4 ◦C, and 644 mg (1 mmol) of Boc-PEG10-
NH2 was added. After stirring for 24 h, the mixture was dropped into cold diethyl ether
with continuous stirring. The diethyl ether was removed by filtration, and the precipi-
tate was washed again with cold diethyl ether to afford a yellowish oily product. The
crude product was purified by silica gel column using acetone/DCM/EtOH/H2O/TEA
= 3/2/1/0.7/0.3 as eluant, to first eliminate the side products and then changing to
acetone/DCM/EtOH/H2O/TEA = 2/2/2/0.7/0.3 to obtain the desired product. After dry-
ing in vacuum, a yellowish solid corresponding to Boc-PEG10–FA (310 mg, 28.6% yield) was
obtained. LC-MS (ESI): m/z calculated for C48H77N9O18 1067.54, found 1068.08 [M+H]+.
HPLC: Rt = 9.8 min over 20 min of gradient: 0–100% of A and 100–0% of B in 20 min at
1.2 mL·min−1 flow rate (A = H2O + 0.1% TFA, eluent B = MeCN + 0.08% TFA).

2.1.3. Synthesis of FA–PEG10-NH2

FA–PEG10-NH2 was prepared by mixing 300 mg of Boc-PEG10–FA with 5 mL TFA
stirring for 2 h at room temperature. TFA was removed under reduced pressure. The crude
product was dissolved in ethyl acetate and washed with NaHCO3 solution and water.
The FA–PEG10-NH2 was obtained under reduced pressure and directly used without
further purification.

2.1.4. Preparation of GO–FA

To a suspension of GO (80 mg) in 16 mL of water, 230 mg of Boc-PEG10-NH2 and
230 mg of FA–PEG10-NH2 were added to the solution and bath sonicated for 10 min.
The mixture was then stirred at room temperature for 3 days and filtered over a PTFE
membrane with 0.1 µm pore size. The solid on the membrane was collected, dispersed in
water, sonicated in a water bath and filtered again. This sequence was repeated 3 times
with water. The solid was finally dispersed in water. The suspension was dialyzed in water
for 3 days and lyophilized to obtain GO–FA.

2.1.5. Preparation of GO–FA–CTR

The preparation of GO–FA–CTR was similar to the preparation of GO–FA. To a sus-
pension of GO (20 mg) in 5 mL of water, 125 mg of Boc-PEG10-NH2 were added to the
solution and bath sonicated for 10 min. The mixture was then stirred at room temperature



Pharmaceutics 2022, 14, 1365 4 of 18

for 3 days and filtered over a PTFE filter membrane with 0.1 µm pore size. The solid on the
membrane was collected and washed with water 3 times. The solid was finally dispersed
in water, and the suspension was dialyzed in water for 3 days and lyophilized to obtain
GO–FA–CTR.

2.1.6. Preparation of GO–FA/Ce6

The GO–FA was first deprotected using 4 M HCl in 1,4-dioxane. To a suspension
of GO–FA (60 mg) in 30 mL of 1,4-dioxane sonicated for 10 min, 30 mL of 4 M HCl in
1,4-dioxane was added. The suspension was sonicated for 5 min and stirred for 17 h and
filtered over a PTFE filter membrane with 0.1 µm pore size. The solid on the membrane was
collected and washed with water 3 times. The Boc-deprotected GO–FA was dried under
vacuum. Ce6 (80 mg) was dissolved in 1 mL of DMF and 20 µL of TEA and stirred in an
ice bath for 10 min. EDC·HCl (28.2 mg) was added to the solution, which was stirred for
1 h in the ice bath. Then, 23.1 mg of NHS were added to the mixture, and the solution was
stirred for 17 h at 4 ◦C. The mixture was dropped to a suspension of 20 mg Boc-deprotected
GO–FA in 9 mL of DMF, which was stirred for 17 h. The mixture was filtered over a PTFE
filter membrane with 0.1 µm pore size. The solid on the membrane was collected and
washed with DMF and water 3 times each. The solid was finally dispersed in water, and
the suspension was dialyzed in water for 3 days and lyophilized to obtain GO–FA/Ce6.

2.1.7. Preparation of GO–FA/Ce6–CTR

GO–FA/Ce6–CTR was obtained following the protocol for the preparation of GO–
FA/Ce6 but directly using GO–FA for the reaction without Boc-deprotection. Ce6 (40 mg)
was dissolved in 1 mL of DMF and 10 µL of TEA, and the solution was stirred in an ice
bath for 10 min. EDC·HCl (14.1 mg) was added to the solution, which was stirred for 1 h
in the ice bath. Then, 11.5 mg of NHS were added to the mixture, and the solution was
stirred for 17 h at 4 ◦C. The mixture was dropped into a suspension of 10 mg GO–FA in
4 mL of DMF and stirred for 17 h. The mixture was filtered over a PTFE filter membrane
with 0.1 µm pore size. The solid on the membrane was collected and washed with DMF
and water 3 times each. The solid was finally dispersed in water, and the suspension was
dialyzed in water for 3 days and lyophilized to obtain GO–FA/Ce6–CTR.

3. Results and Discussion
3.1. Synthesis and Characterization of FA/Ce6 Double-Functionalized GO

GO was prepared by the modified Hummers’ method [45,46], with an average lateral
size of about 1 µm. FA and Ce6 were covalently grafted onto the GO surface in three steps
(Scheme 1). The FA derivative, namely FA–PEG10-NH2, was initially prepared by an amida-
tion reaction between FA and a mono-Boc-protected PEG diamine chain (Boc-PEG10-NH2),
followed by the Boc deprotection in an acidic solution. GO was then derivatized using an
equimolar mixture of the two free amine-terminated PEG ligands, namely Boc–PEG10-NH2
and FA–PEG10-NH2, through the nucleophilic opening of the epoxides. The Boc group on
GO was then deprotected, and Ce6 was conjugated to the free amines through an amida-
tion reaction using the coupling reagents 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDC·HCl) and N-hydroxysuccinimide (NHS).

UV-Vis spectroscopy was employed to prove the presence of FA and Ce6 on the GO
surface and to evaluate the loading of Ce6 (Figure 1a). The characteristic absorbance of FA
centered at 290 nm was easily identified in GO–FA. In addition, GO–FA/Ce6 also presents
two new characteristic peaks at 420 nm (Soret band) and at 681 nm (Q band) belonging
to Ce6 with a red shift compared to Ce6 alone, due to the strong interaction between Ce6
and GO [36,47]. Although the UV-Vis spectrum of Ce6 changed after binding to GO, we
could still estimate the loading efficiency using the standard curve of the Ce6 solution
by measuring the Soret band absorption around 420 nm. The amount of Ce6 loaded on
the double-functional GO was estimated to 3 µmol·g−1 (Figure S1). Due to the covalent
functionalization, the loading efficiency of Ce6 was much higher than physisorption by
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mixing GO–FA with the same amount of Ce6 used for the amidation reaction (GO–FA/Ce6–
CTR, see Figure S2 for details). Compared to the covalent reaction, GO–Ce6 also shows
a shift of the Soret band and Q band. For a better calculation of Ce6 adsorbed onto GO–
FA/Ce6–CTR, we doubled the amount of the material for the UV-Vis spectrum. The loading
efficiency was estimated as 0.9 µmol·g−1, which is much lower than GO–FA/Ce6. The
GO–FA/Ce6 showed a stronger fluorescence emission at 650 nm upon excitation at 420 nm,
compared to the signal of Ce6 in the control (GO–FA/Ce6–CTR), proving again that a
higher loading efficiency of Ce6 was achieved through amidation when the same starting
amount of Ce6 was used for preparing the double-functionalized materials (Figure 1b). The
thermogravimetric analysis also confirmed the successful derivatization of GO (Figure S3).
Compared to the pristine GO, a higher weight loss was observed in the region between 200
and 400 ◦C, likely due to the contribution of the thermal degradation of the PEG chains
covalently bound to GO [48].
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Figure 1. (a) UV-Vis spectra of GO–FA/Ce6 and Ce6 alone at different concentrations in water and
(b) fluorescence spectra of GO–FA/Ce6 and GO–FA/Ce6–CTR dispersed in water at 10 µg/mL
(λex = 420 nm).

To further prove the presence of FA, an immunostaining was applied on GO–FA. For
this analysis, two antibodies were used. Copper grids deposited with GO–FA were incu-
bated with an antiFA antibody and a secondary antibody coupled to 10 nm gold nanoparti-
cles, which allowed the identification of the antibody by TEM. Many gold nanoparticles
were observed on the GO surface, revealing that a large quantity of FA was grafted onto GO
(Figure 2a,d). To verify that the gold nanoparticles were not nonspecifically adsorbed onto



Pharmaceutics 2022, 14, 1365 6 of 18

GO, a control sample without FA was prepared by reacting GO with only Boc-PEG10-NH2,
giving GO–FA–CTR (see Supporting Information for details). The immunostaining of GO–
FA–CTR showed only rare gold nanoparticles present on the GO (Figure 2b,e), confirming
that the secondary antibody was bound to the antiFA antibody onto GO–FA sheets rather
than simply nonspecifically physisorbed. Moreover, another control primary antibody, the
hRANK-M331 antibody (a mouse IgG1 monoclonal antibody against the human protein
RANK-M331), was used followed by the incubation with the secondary antibody bearing
gold nanoparticles. The hRANK-M331 antibody does not have affinity for FA, but it can
be recognized by the secondary antibody. TEM showed no gold nanoparticles on GO–FA
incubated with hRANK-M331 and the secondary antibody, proving again the specificity of
the immunostaining using the antiFA antibody (Figure 2c,f).
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3.2. Photothermal Property and ROS Generation Capacity

Following the characterization of the conjugate, we investigated the photothermal
effects induced by a near-infrared laser irradiation at 808 nm of aqueous dispersions of GO,
GO–FA and GO–FA/Ce6 (Figure 3a). Thanks to its broad absorbance profile, GO and its
derivatives are considered good photothermal materials to treat various diseases [49]. After
applying a laser at a power of 2 W·cm−2, the temperature increased immediately at the
concentration of 25 µg·mL−1 of the different materials tested. The temperature increased by
17 ◦C for GO and GO–FA/Ce6 within 10 min, which could induce irreversible damage on
cells [6,17], while GO–FA showed a lower increase in temperature probably because of its
low water dispersibility likely due to the poorly soluble FA and Boc protecting group. The
removal of the Boc moiety and the presence of the additional carboxyl groups of Ce6 on
GO–FA/Ce6 improved the water dispersibility of the final conjugate. The thermal stability
of the conjugates was verified by irradiation at 808 nm for 10 min, confirming that the
structure of Ce6 is not affected (data not shown).
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The generation of ROS by GO–FA/Ce6 was subsequently evaluated by fluorescence
spectroscopy using dihydrorhodamine 123 (DHR123). This dye is not fluorescent, but
after oxidation by ROS, it is transformed into fluorescent rhodamine 123, with a high red
emission [50,51]. As shown in Figure 3b, the fluorescence emission of DHR123 was almost
negligible in water or after the addition of 10 µg·mL−1 of GO–FA/Ce6, proving that the
conjugate did not change the fluorescence of the dye. After applying the irradiation using
a 660 nm laser at the low power of 0.2 W·cm−2 for 10 min, a significant increase in the
fluorescence intensity was observed, due to the generation of ROS by the photosensitizer. In
the meantime, DHR123 alone was stable when exposed to 660 nm laser as the fluorescence
signal did not increase during the irradiation. The ROS generated by Ce6 alone were also
detected by DHR123. Surprisingly, the generation of ROS by GO–FA/Ce6 was slightly
higher, although not significantly different than Ce6 alone at the same concentration
(Figure 3c). The higher ROS production of GO–FA/Ce6 could be due to the additional ROS
generated by GO under exposure to laser light [52,53].

3.3. Cellular Uptake in MCF-7 Cells

In order to exploit the photothermal and photodynamic properties for therapeutic
applications, we evaluated the cellular uptake of GO–FA/Ce6 by MCF-7 cells using confocal
microscopy, by tracking the fluorescence of Ce6 on GO at different time points (0, 4, 8 and
24 h) (Figure 4). CellMask green was applied for better identification of the cell membranes.
GO–FA/Ce6 was already internalized by the MCF-7 cells within 4 h, indicating a quick
internalization of the nanomaterial due to endocytosis mediated by FR on MCF-7 cells. A
higher accumulation of GO–FA/Ce6 was observed in the cytoplasmic compartments 8 h
after the treatment with the nanomaterial. On the basis of these results, we believe that it
is preferential to perform the photothermal and photodynamic experiments within 4 h to
24 h incubation using the double-functional GO–FA/Ce6. We chose 4 h and 8 h incubation
for the subsequent experiments due to the higher fluorescence of Ce6.

To prove the FR-mediated internalization, we performed a competition assay where
the pretreatment of MCF-7 cells with FA led to a reduced cellular uptake of GO–FA/Ce6,
confirming the FR-mediated endocytosis (Figure 5). These results are also consistent with
previous reports [51,54].
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3.4. Combined Effect of PTT and PDT by GO–FA/Ce6 on MCF-7 Cells

The cytotoxicity of GO–FA/Ce6 on MCF-7 cells was also evaluated after incubation
for 4 and 8 h using the MTS assay (Figure 6a). The double-functional GO showed only
a slight, nonsignificant decrease in the cell viability of MCF-7 cells. After 4 h incubation,
the GO conjugate presented no cytotoxicity at the concentrations of 10 and 25 µg·mL−1

with a cell viability around 100%, while a cell viability of 85% was measured when the
concentration increased to 50 µg·mL−1. At 25 µg·mL−1, the cell viability decreased only to
89%. As the standard deviation was rather high, the difference in percentage at the two
time points was not statistically significant. At 50 µg·mL−1, we observed no difference in
cell viability between 4 and 8 h.
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To study the photo-induced cytotoxicity of GO–FA/Ce6 on MCF-7 cells, the cell via-
bility was evaluated by the LIVE/DEAD® assay after irradiation at 660 nm and 808 nm
in the presence of GO–FA/Ce6 at 25 µg·mL−1 (Figure 6b). The LIVE/DEAD® viabil-
ity/cytotoxicity assay is a two-color fluorescence test based on the simultaneous determi-
nation of live and dead cells with two probes measuring the intracellular esterase activity
(calcein AM) and plasma membrane integrity (ethidium homodimer, EthD-1). The cells
were incubated with GO–FA/Ce6 for 4 and 8 h before the cell medium was replaced with
200 µL of fresh cell culture medium. The laser irradiation without nanomaterials showed a
minimal decrease in the cell viability on MCF-7 cells (Figure S4). In contrast, the 808 nm
irradiation of the cells incubated with GO–FA/Ce6 induced a high killing efficiency of
the MCF-7 cells, with a cell viability decrease to 54% (after 4 h incubation) and to 51%
(after 8 h incubation). The photothermal effect not only directly kills the cancer cells, but
hyperthermia would also sensitize cells leading to a higher therapeutic effect of the PDT
treatment [17,55].

The photodynamic treatment exhibited an incubation time-dependent killing efficiency.
After 4 h incubation followed by the 660 nm irradiation, the cell viability decreased to 82%
compared to the nonirradiated group (~100%) (Figure 6b). A lower viability (68%) was
observed in the group with longer incubation time, revealing a higher PDT efficiency. To
study the combined effect, the cytotoxicity of MCF-7 cells after the combined PTT and PDT
treatment using GO–FA/Ce6 was assessed (Figure 6b). For this purpose, the cells were
treated with an 808 nm laser irradiation for PTT followed by 660 nm irradiation for PDT.
Although we observed no combined effect for the cells after 4 h incubation, 67% of the
MCF-7 cells were killed after 8 h incubation, which was much higher than the photothermal
treatment alone (49% of cell death) and photodynamic treatment (32% of cell death). The
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higher photocytotoxicity after the combined treatment at 8 h incubation compared to 4 h
incubation could come from a higher accumulation of the conjugate in the MCF-7 cells.
This result reveals that a combined effect was achieved by using two laser wavelengths in
the presence of GO–FA/Ce6.

Following the quantification of viable cells by the LIVE/DEAD® test, fluorescence
microscopy also confirmed the change of live and dead cell numbers according to the
different treatments (Figure 7). Compared to the control group, the images of all treated
cells showed the presence of a lower number of cells. The combined laser-irradiated cells
after 8 h incubation were far fewer in comparison to the other treated groups, which was
consistent with the cell viability experiment.
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Figure 7. Fluorescence images of calcein AM (green signal from live cells, Ex 495 nm and Em 517 nm)
and EthD-1 (red signal from dead cells, Ex 528 nm and Em 617 nm) double-stained cells after PTT,
PDT and combined phototherapy treatments following the incubation with GO–FA/Ce6 for 4 and
8 h. MCF-7 cells incubated with GO–FA/Ce6 for 4 and 8 h without irradiation (Non-Irr) were used
as control.
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Although it is difficult to make a comparison among the different systems used
for the evaluation of antitumor efficiency using various nanomaterials, the covalently
functionalized GO–FA/Ce6 showed a higher photocytotoxicity at a lower dose compared
to other similar studies using GO–Ce6-based conjugates [29,56,57]. For example, our GO–
FA/Ce6 showed a combined PTT and PDT anticancer efficiency on MCF-7 cells comparable
to the cucurbit[7]uril–NGO–Ce6–oxaliplatin–hyaluronic acid nanocomplex (CNGHOX) on
murine melanoma B16 cells [56]. However, the amount of Ce6 was much higher in CNGHOX

(5 µg·mL−1 vs. 45 ng·mL−1 in our GO–FA/Ce6), alerting to the fact that side effects of
chemotherapy should be considered. In addition, several articles have demonstrated
the combined effect of PTT/PDT by loading Ce6 on GO through physisorption [29,58].
However, the nonspecific release of the adsorbed Ce6 from the GO surface should be
considered in this case, especially in a biological environment rather than in PBS [59]. Even
if noncovalent functionalization strategies could lead to a higher loading efficiency up
to 80% (mCe6/mGO) [29], the Ce6 molecules might be removed after excessive washing.
We demonstrated that the final loading efficiency was lower for Ce6 adsorbed on GO
compared to the covalent conjugation (Figure S2). Comparatively, we obtained a similar
or higher therapeutic efficiency while using a lower dose of conjugate (based on Ce6
equivalent.) [56,60]. Additionally, an inappropriate covalent functionalization may also
lead to lower phototherapeutic efficiency. As an example, the carboxylation of GO is
reported as one strategy to increase the amount of carboxylic acids on GO, which could be
further derivatized via amidation with amines [61]. However, the excessive use of a base
to perform the carboxylation reaction can lead to the deoxygenation of GO, resulting in a
lower loading efficiency [48]. This might be a reason for the application of a high dose of
GO–Ce6 conjugates in some studies to achieve sufficient antitumoral efficiency [62].

3.5. PTT and PDT of GO–FA/Ce6 on Macrophages

As the GO–FA/Ce6 conjugate has shown a good potential in the treatment of cancer
cells by combining PTT and PDT to achieve a synergetic effect, we extended the use of this
nanomaterial to RAW 264.7 macrophages for the potential treatment of cancer [63,64] and
inflammatory diseases [65]. Tumor-associated macrophages can exhibit tumoricidal M1
or regenerative M2 phenotypic activation states. M2 tumor-associated macrophages are
immunosuppressed and promote tumor invasion [38]. Thus, combining immunotherapy
with other therapeutic approaches is a promising strategy against cancer [66].

3.5.1. Cytotoxicity and Cellular Uptake of GO–FA/Ce6 in Macrophages

We first evaluated the cytotoxicity of GO–FA/Ce6 on RAW 264.7 macrophages. The
cytotoxicity of GO–FA/Ce6 was evaluated at different concentrations after incubation for
24 h with the MTS assay (Figure 8a). Overall, the three materials resulted in being relatively
safe on RAW 264.7 macrophages, even at the highest concentration (50 µg·mL−1). The
cell viability decreased to about 90% after exposure to GO or GO–FA at 50 µg·mL−1. The
double-functional GO showed no effects on RAW 264.7 macrophages at all concentrations,
indicating that the RAW 264.7 macrophages have a good tolerance against GO–FA/Ce6.

The cellular uptake of GO–FA/Ce6 by RAW 264.7 macrophages was then evaluated
using confocal microscopy by tracking the fluorescence of Ce6 on GO at different time points
(0, 4, 8 and 24 h) (Figure 9). CellMask green was applied to visualize the cell membranes. As
shown in Figure 9, GO–FA/Ce6 was internalized by the RAW 264.7 macrophages already
after 4 h, displaying a remarkable red emission. After 8 h incubation, the cytoplasm of the
cells was full of red dots. Since we observed a higher internalization at short times (4 and
8 h), we decided to perform the photothermal and photodynamic experiments at these
incubation time points with the GO–FA/Ce6 at the concentration of 25 µg·mL−1, just as for
the MCF-7 cells.
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Figure 8. (a) Cytotoxicity of GO, GO–FA and GO–FA/Ce6 on RAW 264.7 macrophages after 24 h
incubation and (b) comparison of RAW 264.7 cell viability following PTT, PDT and combined
phototherapy after incubation with GO–FA/Ce6 for 4 and 8 h. Untreated RAW 264.7 macrophages
were used as control. The results are expressed as the means ± SD (n ≥ 3). The statistical analyses
were performed by the Student’s t-test. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 compared
with two groups.
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In green, membranes stained with CellMask (excitation channel: 488 nm, emission: 500–550 nm); in
red, GO–FA/Ce6.
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3.5.2. Phototoxicity of GO–FA/Ce6 on Macrophages

To study the photo-induced cytotoxic effect of GO–FA/Ce6 on RAW 264.7 macrophages,
the cell viability was evaluated by the LIVE/DEAD® assay after irradiation using 660 nm
and 808 nm lasers in the presence of GO–FA/Ce6 (Figure 8b). Compared to the results
of cytotoxicity assessed by MTS, the LIVE/DEAD® assay evidenced a cell viability at
around 85% in the group without irradiation, both after 4 h and 8 h incubation. After
applying the 660 nm and 808 nm irradiation, a clear photo-triggered cytotoxicity was
measured (Figure 8b). The 808 nm light induced a high killing effect by GO–FA/Ce6 on
RAW 264.7 macrophages, significantly decreasing the percentage of live cells to 25% (after
4 h incubation) and to 20% (after 8 h incubation), revealing that the macrophages were
more sensitive to the hyperthermia induced by the photothermal effect of GO–FA/Ce6 than
MCF-7 cells. The efficiency of the photodynamic treatment on RAW 264.7 macrophages was
lower than that observed by PTT. After the irradiation with 660 nm laser, the cell viability
decreased to 72%. The low killing efficiency of PDT in RAW cells was probably due to
the high resistance of the macrophages to ROS. The protective mechanisms against the
oxidative burst during the inflammatory process was acquired during differentiation from
monocytes through several antioxidant and cytoprotective pathways. These antioxidant
and cytoprotective processes can help macrophages to reduce the oxidative burden, as well
as the use of ascorbate (vitamin C) and α-tocopherol (vitamin E) [67].

To perform the combined PTT/PDT treatment, the cells were incubated with GO–
FA/Ce6 for 4 and 8 h before the cell medium was replaced with 200 µL of fresh cell culture
medium. The cells were then treated with an 808 nm laser irradiation for PTT followed by
660 nm irradiation for PDT. In both groups, a clear combined effect was observed. After 4 h
incubation, 87% of the macrophages were killed by the two laser-induced cytotoxic effects,
much higher than the photothermal treatment alone (75% of cell death) and photodynamic
treatment (only 28% of cell death). When the incubation time was prolonged to 8 h, an
even higher photocytotoxicity was obtained (94% of cell death). The higher combined
photocytotoxicity can be explained by a higher accumulation of the materials inside the
macrophages over time, which is consistent with the results obtained using the MCF-7 cells.
Endowed with good biocompatibility, GO–FA/Ce6 showed a sufficient killing efficiency of
the macrophages, making this material a conjugate with a higher potential for the treatment
of inflammatory diseases or cancer [68].

The fluorescence staining also proved the high killing efficiency of GO-FA/Ce6 on
macrophages after irradiation (Figure 10). Compared to the control group and the nonirra-
diated group, the images of the cells treated by PTT/PDT displayed fewer cells. The 808 nm
laser-irradiated cells were far fewer in comparison to the PDT and control groups, which
was consistent with the results of the cell viability experiment. The 660 nm laser-irradiated
groups showed a higher cell number compared to the 808 nm laser-irradiated groups, but
still lower than the nonirradiated group. When we applied both PTT and PDT to the RAW
cells, the combined effect was also observed. There were far fewer cells alive in the group
of 4 h incubation, while almost all the cells were dead after 8 h incubation following the
combined laser irradiation (Figure 10).
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517 nm) and EthD-1 (red signal from dead cells, Ex 528 nm and Em 617 nm) double-stained RAW
264.7 macrophages after PTT, PDT and combined phototherapy treatments following the incubation
with GO–FA/Ce6 for 4 and 8 h. RAW 264.7 macrophages incubated with GO–FA/Ce6 for 4 and 8 h
without irradiation (Non-Irr) were used as control.

3.5.3. Cytokine Expression after GO–FA/Ce6 Treatment

Macrophages can contribute to tumor growth and progression by promoting tumor
cell proliferation and invasion, fostering tumor angiogenesis and suppressing antitumor
immune cells. In order to explore the activation profile of the macrophages following their
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incubation with the three materials, we determined the amount of the proinflammatory
cytokines IL6, TNFα and IL-1β in the culture supernatants by ELISA. As shown in Figure S5,
the release of proinflammatory cytokine IL6 was not modified by incubation of RAW
264.7 macrophages with GO, GO–FA and GO–FA/Ce6 at all doses tested in comparison
to the untreated control. The TNFα production induced by GO, GO–FA and GO–FA/Ce6
was similar, even if there was a very slight increase in high concentrations (50 µg·mL−1) of
GO–FA and GO–FA/Ce6, but this small increase was almost negligible, compared with
the untreated control. However, we observed an increase in IL-1β secretion after the
incubation of the macrophages with GO–FA and GO–FA/Ce6. This pro-inflammatory
cytokine was produced by tumoricidal M1 macrophages, and it is reported that IL-1β is
able to inhibit the growth of the primary tumor by impairing the infiltration of innate
immune cell subsets with potential anticancer functions, which would help to improve the
combined phototherapy for cancer treatment [69].

4. Conclusions

A FA/Ce6 double-functionalized GO was successfully prepared and used for in vitro
PTT/PDT combined therapy on MCF-7 cells and RAW 264.7 macrophages. GO–FA/Ce6
exhibited good photothermal properties and a high ROS generation capacity. The nano-
material was able to penetrate rapidly into cancer cells due to FR-mediated endocytosis
and into macrophages. A higher therapeutic efficiency to kill cancer cells was achieved by
combining photothermal and photodynamic therapy compared to the single treatments.
GO–FA/Ce6 also showed the capacity to efficiently eliminate RAW 264.7 macrophages by
PTT/PDT, with a killing efficiency of up to 94% being achieved. This type of cell showed a
higher sensitivity to PTT compared to the cancer cells. These results prove the promising
therapeutic effect of combined PDT and PTT for anticancer and anti-inflammatory therapy
using a multifunctional GO. Moreover, our strategy can be easily extended to the prepara-
tion of various covalently multifunctionalized GO by changing the type of functionalities
with different targeting ligands and therapeutic molecules for disease treatments. This
method can be performed in water or organic solvents without catalyst or heating, which is
appropriate for the conjugation of pH- or temperature-sensitive moieties. Furthermore, the
covalent conjugates are more stable than noncovalent complexes obtained by physisorption,
which is crucial for the application in targeted disease treatments. To explore further the
potential application of our GO–FA/Ce6 conjugate in cancer therapy, the combined PTT
and PDT will be translated into an in vivo model to evaluate the tissue distribution and
tumor eradication in a future study.
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GO–FA/Ce6 performed under N2 atmosphere; Figure S4: Phototoxicity of 808 nm (2 W·cm−2, 10 min)
and 660 nm (0.2 W·cm−2, 10 min) laser irradiation on MCF-7 cells; Figure S5: Cytokine production by
RAW 264.7 macrophages.
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