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Abstract

The human gut microbiota is a diverse and complex ecosystem that is involved in beneficial

physiological functions as well as disease pathogenesis. Blastocystis is a common protistan

parasite and is increasingly recognized as an important component of the gut microbiota.

The correlations between Blastocystis and other communities of intestinal microbiota have

been investigated, and, to a lesser extent, the role of this parasite in maintaining the host

immunological homeostasis. Despite recent studies suggesting that Blastocystis decreases

the abundance of beneficial bacteria, most reports indicate that Blastocystis is a common

component of the healthy gut microbiome. This review covers recent finding on the potential

interactions between Blastocystis and the gut microbiota communities and its roles in regu-

lating host immune responses.

Introduction

Blastocystis belongs to the stramenopile group and is a common single-celled intestinal para-

site of humans and a wide range of animals. It is estimated that this parasite has colonized 1

to 2 billion people worldwide, based on epidemiological surveys [1]. Based on analyses of the

small subunit (SSU) rRNA gene of Blastocystis, 22 subtypes, which are possibly separate spe-

cies, have been identified in humans and in a variety of animals [2]. Among them, ST1-9 and

12 have been reported in humans, but ST1-4 are the most common, accounting for more than

90% of human Blastocystis strains [3]. Interestingly, the prevalence of subtypes among regions

seems to vary greatly (for a review, see [4]), and different subtypes exhibit remarkable differ-

ences in biology, such as drug resistance, immune response, pathogenicity, and effects on

microbiota [5–7].

The development and application of next-generation sequencing (NGS) technologies have

enabled a better understanding of the role of Blastocystis in the context of the gut microbiome.

Recent microbiome studies indicated that this parasite can colonize the human gut for long
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periods of time without provoking symptoms [8] and that Blastocystis carriers have higher bac-

terial diversity than non-Blastocystis carriers [9–11], suggesting that it should be considered a

commensal rather than a pathogen. In contrast, other studies suggested that Blastocystis is

commonly associated with irritable bowel syndrome (IBS) and inflammatory bowel disease

(IBD) [12,13]. However, most of these studies have not thoroughly analyzed the etiological

role of Blastocystis in the development of IBS or IBD and, in fact, some IBS and IBD patients

are not Blastocystis carriers, which in itself should cast doubt on the etiological role of Blasto-
cystis in these syndromes.

Interactions between Blastocystis and gut microbiota

The human gut microbiota consists of bacteria, fungi, archaea, and viruses, as well as single-

celled eukaryotes [14]. These microbes have a profound impact on human health, metabolism,

and the development of the immune system. The majority of human gut studies have focused

on the more abundant bacterial components, even though homeostasis in the intestine is

maintained through communication and interaction with a variety of microorganisms, such

as eukaryotes [15]. Of particular interest is the relationship between single-celled eukaryotes,

such as Blastocystis, with the gut microbiota, which has been an emerging research focus in

recent years (Table 1).

Table 1. Studies on associations between Blastocystis and gut microbiota compositions.

Subtype Method Gut microbiota composition shifta References

Blastocystis (ST1-4

and 6)

Metagenomics INC bacterial richness; Blastocystismainly found in individuals with Prevotella and Ruminococcus enterotypes [16]

Blastocystis Real-time PCR INC in Prevotella and DEC Bacteroides and clostridial cluster XIVa [17]

Blastocystis Amplicon-based

NGS

INC bacterial diversity; INC in Clostridia and Mollicutes (classes), DEC in Bacilli (class); INC in Clostridiales

(order), DEC in Lactobacillales (order); INC in Ruminococcaceae and Prevotellaceae (families), DEC in

Enterococcaceae, Streptococcaceae, Lactobacillaceae, and Enterobacteriaceae (families)

[18]

Blastocystis Metagenomics INC in Clostridiales, Firmicutes, and archaeal organisms (Methanobrevibacter smithii); DEC in Bacteroides
and Proteobateria

[19]

Blastocystis (ST1-8) Amplicon-based

NGS

Not significant [20]

Blastocystis (ST1-4,

8)

Metagenomics INC Sporolactobacillus and Candidatus carsonella; DEC in Bacteroides [21]

Blastocystis (ST2-3) Amplicon-based

NGS

INC bacterial richness; INC in Prevotella copri, Ruminoccoccus bromii, Debaryomyces hansenii,Mucor mucedo,
Aspergillus flavus,Mucor racemosus, and Issatchenkia terricola; DEC in Hymenolepis nana

[22]

Blastocystis (ST1-4,

7, 8)

Amplicon-based

NGS

INC bacterial diversity and richness; DEC prevalent in Bacteroides enterotyped samples; ST4 was more

prevalent in Ruminococcaceae enterotyped samples and associated with Akkermansia; ST3 is inverse

[11]

Blastocystis (ST7) Real-time PCR DEC in Lactobacillus and Bifidobacterium [6]

Blastocystis (ST1-4) Real-time PCR DEC in Faecalibacterium prausnitzii in males; DEC in Bifidobacterium sp. in males with IBS type C [23]

Blastocystis Real-time PCR INC in F. prausnitzii/Escherichia coli ratio [24]

Blastocystis Amplicon-based

NGS

INC bacterial diversity; INC in Firmicutes, Elusimicrobia, Lentisphaerae, and Euryarchaeota (phylum); INC in

F. prausnitzii and Roseburia sp.; DEC in Actinobacteria, Proteobacteria, unassigned bacteria, and

Deinococcus–Thermus

[10]

Blastocystis Amplicon-based

NGS

INC bacterial diversity; INC in Clostridiales vadin BB60; DEC in Bacteroidaceae and Escherichia–Shigella [9]

Blastocystis (ST1-4,

7)

Amplicon-based

NGS

INC bacterial diversity; INC in Prevotella,Methanobrevibacter, and Ruminococcus; DEC in Bacteroides [25]

a Comparison of individuals that were Blastocystis positive with individuals that were Blastocystis negative.

DEC, decrease; INC, increase; NGS, next-generation sequencing.

https://doi.org/10.1371/journal.ppat.1009253.t001
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The beneficial associations of Blastocystis on gut microbiota

A retrospective metagenomics approach to studying Blastocystis first revealed that the presence

of Blastocystis was positively associated with the Prevotella- or Ruminococcus-driven entero-

type and higher bacterial richness, whereas individuals with intestinal microbiota dominated

by Bacteroides were much less likely to carry Blastocystis [16]. Moreover, the same research

team verified these findings by analyzing another set of fecal samples, observing that individu-

als who were Blastocystis-colonized alone or along with Dientamoeba fragilis had relatively low

abundance of Bacteroides and Clostridial cluster XIVa and high levels of Prevotella [17].

Another large-scale comparative metagenomics study of Blastocystis was recently conducted

by Beghini and colleagues, where the presence of Blastocystis was negatively associated with

Bacteroides and Proteobateria, whereas strong co-occurrence with Clostridiales, Firmicutes,

and archaeal organisms (especiallyMethanobrevibacter smithii) was observed [19]. The

increase of Bacteroides seems to be associated with lower bacterial diversity [26], colorectal

cancer [27,28], celiac disease [29], and low-grade inflammation [30], showing that colonization

with Blastocystismay be related to a healthy gut microbiota.

Interestingly, recent findings showed that colonization of Blastocystis was strongly associ-

ated with increased bacterial richness and various shifts in composition of the gut bacterial

microbiota (Table 1). Tito and colleagues showed that the presence of Blastocystis was linked

to microbial richness and diversity and found that Blastocystis was less prevalent in Bacteroides
enterotyped samples [11]. Similarly, Blastocystis-colonized patients exhibited a higher bacterial

diversity and a higher abundance of the Clostridia class, Ruminococcaceae, and Prevotellaceae

families, as well as Faecalibacterium and Roseburia genera, while Enterobacteriaceae were

enriched in Blastocystis-free patients [18]. Enterobacteriaceae, a family of large gram-negative

bacteria, are typically found in a higher abundance in IBD [31]. A similar observation was also

recorded by Kodio and colleagues who also observed increase in Faecalibacterium prausnitzii
and Roseburia sp. in Blastocystis-colonized children [10]. The Faecalibacterium and Roseburia
genera are able to produce butyrate, which is one of the most important metabolites for main-

taining colonic health and is the major energy source of colonic epithelial cells [32]. Addition-

ally, butyrate can induce the differentiation of T regulatory (Treg) cells via up-regulation of the

Foxp3 gene, to suppress inflammatory and allergic responses [33].

Another study compared the relationship between 3 common intestinal parasites (Blasto-
cystis, Giardia duodenalis, and Entamoeba spp.) and gut microbiota composition in humans.

Interestingly, G. duodenalis–positive samples were correlated with a low F. prausnitzii/Escheri-
chia coli ratio, while Blastocystis and Entamoeba spp.–positive individuals related to a higher F.

prausnitzii/E. coli ratio [24]. F. prausnitzii is able to reduce the production of the pro-inflam-

matory cytokines interleukin (IL)-12 and tumor necrosis factor alpha (TNFα) in vitro studies

using peripheral blood lymphocytes-derived dendritic cells (DCs) [34]. In addition, Blastocys-
tis was associated with high bacterial diversity and with Clostridiales vadin BB60, while the

individuals without Blastocystis had a higher abundance of Bacteroidaceae and Escherichia–

Shigella [9]. A previous study reported that high abundance of Escherichia–Shigella appeared

to reduce the bacterial diversity and was associated with pro-inflammatory effects [35]. How-

ever, other studies revealed no significant bacterial composition differences between Blastocys-
tis-positive and Blastocystis-negative IBS patients [20].

Relationships between Blastocystis and eukaryotic microbiota have also been demonstrated

in recent years. Nieves-Ramı́rez and colleagues [22] evaluated the fecal bacterial and eukary-

otic microbiota from 156 asymptomatic adult subjects by amplification and sequencing of the

16S rRNA gene and 18S rRNA genes, respectively, and further compared the composition dif-

ferences between Blastocystis-colonized and Blastocystis-free individuals. Blastocystis carriers
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had a higher abundance of Prevotella copri and Ruminococcus bromii, which are commonly

found in the human gut microbiome and are often described as either Prevotella-rich or Rumi-
nococcus-rich [36]. Blastocystis colonization was also associated with increases in yeast and

fungal species (Debaryomyces hansenii,Mucor mucedo, Aspergillus flavus,Mucor racemosus,
and Issatchenkia terricola) and a decrease ofHymenolepis nana [22].H. nana is a one of the

most common cestodes in the human gut and is often associated with pathological conse-

quences [37].

In general, these studies revealed that the presence of Blastocystis was associated with higher

gut bacterial diversity and negatively correlated with the levels of Bacteroides. As the higher

bacterial diversity is commonly associated with health and lower incidence of inflammatory

diseases [38] and the Bacteroides community type has been linked to obesity, inflammation of

the lower gastrointestinal tract, and reduced microbiota resilience [39], it suggests that Blasto-
cystis colonization is associated with a healthy gut microbiome.

The adverse associations of Blastocystis on gut microbiota

Apart from these studies that propose a commensal role for Blastocystis, the pathogenic poten-

tial of Blastocystis has also been reported (for a review, see [40]). Nourrisson and colleagues

suggested that the level of Bifidobacterium sp. was decreased in Blastocystis-colonized male IBS

type C patients (IBS patients with constipation based on the Rome III classification [41]) and

that healthy Blastocystis-positive individuals had a significant decrease in F. prausnitzii [23].

Similarly, a more recent mouse model study in our laboratory revealed that Blastocystis can

decrease the abundance of beneficial bacteria Bifidobacterium and Lactobacillus [6]. Bifidobac-
terium are known as protective bacteria that have anti-inflammatory properties [42]. Although

some strains from Lactobacillus have been linked to sepsis, especially in immunocompromised

hosts [43], bacteria belonging to Lactobacillus genus have also been used to prevent opportu-

nistic pathogens infection in the gastrointestinal tract [44]. Blastocystis ST4 colonization in

rats can increase the relative abundance of Oscillospira and decrease the level of Clostridium,

which is linked to lower amounts of short-chain fatty acids (SCFAs) [45]. In addition, Vega

and colleagues showed a significant association between the presence of Blastocystis and Clos-
tridium difficile infection in diarrhea patients [46]. Overall, although these studies reported

that the presence of Blastocystis can reduce the abundance of beneficial bacteria, leading to a

dysbiotic state, the etiological role of Blastocystis in the development of gastrointestinal dis-

eases, especially IBS, needs further investigation.

Associations between specific Blastocystis subtypes and gut microbiota

There are currently 22 subtypes of Blastocystis, which are widely distributed across human and

animals, with some subtypes specific to 1 group but not the other [3] (Table 2). Notably, in

linking specific subtypes of Blastocystis to intestinal microbes, only a few subtypes have been

well-documented when studying the interactions with gut microbes. For instance, the presence

of ST4 in Swedish travelers was associated with higher abundances of the bacterial genera Spor-
olactobacillus and Candidatus carsonella, while ST3 did not show such significant relationships

[21]. Similarly, ST3 and ST4 showed inverse (negative and positive, respectively) correlations

to Akkermansia abundance in fecal samples from Flemish gut Flora Project (FgFP) [11], a bac-

teria that has been linked to delayed onset of obesity and its associated metabolic disorders in

murine models [47]. A more recent study showed that ST3 was accompanied by potentially

beneficial species, such as Prevotella,Methanobrevibacter, and Ruminococcus [25], whereas co-

incubation with lactic acid bacteria has been shown to exhibit strong inhibitory effects on Blas-
tocystis ST3 proliferation in vitro [48]. However, Yason and colleagues showed that presence
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of ST7 is associated with a decrease of the beneficial bacteria Lactobacillus and Bifidobacterium
in a mouse model [6]. Collectively, these findings suggest differential associations between

subtypes and host gut microbiota. In light of the enormous inter-genetic variation between dif-

ferent subtypes that exhibited different or even opposite effects [49,50] and only limited studies

investigating links between Blastocystis subtypes to gut microbes, future studies should focus

on the potential link among Blastocystis and both microbiota community structure and host

health, at subtype resolution.

Interactions between Blastocystis and the immune system

The mechanisms of interaction between eukaryotic parasites and the host have long been the

focus of research [61]. Coevolution of gut parasites with the mammalian immune system has

promoted the development of complex parasite–host interactomes. In short, these interspecies

ties may reveal mutualistic, commensal, or parasitic character alongside many intermediate

scenarios, with no explicit cutoff defining the outcome of the host–parasite synergy. Although

Table 2. The known hosts for various subtypes of Blastocystis.

Subtypes Hosts Referencesa

ST1 Human; Nonhuman primates; Cattle; Pig; Goat; Sheep; Dog; Cat; Rodents; Birds;

Raccoon; Fish; Captive wild animals

[3,51]

ST2 Human; Nonhuman primates; Pig; Dog; Rodents; Birds; Raccoon; Fish; Captive wild

animals

[3,51,52]

ST3 Human; Nonhuman primates; Cattle; Pig; Goat; Sheep; Dog; Cat; Rodents; Horse;

Raccoon; Captive wild animals

[3,51]

ST4 Human; Nonhuman primates; Cattle; Goat; Dog; Cat; Rodents; Rabbit; Birds; Marsupials;

Captive wild animals

[3,51]

ST5 Human; Nonhuman primates; Pig; Cattle; Goat; Sheep; Dog; Rodents; Birds; Captive wild

animals

[53]

ST6 Human; Cattle; Pig; Goat; Birds [54]

ST7 Human; Nonhuman primates; Goat; Dog; Rodents; Birds; Fish [52,54]

ST8 Human; Nonhuman primates; Marsupials; Dog; Birds; Fish [51,52]

ST9 Human [54]

ST10 Nonhuman primates; Cattle; Sheep; Pig; Goat; Dog; Cat; Birds; Marsupials; Fish; Captive

wild animals

[52]

ST11 Nonhuman primates; Elephant [55]

ST12 Human; Cattle; Marsupials; Captive wild animals [51]

ST13 Nonhuman primates; Marsupials; Captive wild animals [55–57]

ST14 Cattle; Goat; Sheep; Cat; Captive wild animals [56,57]

ST15 Nonhuman primates; Sheep; Water Vole [57]

ST16 Marsupials [58]

ST17 Cattle; Rodents [51]

ST21 Waterbuck; Cattle [56,59]

ST23 Cattle [59,60]

ST24 Cattle; Sheep; Lama glama [2,59,60]

ST25 Cattle; Sheep [2,59,60]

ST26 Cattle; Sheep [2,59,60]

a Some references are from reviews because the same subtype has been identified in a wide range of hosts in many

studies.

Bold represents the dominant host.

https://doi.org/10.1371/journal.ppat.1009253.t002
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Blastocystis constitute the most common human-related protist, potentially beneficial or detri-

mental impacts of these parasites on the host immune system are still under debate [62].

Human-associated Blastocystis represent a genetically diverse component of the gut micro-

biome [63]. Our previous research demonstrated intra- and inter-subtype variability in terms

of ST4 and ST7 pathogenicity [50]. The genetic diversity within the Blastocystis genus is plausi-

bly a critical factor that dictates colonization susceptibility and determines interaction out-

comes with the gut immune system. New insights into the Blastocystis–host interactome came

from sequencing of the Blastocystis genome. The comparison of ST1-, ST4-, and ST7-derived

genomes revealed considerable variation in respect to the genomes’ assembly size, guanine-

cytosine (GC) pair content, and the number of protein-coding genes [49]. Proteases constitute

an important component of the Blastocystis secretome. Beside engagement in many essential

biological processes, proteases are suspected to be potential virulence factors [64]. Importantly,

the number and type of protease genes among the subtypes varies greatly [49]. This could pro-

vide a possible explanation for the variable clinical significance of Blastocystis.
Most immunological studies on the interactions between Blastocystis and host immune sys-

tem have focused on ST4 and ST7. The zoonotic subtypes ST4 and ST7 isolates were originally

isolated from a Wistar rat and a patient with gastrointestinal symptoms in Singapore, respec-

tively [65,66]. ST4 is the most common subtype in European individuals based on metage-

nomic studies of the human gut [11,19], while ST7 is rarely found in populations although it

was isolated from human. Therefore, we need to note that studies of ST7’s potential pathoge-

nicity may tell us little about how the majority of Blastocystis subtypes present in human gut,

for example, ST1 and ST3, and to a lesser extent ST2 and ST4, interact with the human

immune system.

Some in vitro studies over the past few decades have been designed to investigate the

effects of Blastocystis on host intestinal cells (Fig 1). Cathepsin B, a cysteine protease pro-

duced by ST7, has been linked to increased Caco-2 cell monolayer permeability [67]. The

trans-epithelial permeability was regulated by tight junctions, which play an essential role in

controlling the polarization of epithelial cells and protecting deeper tissues from external

microbial pathogen infections [68]. Our previous in vitro study indicated cysteine proteases

produced by ST7 induce zonula occludens-1 (ZO-1) and F-actin compromise, in a rho-

kinase (ROCK)-dependent manner, in intestinal epithelium [69]. Similarly, ST4 also has the

ability to increase the epithelial permeability in IEC-6 cell monolayers [70]. The intestinal

permeability of patients with Blastocystis infection was also significantly higher than that of

healthy individuals [71]. It is worth noting that the effects of Blastocystis on intestinal cells

are mainly based on in vitro studies and may have little bearing on what happens in the

human intestine.

Interactions between Blastocystis and the innate immune system

The innate immune system constitutes the first line of host defense and plays a crucial role in

preventing microbial pathogen infection, while tolerating the normal host flora [72]. Long and

colleagues reported that incubation with ST1 modulated the immune response by stimulating

the release of the cytokine IL-8 in vitro [73]. IL-8 is a chemokine regulating neutrophil move-

ment as well as, to a lesser extent, other granulocytes [74]. More detailed, mechanistic studies

revealed that cysteine proteases produced by ST4-WR1 activate IL-8 gene expression in

human colonic epithelial T84 cells in a nuclear factor-κB (NF-κB)-dependent process [75].

Another feature of Blastocystis ST7-B and ST4-WR1-derived cysteine proteases is an ability to

degrade immunoglobulin A (IgA), a major immunoglobulin class involved in mucosal defense

[76]. Thus, the secretion of cysteine proteases might constitute a parasite’s adaptation
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mechanism, facilitating colonization by protecting protists in the intestinal milieu against the

host’s immune system.

One of the most ancient elements of innate immunity is represented by antimicrobial pep-

tides (AMPs). LL-37 is a 37-amino acid fragment of the human AMP cathelicidin, which

exhibits antimicrobial and immunomodulatory activity [77]. In a recent study, employing

mouse intestinal explants and the human intestinal epithelial cell line HT-29, it was shown

that Blastocystis (ST1, ST4, and ST7) are able to induce intestinal epithelial cells to secrete

LL-37 [78]. ST1 and ST4 are susceptible to the effects of LL-37, while ST7 was resistant to the

cytotoxic effects of LL-37 through secretion of proteases to degrade LL-37 and an acidified

environment to attenuate LL-37 activity [78].

Toll-like receptors (TLRs) are a major family of pattern recognition receptors (PRRs) that

play an essential role for protective immunity against infection. TLRs activate downstream sig-

naling cascades which mediate the activation of transcription factors such as NF-κB [79]. In a

recent in vitro study, Blastocystis exhibited pleiotropic effects in the modulation of TLR activa-

tion by specific ligands (zymosan, lipopolysaccharide (LPS), and flagellin) [80]. Specifically,

Blastocystis ST7-B and ST4-WR1 significantly inhibited zymosan-mediated NF-κB activation

in human TLR reporter monocytic cell line (THP1-Blue), and neither subtype had any

Fig 1. Blastocystis-mediated regulation of immune responses and homeostasis as characterized by studies using in vitro systems and experimental rodent

models. This illustration simplifies the many interactions and pathways involved in Blastocystis colonization or infection in host cells. Cysteine proteases produced

by Blastocystis are able to degrade IgA and AMP (LL-37). Blastocystis can also influence the gene expression of pro-inflammatory cytokines by regulating the NF-κB

and MAPK pathways. Blastocystis evades host NO antiparasitic response by inhibiting iNOS to convert arginine to NO. Blastocystis can induce Th1 and Th17 cells

responses and their signature cytokines release. AMP, antimicrobial peptide; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFNγ, interferon gamma;

IgA, immunoglobulin A; IL, interleukin; iNOS, inducible nitric oxide synthase; L-Arg, L-Arginine; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-

κB; NO, nitric oxide; Th, T helper; TNFα, tumor necrosis factor alpha; ZO1, zonula occludens-1.

https://doi.org/10.1371/journal.ppat.1009253.g001
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significant effect on flagellin-mediated activation [80]. Interestingly, Blastocystis ST4-WR1 was

able to inhibit LPS-mediated NF-κB activation in THP1-Blue cells, while ST7-B was found to

augment the effect of LPS-mediated NF-κB activation [80]. However, it should be noted that

these results only observed in vitro systems, and future studies should focus on human hosts

or other naturally colonized hosts to better understand the role of Blastocystis in host innate

immunity.

Blastocystis ST7, but not ST4, induces strong expression of pro-inflammatory cytokines

IL-6, IL-1β, and TNFα in murine macrophages mediated by mitogen-activated protein kinases

(MAPKs) [7]. The MAPK cascade is one of the most important and evolutionarily conserved

signaling pathways and plays an essential role in innate immunity [81]. The MAPKs of mam-

mals can be divided into 3 main families: the extracellular signal-regulated kinases (ERKs),

c-jun NH2-terminal kinases (JNKs), and p38 MAP kinases [81]. Blastocystis ST7 triggered

ERK and JNK pathways to regulate the expression of pro-inflammatory cytokines in macro-

phages in vitro, including IL-1β, IL-6, and TNFα [7]. Interestingly, Blastocystis-derived serine

proteases increase the pro-inflammatory cytokine expression in a MAPK-dependent manner,

while cysteine proteases were able to induce these pro-inflammatory cytokines in a MAPK-

independent pathway [7].

Nitric oxide (NO), an endogenously produced molecule, constitutes an important element

of the innate intestinal response against luminal pathogens [82]. NO has a strong antimicrobial

activity by reacting with a large spectrum of molecules such as DNA, proteins, and lipids [82].

In vitro experiments revealed that ST7-B but not ST4-WR1 is able to inhibit NO production,

and this was associated with down-regulation of the transcriptional expression of host cell

inducible nitric oxide synthase (iNOS) [83]. Although Blastocystis inhibits an intestinal epithe-

lial NO response in vitro, whether the effect happens in the intact human intestine or in a

human intestine damaged by other pathogens (bacterial or viral or parasitic) needs further

investigation.

Interactions between Blastocystis and the adaptive immune system

In addition to the impact on innate immune function, recent research also uncovered that

Blastocystis plays a role in the adaptive immune system. T helper 1 (Th1) and T helper 2 (Th2)

cells and their signature cytokines (e.g., interferon gamma (IFNγ), TNFα, and IL-12 for Th1

and IL-4, IL-5, and IL-13 for Th2 lineage) are important for protection against parasites, intra-

cellular and extracellular pathogens, such as viruses and bacteria [84]. At the same time, potent

Th1 or Th2 response at the site of infection may overwhelm the regulatory compartment,

which in consequence might lead to chronic inflammation [85]. Yoshikawa and colleagues

demonstrated that upon Blastocystis ST4 colonization, rats did not show any pathological

lesions; however RNA transcripts for IFNγ, IL-12, and TNFα underwent substantial increases

in intestinal tissue of colonized rats [86]. Interestingly, Blastocystis ST4 chronic colonization

induces noninflammatory colonic hypersensitivity in rats [45]. Importantly, the colonic levels

of IL-6, lipocalin-2 proteins, and GATA-3, a Th2 lineage master regulator, were not changed

significantly in Blastocystis-colonized rats [45]. Thus, all these reports indicate a rather con-

trolled engagement of these 2 T helper lineages in an immune response in the context of Blas-
tocystis ST4.

Another more recently identified component of the intestinal T helper compartment com-

prises CD4 T cells expressing RORγ-T and producing the cytokine IL-17. RORγ-T is a key

transcription factor for promoting T cells differentiation into T helper 17 (Th17) cells [87].

IL-17 is known as the signature cytokine of Th17 cells, a CD4 subset contributing to the patho-

genesis of various inflammatory diseases [88]. What is important is that the recruitment of
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CD4 cells toward conventional Th17 phenotype occurs in peripheral organs particularly in the

large intestine [89,90]. Furthermore, the site of Th17 lineage polarization does not define a ter-

minal niche for this subset as these cells after differentiation can migrate to the distal locations

in respect to the organs of Th17 origin [91,92]. Hashimoto’s thyroiditis (HT) represents an

autoimmune disorder with a Th17 lineage playing an essential role in thyroid’s pathogenesis

[93,94]. El-Zawawy and colleagues investigated the relationship of Blastocystis and IL-17 in

patients with HT. Blastocystis-colonized HT patients had more IL-17 compared to Blastocystis-
free HT patients, whereas the amount of IL-17 was significantly decreased after Blastocystis
eradication [95]. All these observations correlate with other work in which authors showed

increased IL-17 and IL-23 expression in the intestinal mucosa of mice colonized with Blasto-
cystis [96]. Although these 2 studies lack information regarding Blastocystis subtypes, the pat-

terns of cytokine makeup in Blastocystis-colonized HT patients and in intestines of

Blastocystis-colonized rodents indicate the potential links between some subtypes and genera-

tion of pro-inflammatory Th17 compartment. Hence, functional remodeling of gut micro-

biomes upon particular Blastocystis subtype colonization or direct interaction of these protists

with a host CD4 T immune compartment might lead to the enhanced development and induc-

tion of the Th17 pro-inflammatory subset.

In summary, Blastocystis appears to interact with the host immune system at several levels

(Fig 1). Although some reports demonstrate that Blastocystis colonization might result in Th1

and Th17 cell responses, the precise mechanism and role of these lineages in controlling colo-

nization-associated pathogenicity has not been clearly explained. The microbiome plays a piv-

otal role in the shaping and development of the host’s innate and adaptive immune system

[97]. Alterations in the composition of the commensal microbiota can influence the frequency

of mucosal Treg cells [98]. Indeed, the genus Clostridium, particularly clusters IV and XIVa,

can promote accumulation of Tregs, and Clostridium-colonized mice markedly enhanced the

differentiation of Foxp3-expressing cells [99]. The immune changes induced by Blastocystis
colonization may directly influence the host gut microbiota composition. On the other hand,

the remodeling of the intestinal microbiome upon Blastocystis colonization may indirectly

modulate the host immune system. Therefore, the complex interactions of the Blastocystis
microbiome-immune network requires in-depth studies, which are currently lacking, for

mechanistic insights into their roles in gut health and disease.

Conclusion and future perspectives

Based on the above summary of work carried out on Blastocystis, the evidence overwhelmingly

points to Blastocystis as a commensal, although a rare subtype (ST7) has shown pathogenicity

in in vitro systems and experimental rodent models. Several in vitro and a handful of in vivo

rodent experiments reveal that that the common ST4 exhibits mild inflammation and pathol-

ogy to host tissues. However, we cannot simply regard or designate Blastocystis as a commensal

considering numerous genetic variations among subtypes. More microbiome and immuno-

logical research should be conducted on humans or other natural hosts at the subtype level to

determine if it is a commensal or a pathogen. Furthermore, the mechanisms of the interactions

between Blastocystis and gut microbiota are still relatively poorly defined. Since it has been

determined that Cryptosporidium infections can affect the metabolite profiling in mouse

model [100,101], it would appear appropriate to also ascertain whether Blastocystis coloniza-

tion is able to affect gut microbial-derived metabolites, such as SCFAs, bile acids (BAs), trypto-

phan, and/or other metabolites, to maintain the host health and immune homeostasis should

be the focus of future research. Importantly, Blastocystis research has mainly used in vitro sys-

tems and the experimental rodent models that harbor a divergent microbiota from humans.
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Therefore, exploring the roles of Blastocystis in impacting immunity requires more mechanis-

tic studies based on human hosts or in other animals with natural colonization.
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