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Unraveling the Mechanisms
by Which Calpain Inhibition Prevents
Heart Failure Development*

Xander H.T. Wehrens, MD, PHDa,b,c
H eart failure (HF) is a complex clinical
syndrome defined as an inadequate cardiac
performance to meet the metabolic de-

mands of tissues in the body. HF affects 6 million
people in the United States alone, and its prevalence
is expected to grow by 40% over the next decade
(1). The pathophysiology of HF is complex and may
involve neurohormonal changes, altered energy
metabolism, increased oxidative stress, and intracel-
lular calcium (Ca2þ) overload. Adverse cardiac remod-
eling involves activation of proteases that play a role
in the degradation of both intracellular and extracel-
lular targets. The effects of these proteases that
include matrix metalloproteinases, cathepsins, cas-
pases, and calpains are synergistic and may represent
targets to prevent the decline in cardiac function
associated with HF (2).

Calpains are Ca2þ-activated proteolytic enzymes.
More than 15 isoforms are encoded by distinct genes,
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and alternative splicing generates even more variants
(3). The 2 main isoforms expressed in the heart are
calpain-1 (m-calpain) activated by mM Ca2þ concen-
trations and calpain-2 (m-calpain) activated by mM
Ca2þ concentrations (4). Calpains may contribute to
myocardial hypertrophy and inflammation, mainly
through the activation of transcription factors such as
nuclear factor-kB. They play an important role in the
formation of interstitial fibrosis partly by activating
transforming growth factor-b. Moreover, calpains
have been implicated in apoptosis in part because
they cause the breakdown of sarcolemma and sarco-
meres (5).

Recent studies demonstrated that 1 of the protein
targets cleaved by calpain is junctophilin-2 (JPH2), an
intermembrane-linked protein that maintains the
plasmalemma and sarcoplasmic reticulum at a fixed
distance to ensure proper excitation–contraction (EC)
coupling (6–9). JPH2 is essential for the maturation of
transverse tubules (TTs) and development of efficient
EC coupling in adult cardiac myocytes (10,11). Several
studies have shown that HF precipitates a loss of the
TT network, which in turn impairs cardiac contrac-
tility (12,13). Because reduced JPH2 levels have been
observed in patients and animals with HF (13–17), loss
of JPH2 has been implicated in TT remodeling in HF,
although some have disputed a direct role for
JPH2 (18).

Cleavage by calpains has been put forward as 1 of
the main mechanisms underlying the loss of JPH2
levels in failing hearts (8,9,19). Because calpain ac-
tivity is increased in myocardial tissue subjected to
stress (i.e., ischemia, oxidative stress, HF) (20,21), it
may not be surprising that Ca2þ-dependent proteol-
ysis of JPH2 has been reported under pathological
conditions (8,9,19). In mouse hearts, ischemia/reper-
fusion injury was shown to reduce JPH2 levels, a
https://doi.org/10.1016/j.jacbts.2018.07.002
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process that was reversible by endogenous calpain
inhibitor calpastatin (19).
SEE PAGE 503
In this issue of JACC: Basic to Translational Science,
Wang et al. (22) show that pharmacological inhibition
of calpain activity protects against cardiac dysfunc-
tion in mouse models of HF. They showed increased
calpain-1 protein and activity levels in heart samples
from patients with ischemic or dilated cardiomyopa-
thy. These studies confirm prior studies showing
increased levels of both calpain-1 and calpain-2 in
patients with New York Heart Association functional
class III and IV HF (23). Because calpain-2 is activated
at higher (pathological) Ca2þ concentrations, it would
be interesting to assess in future studies whether
calpain-2 expression and activity levels are also
altered in human failing hearts. In addition, it is
unknown whether other calpain isoforms are upre-
gulated in the human heart under pathological
conditions.

Next, Wang et al. (22) determined the effects of
calpain inhibitor MDL-28170 in 3 established mouse
models of HF, namely myocardial infarction as a
result of left anterior descending coronary artery
ligation, pressure overload by transverse aortic
constriction (TAC), and isoproterenol infusion using
an osmotic minipump. Administration of the inhibitor
was started 3 days after the disease models were
initiated; however, in prior studies, it was shown that
calpain levels do not significantly increase in mice
until 7 days post-MI. Similarly, in the present work,
calpain activity did not increase until 2 weeks after
TAC. Therefore, these studies assessed the effects of a
prevention strategy as opposed to a more clinically
relevant therapeutic intervention in which treatment
would need to be initiated after the development of
HF. The authors did conduct a secondary study in a
small cohort of TAC mice in which MDL-28170 treat-
ment was started 3 weeks after surgery; this revealed
a reduced or delayed progression of HF. However, the
compound induced only partial calpain inhibition,
and the mechanism of reduce HF-related remodeling
remains incompletely understood.

Although it was shown that the compound MDL-
28170 normalized calpain levels at 5 weeks after
myocardial infarction or TAC, or 2 weeks after
isoproterenol, it remains unclear whether the protein
and activity levels of calpain-1 and calpain-2 were
altered in these HF mouse models, and in turn
reversed by MDL-28170 treatment. The authors
ascribed the therapeutic effects of calpain inhibition
to inhibition of fibrosis and prevention of the loss of
TT in failing hearts; however, it has been shown that
calpain inhibition can also attenuate inflammation
(24), apoptosis (20), and the disassembly of interca-
lated disks (20), among other things. Moreover, hy-
pertrophic remodeling as a result of calcineurin
activation has been attributed to enhanced calpain
activity (23). It is unlikely therefore that the primary
mechanism by which calpain inhibition improves
cardiac function in animals with HF is the prevention
of deleterious TT remodeling. Changes in TT remod-
eling could very well be the consequence of improved
cardiac function.

The authors did perform additional experiments to
address the question of whether JPH2 is a critical
calpain substrate involved in HF development. Wang
et al. (22) generated double transgenic mice over-
expressing both calpain-1 and JPH2 by approximately
3-fold. The hypothesis tested by this experiment was
whether overexpression of JPH2 could protect against
the detrimental effects of calpain-1 hyperactivity.
Despite an early protective effect, mortality rates and
cardiac remodeling were not improved by JPH2
overexpression. Of interest, biochemical studies
revealed that JPH2 levels declined in calpain-1/JPH2
double transgenic mice despite overexpression of
JPH2, suggesting that calpain-1 activity levels in the
transgenic mice were too high to be physiologically
relevant. Regardless, these experiments did not
prove the theory that loss of junctophilin levels is the
mechanism by which increased calpain activity cau-
ses HF. Comparing calpain activity levels in calpain
transgenic mice with those in the different models of
HF would have provided useful information in this
regard. If calpain activity levels were similar in all of
these models, it would be important to rule out other
pathways of JPH2 degradation (e.g., micro-
ribonucleic acid–mediated decay) (25–27). In addi-
tion, it was quite surprising that the authors did not
include JPH2 single transgenic mice in their studies,
because this would have been an important control
group for the double transgenic mice. Interestingly,
prior studies have demonstrated that transgenic or
adeno-associated virus-mediated overexpression of
JPH2 slows down the progression of HF after TAC
(28,29). In those studies, when calpain was not
overexpressed, it was possible to prevent a reduction
of JPH2 levels below those seen in sham control mice,
providing further evidence that the calpain-1 trans-
genic mice are probably not suitable to model HF
pathophysiology.

Cleavage of JPH2 by calpains yields several pro-
teolytic peptides. Physiological Ca2þ concentrations
can activate calpain-1, which in turn cleaves JPH2
into several peptides (8). Guo et al. (19) showed
that calpain-1 cleaves JPH2 at multiple sites in both
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the N- and C-terminal regions. At present, it is unclear
whether these peptides have any cellular functions.
Overexpression of some of the N- and C-terminal
JPH2 peptides in myocytes from JPH2-knockdown
mice failed to normalize sarcoplasmic reticulum
Ca2þ transients (19), unlike full-length JPH2 (7). Those
studies suggest that the proteolytic JPH2 peptides
might not be involved in regulating EC coupling in
myocytes. Future studies are warranted to investi-
gate whether these peptides have other roles in
myocytes.

In conclusion, Wang et al. (22) showed increased
calpain activity levels in failing human hearts. Using
3 different mouse models of HF, they demonstrated
that pharmacological inhibition of calpain blunted
the development of HF and preserved TT structure
in ventricular myocytes. Overexpression of JPH2
delayed but did not prevent the development of
end-stage HF and mortality in calpain-1 transgenic
mice. However, these studies are inconclusive
because JPH2 levels still dropped below those seen
in control animals. Therefore, these preclinical
studies suggest that calpain inhibition might repre-
sent a possible therapeutic strategy for HF treat-
ment, although the underlying mechanisms remain
poorly understood.
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