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Abstract

When trying to identify new potential therapeutic protein targets, access to data and knowl-

edge is increasingly important. In a field where new resources and data sources become

available every day, it is crucial to be able to take a step back and look at the wider picture in

order to identify potential drug targets. While this task is routinely performed by bespoke lit-

erature searches, it is often time-consuming and lacks uniformity when comparing multiple

targets at one time. To address this challenge, we developed TargetDB, a tool that aggre-

gates public information available on given target(s) (links to disease, safety, 3D structures,

ligandability, novelty, etc.) and assembles it in an easy to read output ready for the

researcher to analyze. In addition, we developed a target scoring system based on the

desirable attributes of good therapeutic targets and machine learning classification system

to categorize novel targets as having promising or challenging tractrability. In this manu-

script, we present the methodology used to develop TargetDB as well as test cases.

Introduction

With the rising availability of genome-wide association data (GWAS) [1], proteomics [2,3],

CRISPR [4–6] and RNAi [7], the list of potential protein targets for a given disease is growing

rapidly. In this context, researchers are spoilt for choice when it comes to picking a target for

further investigation, and yet the failure rate in clinical trials suggests that researchers are rou-

tinely failing to select the best targets against which to pitch their drug discovery efforts. To

help them in this task, a plethora of excellent publicly available resources exist, such as UniProt

[8], DrugBank [9], ChEMBL [10], Open Targets [11], Therapeutic Target Database (TTD)

[12], The Drug Gene Interaction database (DGIdb) [13], Target Central Resource Database

(TCRD) [14] and many others [15]. While they all provide valuable information, combining

all this information in a single place for further analysis or prioritization of a list of targets can

become a daunting task. With each data source specializing in different areas such as protein

expression, disease association or pharmacology, researchers are required to collate and navi-

gate through a miriad of cross-references in order to paint an accurate portrait of a potential

target. Although resources such as UniProt, Pharos/TCRD and Open Targets already propose

some aggregation of data, we propose with TargetDB to complement them with additional
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information such as structurally enabled druggability assessment, area-specific scoring for

agile prioritization and a tractability prediction model. More recently, a tool with similar fea-

tures, TractaViewer, has been described in the literature [16]. While this tool allows the user to

classify targets into different bins, it does not provide an area specific score or a general scoring

system that can be used for target prioritization. The bin assignment combined with the scor-

ing system of TargetDB, however, could provide valuable information to researchers seeking

to assess target tractability.

Materials and methods

TargetDB

TargetDB is distributed as a python package and a pre-built SQLite database. The user can also

build the database from scratch using a command-line interface in Linux based systems.

Details on the database and on how to install the package are available in the Supplementary

Information (S1 File) and on the GitHub page (https://github.com/sdecesco/targetDB).

Data sources

Data used in TargetDB comes from a variety of sources. Some data comes from pre-aggre-

gated/processed data from other databases such as UniProt or TCRD. While others come

directly from the source API’s such as Human Protein Atlas for protein expression levels and

Open Targets for disease association. The full list of data sources is available in the Supplemen-

tary Information (S1 File).

Structural assessment of druggability

Fpocket [17] (version 3) was used in order to probe the potential ligandability of queried tar-

gets by assessing the presence of protein pockets amenable for small molecule binding (https://

github.com/Discngine/fpocket). For each target in the database, PDB files were downloaded

locally and only the smallest biological assembly with a chain representing the target of interest

was kept for further analysis. Fpocket was then used with the default parameters and output

files read and incorporated into the TargetDB database.

Tractability model

Data collated in TargetDB is then retrieved and used to generate a series of descriptors that are

used for: 1) calculate the area-specific overall score, 2) as input for machine learning algorithm

in order to predict the target tractability. The final model uses the random forest algorithm

from the python package sci-kit-learn [18]. The building of the model is discussed in the

results and detailed procedures and code, in the form of a jupyter notebook, and training/test-

ing data are available in the GitHub repository.

Results

Once the program and database are downloaded, TargetDB can be run as a Tkinter graphical

interface where different modes can be selected (Fig 1): Single Mode, List Mode and Spider

Plot mode. For each mode, the target(s) of interest need to be specified. In Single Mode, one

file is generated per gene entered and, while nothing prevents the user from using this mode

for a large number of targets, it is best suited for a handful of genes. For a large number of tar-

gets the List Mode is more appropriate, as it produces a single file with several columns that

allow the user to prioritize targets according to many attributes. In Spider Plot mode, a graphi-

cal spider plot representation of a single target landscape is depicted, representing the amount
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of knowledge on a target in different areas. This plot is also included in the Single Mode out-

put. An example of each output is available in the supporting information.

Aggregated information about a specific target

The excel document (S2 File) generated from the database contains several worksheets with

different information regarding the target. The main page contains general information as well

as the spider plot. Detailed sheets provided are listed below with a short description.

Pubmed search. A pubmed search using the gene name as search term is conducted and

the 500 most recent publications are listed in the worksheet.

Diseases. This worksheet contains the protein expression (upregulated or downregulated)

and GWAS associations for the target in the context of different diseases. This data comes

from the Humanmine datasource [19].

Open target association. Disease associations come from the Open Targets platform. The

individual disease, disease areas and association type scores are displayed.

Expression. Protein expression levels come from the Human Protein Atlas portal.

Numerical values can be interpreted as the following: 3 = High level of expression; 2 = Medium

level of expression; 1 = Low level of expression; 0 = Not observed.

Genotypes. List of different mouse genotypes (Knockout, knockdown, etc.) for the target

of interest with their associated observed phenotypes. Green color identifies genotypes with no

abnormal phenotypes observed, while red indicates a genotype with a lethal phenotype

observed.

Isoforms. List of different isoforms with their associated sequence differences.

Variants/Mutants. List of observed variants and mutants along with their sequences and

the effect observed if available.

Structure. This worksheet contains a list of all available structures available in the PDB.

The code, along with the technique, resolution, chain and sequence coverage, is listed together

with information from PDBBind. On top of that, details on domains and their tractability/

druggability coming from DrugEbillity is also displayed.

Pockets. After analysis of potential small molecule binding pockets with fpocket3, the

results are imported into TargetDB and are displayed in this sheet. The ligandability score is

generated directly by the fpocket3 algorithm and we refer the reader to the original paper for

Fig 1. TargetDB modes. These are the available worklflows and recommended usage for the TargetDB output formats.

https://doi.org/10.1371/journal.pone.0232644.g001
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more details about the method used to generate this score [20]. As a general guideline, a

ligandability binding pocket will have a score of over 0.5, up to a maximum of 1. If multiple

pockets are found for a single structure, a complete list of them will be output. If no druggable

pocket is found in the target PDB or no PDB is available for the target, a BLAST search is per-

formed on sequences that have a crystal structure deposited in the PDB. A similar pocket anal-

ysis is then performed, and the result displayed in the output document with the identified

target as well as the sequence similarity between them.

Binding. Bioactivities extracted from ChEMBL contain many different types of data and,

while they all provide valuable information, it was decided to segregate the data into different

sheets: Binding, Dose-response, Percent Inhibition, ADME and Other bioactivities. The Bind-

ing sheet only contains Ki/Kd datapoints. Bioactivities of a given ligand against other targets

were collected and used to calculate a selectivity score (Selectivity Entropy—Shannon Entropy

[21]), the name of the target for which the ligand has the best bioactivity is also displayed. To

provide more information about the ligands, physicochemical properties, as well as the CNS

MPO [22] score, are also provided.

Dose-response/Percent-Inhibition/ADME/Other bioactivities. Similar to the above

mentioned but with different data types.

BindingDB/Commercial compounds. Similar to the above mentioned with BindingDB

as the datasource. The commercial compounds worksheet contains a link to the chemical sup-

pliers of BindingDB ligands for the target.

Prioritize a list of candidate targets

The target List Mode report provides the user with more than a hundred different metrics to

define a potential target (S3 File) such as: number of crystal structures in the PDB, ChEMBL

bioactive compounds, Open Targets disease associations, number of antibodies, human pro-

tein expression levels in tissues, etc. Such an abundance of available fields makes it hard to

quickly identify a target’s profile or else to pick the most relevant parameters for the prioritiza-

tion process. Therefore, we use a set of rules to define area-specific scores that aid target assess-

ment and prioritization.

Area-specific scores for rapid target assessment. When evaluating potential targets,

building an overall picture of a target profile is not an easy task with the information often

fragmented across numerous resources. With TargetDB we have separated information into

eight main categories: Druggability, Structure, Biology, Chemistry, Diseases, Genetics, Infor-

mation and Safety (Fig 2). Each category is scored from zero to one according to a set of rules

(S1 File). Once calculated these scores can be used to generate a spider plot of the target profile

to rapidly identify the strengths and weaknesses of a given target in each category. From the

few examples in Fig 3, it is easy to identify all these targets are well studied and associated with

diseases (neurodegeneration), although only some of these have genetic evidence to support

the observation. While acetylcholine esterase and beta-secretase 1 are highly druggable and

drugged, it is interesting to note that APOE, one of the main risk factors for Alzheimer’s dis-

ease [23], does not score well in the druggability and chemistry area, which is consistent with

the poor druggability of an apolipoprotein. These well-characterized examples illustrate how

this representation allows for a quick interpretation of a target landscape. A guide for the inter-

pretation of these spider plots is available in S1 Fig.

Multi-Parameter Optimization (MPO) score for target ranking. While ranking targets

based on their area score could be used on its own, we also incorporated a customizable MPO

score to allow multiple interpretations of the same data. For example, depending on the user

interest for a structurally enabled target, it may be advantageous to prioritize targets for which
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3D structures are available and with a high druggability score. By simply adjusting the weight-

ings of each category, one can generate a tailored MPO score to facilitate prioritization accord-

ing to key criteria (Fig 4). Likewise, negative weights can be set to deprioritize high ranking

targets and prioritize low ranking targets, this can be useful if, for example, one wants to

deprioritize targets for which there is already significant chemical matter available. The deci-

sion on how to set the different weights relies on user judgment and the specific criteria that

are of interest to them. As a note of caution, while a user might decide to over-prioritize areas

such as structural biology and chemistry it is by no means a guarantee that this will lead to a

target with potential therapeutic applications. On the other hand, if a target is over-prioritized

for strong disease and genetic links, it may be very difficult to develop safe and effective thera-

peutics due to low safety and structural druggability scores. This facility also enables users to

tailor their searches to highlight targets where there is an opportunity for their research exper-

tise to make a larger impact by picking targets for which there is a lack structural information,

lack of chemistry or lack of biology, for example. The detailed methodology on how this MPO

score is calculated is available in S1 File.

Target tractability model. To further assist the decision-making process on target tracta-

bility, it was decided to evaluate whether or not a model of tractability could be built. With the

vast amount of information collected, we might uncover trends that would allow classification

of targets into tractability classes. To do so, several machine learning algorithms were tested,

and their performance evaluated to predict target tractability. In order to train and evaluate

the different models we needed to provide each algorithm with an annotated set of tractable

and intractable targets. While finding a list of tractable targets is relatively easy, identifying a

list of intractable targets proved to be more challenging. We used the DGIdb [13] “clinically

actionable” annotated genes as our tractable list of targets (n = 399), while for the intractable

control we selected a random set of targets (n = 400) from the list of targets present in

Fig 2. Area-specific scores. Different features that were selected for the generation of the area-specific scores.

https://doi.org/10.1371/journal.pone.0232644.g002
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TargetDB from which were removed the clinically actionable (n = 399) and the druggable

genome (n = 6106) list from DGIdb. This combined set was then split into a training set

(n = 560) and testing set (n = 240), each containing the same ratio of tractable/intractable tar-

gets. The complete list of targets used in the training and testing of the model is available in the

S4 File.

After evaluation of multiple algorithms (a detailed procedure is available in S1 File as well

as the Jupyter notebook in S5 File), the Random Forest algorithm was selected for further opti-

mization (Fig 5). This method provides multiple advantages, such as reducing overfitting, the

ability to extract information on features contributing to the decision, and providing an esti-

mate of the confidence of the prediction. This allowed us to narrow down to a set of features

that were truly contributing to the performance of the model. The underlying concept of this

method is simple: the algorithm creates multiple decision trees; for each decision tree it selects

a subset of features from the entire set available; all the decisions from all the trees are then

compiled and a classification based on consensus is made for each target. After feature and

parameter optimization, the model was evaluated against the test set and was able to accurately

predict target tractability 85% of the time. A detailed description of the model performance is

Fig 3. Spider plot for various targets. The Height of each section represents the amount of information available in that area for this target. The color in the safety,

genetic association, chemistry and structural biology are indications of the safety risk, the significance of associations, the quality of the chemical matter and the

druggability of potential binding pockets respectively (Green = better quality/safety Red = poor quality/safety risk).

https://doi.org/10.1371/journal.pone.0232644.g003
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available in S1 File. The output of this model then provides two (related) readouts: Percentage

of trees predicting the target to be tractable and the tractability class of a target (Tractable

[>60%] − Challenging [60%-40%] − Intractable [<40%]).

Discussion

To showcase the application of such a tool, we present here a workflow that was used to priori-

tize potential targets from a list of genes involved in Alzheimer’s diseases provided by the

AMP-AD consortium (https://agora.ampadportal.org). This list consists of 95 targets gener-

ated by 6 different teams using computational analysis of genomic, proteomic and/or metabo-

lomic data from human samples [24,25]. Manual aggregation and collation of information for

95 targets is a time-consuming task but the same results can be achieved in only a few minutes

using TargetDB. Once the program is started the user has only to input the list of targets in the

window and select the run mode (single, list, plot); in our case the “List Mode” was selected.

Once started, the program will take a few minutes to retrieve all the information in the data-

base and another window will open to allow the user to input each area weight necessary to

calculate a custom MPO score. In our case, the following weights were used: Structural infor-

mation (= 100), Structural Druggability (= 150), Chemistry (= -100), Biology (= 100), Diseases

Links (= 100), Genetic Links (= 150), Literature information (= -100), Safety (= 0). The ratio-

nale is that we want to select structurally druggable targets, with no or little chemistry available

and with strong genetic associations. Biological information and link to diseases are parame-

ters to consider but not essential and we wanted to deprioritize targets with large amounts of

Fig 4. MPO weight input panel. Interface to enter the individual weights for the construction of the MPO score.

https://doi.org/10.1371/journal.pone.0232644.g004
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Fig 5. Random forest. Principle behind the Random Forest Machine learning algorithm.

https://doi.org/10.1371/journal.pone.0232644.g005
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literature available. In this instance, the weight for the safety term was set to zero and was not,

therefore, considered in the MPO scoring. Once the weights were entered, the program gener-

ates an excel spreadsheet with the list of targets and the calculated area-specific, tractability

prediction and MPO scores (S6 and S7 Files). This spreadsheet can then be used to further

refine the selection according to the user’s preferences.

The same list was independently examined by scientists for target selection. 4 targets were

selected for further target validation work and early hit identification. When compared to

TargetDB output ranking, 3 of these 4 targets were ranked in the top 10. Assessing these 95 tar-

gets took in total a few months and several meetings; it is a good example of how TargetDB

may be used to accelerate and focus the attention onto the most promising targets, while not

completely discarding the lesser ranked targets for further exploration.

Interestingly, other MPO criteria can be selected depending on the kind of work that is

envisioned. For example, a team mainly interested in solving crystal structures might depriori-

tize targets with a solved crystal structure (Structural information < 0) but still possessing

favourable druggability potential calculated from data for close analogs (Structural

Druggability� 100) and with some therapeutic rationale (Genetic Links, Disease Links�100).

These different criteria lead to a ranking significantly different to the first one (Table 1).

Another application is the prioritization of an entire family of proteins. We showcase here

how TargetDB was used to rapidly provide an overview of the solute carrier (SLC) family of

transporters (Fig 6 and S8 File). In less than an hour, we were able to shortlist potential targets

based on their predicted tractability class, their MPO score, but also on the potential associa-

tion with a disease of interest (Alzheimer’s (AD) or Parkinson’s disease (PD) in this case).

After further assessment of the top targets, several of them are now under investigation within

our institute. This case illustrates how TargetDB can be usefully inserted into the target discov-

ery workflow to expedite as well as standardize the target prioritization process.

Conclusion

In conclusion, we present a tool that allows a researcher to extract/combine and standardize

outputs from many different publically accessible databases and to rapidly compare the poten-

tial of multiple targets. TargetDB is freely available as a python package and detailed installa-

tion instructions are available on the project’s GitHub page as well as in the supporting

Table 1. Different MPO scenario.

SBDD MPO Crystallography MPO

Gene Name MPO Score Gene name MPO Score

GRIN2A 0.8 SGPL1 0.73

PLEC 0.79 ALK 0.69

TGFBR2 0.78 SYNGAP1 0.68

PLCG2 0.78 S1PR1 0.67

CFH 0.78 NEFL 0.67

TGFB1 0.76 CSF1R 0.65

AP2B1 0.76 PLCG2 0.63

MSN 0.74 NR1H4 0.62

ERBB3 0.74 GFAP 0.62

TREM2 0.73 PPARA 0.62

Comparison of the top10 ranked target for two different MPO Score scenarios. Left: Structure based drug design

(SBDD). Right: Crystallography.

https://doi.org/10.1371/journal.pone.0232644.t001
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information. While further improvements and additions are already being considered we

encourage other users to participate in the project by adding their own additional datasources.

Supporting information

S1 File. Additional experimental section. Details of the different methods, datasources and

calculations performed for the creation of TargetDB, discussion on the machine learning

model.

(DOCX)

S2 File. Example of single mode output. Output from the single mode for the gene BACE1.

(XLSX)

S3 File. Description of all the list mode columns.

(XLSX)

S4 File. Genes used in the machine learning model. Excel file with the ID of the genes used

in the machine learning model training and testing.

(XLSX)

S5 File. Jupyter notebook and training data. Archive containing the jupyter notebook used

to generate the tractability model.

(ZIP)

S6 File. AMP-AD nominated list—Medicinal chemistry ranking.

(XLSX)

Fig 6. Target class analysis. Summary of the analysis of the Solute Carrier (SLCs) family of transporters performed using TargetDB in list mode as drug targets for

Alzheimer’s disease (AD) or Parkinson’s disease (PD). The definition of dark proteome is taken from the Target Central Resource Database [26].

https://doi.org/10.1371/journal.pone.0232644.g006
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S7 File. AMP-AD nominated list—Structural biology ranking.

(XLSX)

S8 File. Solute Carrier Protein (SLC) prioritization list.

(XLSX)

S1 Fig. Guide to interpretation of spider plots.

(PNG)
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5. Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer thera-

peutic targets using CRISPR–Cas9 screens. Nature. 2019; 568: 511–516. https://doi.org/10.1038/

s41586-019-1103-9

6. Michaels YS, Barnkob MB, Barbosa H, Baeumler TA, Thompson MK, Andre V, et al. Precise tuning of

gene expression levels in mammalian cells. Nat Commun. 2019; 10: 818. https://doi.org/10.1038/

s41467-019-08777-y PMID: 30778069

7. Mohr S, Bakal C, Perrimon N. Genomic Screening with RNAi: Results and Challenges. Annu Rev Bio-

chem. 2010; 79: 37–64. https://doi.org/10.1146/annurev-biochem-060408-092949 PMID: 20367032

PLOS ONE TargetDB

PLOS ONE | https://doi.org/10.1371/journal.pone.0232644 September 2, 2020 11 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232644.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232644.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232644.s009
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1016/j.ajhg.2017.06.005
http://www.ncbi.nlm.nih.gov/pubmed/28686856
https://doi.org/10.1038/ncomms14864
https://doi.org/10.1038/ncomms14864
http://www.ncbi.nlm.nih.gov/pubmed/28348404
https://doi.org/10.1371/journal.pone.0165973
https://doi.org/10.1371/journal.pone.0165973
http://www.ncbi.nlm.nih.gov/pubmed/27814385
https://doi.org/10.1371/journal.pbio.2006951
http://www.ncbi.nlm.nih.gov/pubmed/30481169
https://doi.org/10.1038/s41586-019-1103-9
https://doi.org/10.1038/s41586-019-1103-9
https://doi.org/10.1038/s41467-019-08777-y
https://doi.org/10.1038/s41467-019-08777-y
http://www.ncbi.nlm.nih.gov/pubmed/30778069
https://doi.org/10.1146/annurev-biochem-060408-092949
http://www.ncbi.nlm.nih.gov/pubmed/20367032
https://doi.org/10.1371/journal.pone.0232644


8. Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, et al. UniProt: the universal pro-

tein knowledgebase. Nucleic Acids Res. 2017; 45: D158–D169. https://doi.org/10.1093/nar/gkw1099

PMID: 27899622

9. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to

the DrugBank database for 2018. Nucleic Acids Res. 2018; 46: D1074–D1082. https://doi.org/10.1093/

nar/gkx1037 PMID: 29126136

10. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The ChEMBL database in

2017. Nucleic Acids Res. 2017; 45: D945–D954. https://doi.org/10.1093/nar/gkw1074 PMID: 27899562

11. Carvalho-Silva D, Pierleoni A, Pignatelli M, Ong C, Fumis L, Karamanis N, et al. Open Targets Platform:

new developments and updates two years on. Nucleic Acids Res. 2019; 47: D1056–D1065. https://doi.

org/10.1093/nar/gky1133 PMID: 30462303

12. Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang Q, et al. Therapeutic target database update 2018:

Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res.

2018; 46: D1121–D1127. https://doi.org/10.1093/nar/gkx1076 PMID: 29140520

13. Cotto KC, Wagner AH, Feng Y-Y, Kiwala S, Coffman AC, Spies G, et al. DGIdb 3.0: a redesign and

expansion of the drug–gene interaction database. Nucleic Acids Res. 2018; 46: D1068–D1073. https://

doi.org/10.1093/nar/gkx1143

14. Nguyen D-T, Mathias S, Bologa C, Brunak S, Fernandez N, Gaulton A, et al. Pharos: Collating protein

information to shed light on the druggable genome. Nucleic Acids Res. 2017; 45: D995–D1002. https://

doi.org/10.1093/nar/gkw1072 PMID: 27903890

15. Rigden DJ, Fernández XM. The 2018 Nucleic Acids Research database issue and the online molecular

biology database collection. Nucleic Acids Res. 2018; 46: D1–D7. https://doi.org/10.1093/nar/gkx1235

PMID: 29316735

16. Pearson N, Malki K, Evans D, Vidler L, Ruble C, Scherschel J, et al. TractaViewer: a genome-wide tool

for preliminary assessment of therapeutic target druggability. Wren J, editor. Bioinformatics. 2019; 35:

4509–4510. https://doi.org/10.1093/bioinformatics/btz270 PMID: 31070721

17. Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection.

BMC Bioinformatics. 2009; 10: 168. https://doi.org/10.1186/1471-2105-10-168 PMID: 19486540

18. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. J Mach Learn Res. 2011; 12: 2825–2830. Available: http://jmlr.csail.mit.edu/

papers/v12/pedregosa11a.html

19. Kalderimis A, Lyne R, Butano D, Contrino S, Lyne M, Heimbach J, et al. InterMine: extensive web ser-

vices for modern biology. Nucleic Acids Res. 2014; 42: W468–W472. https://doi.org/10.1093/nar/

gku301 PMID: 24753429

20. Schmidtke P, Barril X. Understanding and predicting druggability. A high-throughput method for detec-

tion of drug binding sites. J Med Chem. 2010; 53: 5858–5867. https://doi.org/10.1021/jm100574m

PMID: 20684613

21. Shannon CE. A Mathematical Theory of Communication. Bell Syst Tech J. 1948; 27: 379–423. https://

doi.org/10.1002/j.1538-7305.1948.tb01338.x

22. Wager TT, Hou X, Verhoest PR, Villalobos A. Moving beyond Rules: The Development of a Central Ner-

vous System Multiparameter Optimization (CNS MPO) Approach To Enable Alignment of Druglike

Properties. ACS Chem Neurosci. 2010; 1: 435–449. https://doi.org/10.1021/cn100008c PMID:

22778837
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