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Chondrosarcomas are a heterogeneous group of malignant bone tumors that are characterized by the production of cartilaginous
extracellular matrix. They are the second most frequently occurring type of bone malignancy. Surgical resection remains the
primary mode of treatment for chondrosarcomas, since conventional chemotherapy and radiotherapy are largely ineffective.
Treatment of patientswith high-grade chondrosarcomas is particularly challenging, owing to the lack of effective adjuvant therapies.
Integrins are cell surface adhesionmolecules that regulate a variety of cellular functions.They have been implicated in the initiation,
progression, and metastasis of solid tumors. Deregulation of integrin expression and/or signaling has been identified in many
chondrosarcomas. Therefore, the development of new drugs that can selectively target regulators of integrin gene expression and
ligand-integrin signaling might hold great promise for the treatment of these cancers. In this review, we provide an overview of
the current understanding of how growth factors, chemokines/cytokines, and other inflammation-related molecules can control
the expression of specific integrins to promote cell migration. We also review the roles of specific subtypes of integrins and
their signaling mechanisms, and discuss how these might be involved in tumor growth and metastasis. Finally, novel therapeutic
strategies for targeting these molecules will be discussed.

1. Chondrosarcomas

Chondrosarcomas are a heterogeneous group of malignant
bone tumors with diverse histopathology and clinical behav-
ior, which are characterized by the production of cartilage
matrix. They are the second most common type of skeletal
malignancy after osteosarcomas [1]. Chondrosarcomas are
usually found within flat bones; the pelvis and femur are
two common sites of involvement, although any bone may
be affected [2, 3]. These malignant cartilaginous tumors may
either arise de novo or develop from pre-existing benign
lesion (e.g., enchondromas and osteochondromas), termed
primary (or conventional), and secondary chondrosarcomas,
respectively. Tumors can arise in both skeletal (central) and
extraskeletal (peripheral) locations [4]. The majority of cases

are primary central chondrosarcomas; together, primary cen-
tral and secondary peripheral chondrosarcomas constitute
approximately 85%of all chondrosarcomas.Other specialized
types of chondrosarcoma, such as dedifferentiated, clear
cell, and mesenchymal chondrosarcomas, account for the
remaining 10%–15% of cases [3, 5].

Chondrosarcomas are classified into three histological
grades (grades 1–3), based on the extent of cellularity,
nuclear atypia, nuclear staining (hyperchromasia), muco-
myxoid matrix changes, and increased vascularization [6–
9]. Approximately 90% of conventional chondrosarcomas
are grade 1 or 2, which have an indolent clinical course,
low metastatic potential, and good prognosis; the remaining
5–10% are grade 3 tumors, which have high metastatic
potential and are associated with poor outcomes [3, 10, 11].
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For chondrosarcomas, prognosis is strongly correlated with
histological grade, as well as with the adequacy of the resec-
tionmargins [12, 13]. Low-grade chondrosarcomas show little
cellularity and an abundant matrix that resembles hyaline
cartilage. These tumors rarely metastasize and are therefore
often managed with intralesional curettage and resection.
In contrast, high-grade conventional chondrosarcomas are
highly cellular, with little or no cartilaginous matrix. High-
grade tumors often metastasize, leading to lethality in most
cases; for these, radical excisionmargins, or even amputation,
may be recommended [3].

Chemotherapy and radiotherapy are largely ineffective
for treating chondrosarcomas, due to the slow growth, abun-
dant extracellular matrix (ECM), low percentage of dividing
cells, and poor vascularity of these tumors [14–17]. Moreover,
some studies indicate that chondrosarcoma cells can express
multidrug-resistance gene products, such as P-glycoprotein,
thereby reducing the absorption of drugs, and giving rise to
chemotherapy resistance [18, 19]. Surgical resection remains
the primary mode of treatment for chondrosarcomas. In a
minority of patients, local recurrence or metastasis occurs,
and can result in death; this is more prevalent in those
with high-grade tumors [3, 16]. The above features make the
clinical management of chondrosarcomas particularly chal-
lenging, and new therapeutic strategies are urgently needed.
One type of approach focuses on inhibiting the processes of
metastasis and invasion, and may facilitate the development
of effective adjuvant therapy. Integrins have been considered
potential therapeutic targets because they are exposed on the
cell surface and are sensitive to pharmacological blockade.

2. Characteristics of Integrins

Integrins are a family of heterodimeric transmembrane glyco-
proteins that are found on nearly all cells, where they function
as adhesion receptors, mediating dynamic cell-cell and cell-
extracellular matrix interactions.Through these interactions,
integrins play critical roles in cancer cell migration, invasion,
and metastasis—processes that contribute to tumor progres-
sion [20]. To date, at least 24 unique integrin heterodimers
have been identified. These heterodimers are formed from
various combinations of 18 𝛼-subunits and 8 𝛽-subunits,
which interact noncovalently. Each integrin subunit consists
of a large extracellular domain, a single type I transmembrane
domain, and a short intracellular cytoplasmic tail domain
[21]. The ligand-binding site of an integrin heterodimer lies
at the interface between the two subunits. Their cytoplasmic
domains form connections with the cytoskeleton, enabling
integrins to serve as a link between the ECM and the
cytoskeleton.

Ligand specificity is determined by the extracellular
domain of the integrins. Five main groups have been
identified: arginine-glycine-aspartate (RGD)-binding, the 𝛼4
family, laminin-binding, I-domain collagen-binding, and
leukocyte adhesion integrins. Approximately one third of
integrins have binding sites for the RGD sequence, which is
found on many ECM proteins. Although the RGD sequences

within collagen and laminin are not normally exposed,
denaturation or cleavage of these proteins may result in
exposure of the RGD sequence and subsequent integrin
binding. Generally, 𝛼4 integrins recognize the leucine-
aspartic acid-valine (LDV) tripeptide, collagen-binding inte-
grins recognize a triple helical collagen peptide con-
taining the glycine-phenylalanine-hydroxyproline-glycine-
glutamate-arginine (GFOGER) motif [22, 23]. Integrins do
not simply act as adhesion molecules; they can also function
as bidirectional signaling molecules, controlling a variety
of cell functions such as proliferation, differentiation, sur-
vival/apoptosis, cell shape, polarity, ormotility, as well as gene
expression [21].

3. Integrin-Dependent Signaling

Although integrins lack intrinsic kinase activity, signal trans-
duction can be induced by the assembly of signaling com-
plexes on the cytoplasmic domains of integrin subunits.
Through interactions of their cytoplasmic domains with a
wide variety of adaptor proteins, integrins are able to deliver
signals into the cell in response to extracellular cues (“outside-
in” signaling). In addition, some cytoplasmic interactions can
induce conformational changes in integrin molecules. This
can affect their activation state by modulating their binding
affinity for extracellular ligands (“inside-out” signaling) [24–
26]. In the inactive or low-affinity state, integrins are in a
“bent” conformation, with the transmembrane and cytoplas-
mic domains close together; this impedes ligand engagement
andmaintains the low-affinity state.The binding of talins and
kindlins to their respective binding regions of the 𝛽 integrin
cytoplasmic tails induces conversion from the bent to the
extended conformation. This separates the cytoplasmic and
transmembrane subunits and results in a shift to the activated
or high-affinity state. When activated integrins bind to
ligands, they cluster at the plasma membrane.This clustering
promotes intracellular signaling, resulting in the formation
of tight focal adhesions, actin cytoskeletal assembly, and
activation of multiple downstream signaling pathways that
influence a variety of cellular functions [27–29]. Precise
regulation of ligand binding affinity is therefore critical for
proper integrin function.

The canonical view has been that ECM ligands bind
to their cognate integrins and initiate signaling via specific
pathways, to give rise to distinct cell responses. However,
accumulating evidence reveals that several integrins are able
to crosstalk with oncogenic signal transducers, such as ErbB,
Ras, and Src, to promote tumorigenesis [30–34]. Cooperative
signaling between integrins, growth factor receptors, and
cytokine receptors has also been implicated in tumor progres-
sion [35–41]. Upon ligand binding, integrinsmay trigger cells
to secrete growth factors and/or cytokines, which in turn can
bind to their receptors in an autocrine or paracrine manner
to induce further signaling. For example, the activation of
integrin 𝛼v𝛽3 can trigger phosphorylation of p66 Shc; this
has been shown to upregulate the expression of vascular
endothelial growth factor (VEGF), leading to tumor growth
and angiogenesis in human prostate and breast cancer cells
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[38]. In pancreatic cancer cells, the 𝛼6𝛽1 and 𝛼3𝛽1 integrins
interact with laminin-1 tomediate cell migration; this process
involves the upregulation of CXC chemokine receptor 4
(CXCR4) and IL-8 expression in response to the chemokine
ligand CXCL12, also known as stromal cell-derived factor-1
(SDF-1) [42]. Integrin activation of growth factor receptors,
through collaborative mechanisms, has also been reported
to induce downstream signaling [43]. Alternatively, both
growth factor and chemokine signalingmay regulate integrin
function by directly controlling integrin expression levels.

4. Regulation of Integrin Gene Expression

A number of growth factors and chemokines/cytokines have
been found to regulate the expression of integrins in many
malignancies, indicating a critical role in cancer progression.
For example, heparin-binding EGF-like growth factor has
been observed to increase integrin expression in human
breast and esophageal cancer cells [67, 68]. Binding of the
CXCL12 chemokine to its receptor (CXCR4) may regulate
tumor dissemination in prostate tumor cells by enhancing
expression of 𝛼v𝛽3 integrins [40]. More recently, a study
demonstrated that CXCL12 strongly induced 𝛼v𝛽6 integrin
expression in ovarian cancer, leading to enhanced urokinase
plasminogen activator (uPA)-mediated ECM degradation
and cell invasion [69]. In human osteosarcoma cells, the
CCL5/CCR5 axis can induce increased expression of 𝛼v𝛽3
integrin via the MEK, ERK, and NF-𝜅B pathways, thereby
contributing to cell migration [70]. The pro-inflammatory
cytokine interleukin-1𝛼 (IL-1𝛼) can induce selective upreg-
ulation of 𝛼6𝛽1 integrin in pancreatic cancer cells and has
been suggested to modulate tumor aggressiveness [71, 72].
Transforming growth factor-𝛽1 (TGF-𝛽1), a multifunctional
cytokine, can promote human hepatocellular carcinoma
(HCC) cell invasion by stimulating 𝛼3 integrin expression
[44]. Another study found that TGF-𝛽1 treatment promotes
gastric carcinoma cell adherence by increasing 𝛼3 integrin
levels [67].

In human chondrosarcoma cells, numerous studies have
shown that growth factors, chemokines/cytokines, and other
inflammation-related molecules can control the expression
of specific integrins to promote cell migration. Among
the growth factors, insulin-like growth factor-I (IGF-I) is
able to enhance the migration of chondrosarcoma cells
by increasing 𝛼v𝛽1 integrin expression, through the IGF-
I receptor/PI3K/Akt/NF-𝜅B pathway [45]. Brain-derived
neurotrophic factor (BDNF) is a small protein from the
neurotrophin family of growth factors whose expression has
been associated with disease status and outcomes in various
cancers. Recent research has shown that BDNF enhances
the migration of chondrosarcoma by increasing 𝛽5 integrin
expression, through the TrkB receptor, PI3K, Akt, and NF-𝜅B
pathways [46] (Table 1).

Interleukin-8 (IL-8), a chemokine also known as CXCL8,
interacts with the CXCR1 and CXCR2 receptors to acti-
vate PI3K and Akt pathways, and induce AP-1 activa-
tion. In human chondrosarcoma cells, IL-8 induced upreg-
ulation of 𝛼v𝛽3 integrin expression and increased cell

migration [47]. Metastasis, particularly to the lungs, is
often observed with high-grade chondrosarcomas. Interest-
ingly, the CXCL12/SDF-1 chemokine, which is constitutively
secreted by human lung epithelium cells, has been shown to
enhance the invasiveness of chondrosarcoma cells by increas-
ing 𝛼v𝛽3 integrin expression, through the CXCR4/ERK/NF-
𝜅B pathway. It has also been observed that the expression of
CXCR4 in human chondrosarcoma tissues and chondrosar-
coma cell lines is higher than in normal cartilage and in
human chondrocytes. This could potentially account for the
homing of chondrosarcoma cells to the lung [48] (Table 1).

Accumulating evidence suggests that fat tissue can func-
tion as an endocrine organ, producing and secreting a variety
of bioactive substances that are referred to as adipocytokines
or adipokines. Most adipocytokines are pro-inflammatory
cytokines, such as tumor necrosis factor-𝛼 (TNF-𝛼). Various
adipocytokines, including TNF-𝛼, leptin, and adiponectin,
have been reported to enhance chondrosarcoma cell migra-
tion by increasing the expression of specific integrins. A
range of signaling pathways are involved. For example, TNF-
𝛼 and leptin were found to increase 𝛼v𝛽3 integrin expres-
sion, through their effects on the MEK/ERK/IKK𝛼/𝛽/NF-𝜅B
and the OBR1/IRS-1/PI3K/Akt/NF-𝜅B pathways, respectively
[49, 50]. Adiponectin is a member of the C1q and tumor
necrosis factor superfamily, and structurally resembles TNF-
𝛼. Adiponectin can promote migration of human chon-
drosarcoma cells by upregulating 𝛼2𝛽1 integrin, via AdipoR-,
AMPK-, p38-, IKK𝛼/𝛽-, and NF-𝜅B-dependent pathways
[51]. Macrophage migration-inhibitory factor (MIF), a pro-
inflammatory cytokine involved in macrophage migration
and activation, is able to enhance the migration of chon-
drosarcoma cells by increasing 𝛼v𝛽3 integrin expression,
mediated via PI3K/Akt/NF-𝜅B signaling [52] (Table 1).

The transforming growth factor-𝛽 (TGF-𝛽) superfamily
includes the prototypical member TGF-𝛽, and numerous
others, such as bone morphogenetic proteins (BMPs) and
glial cell derived neurotrophic factor (GDNF). Many of these
proteins are known to play pivotal roles in tumor progression,
invasion, and metastasis. TGF-𝛽 has been previously shown
to increase cell motility and 𝛼v𝛽3 integrin expression in
human chondrosarcoma cells, via pathways involving PI3K,
Akt, and NF-𝜅B [53]. BMPs are proteins originally isolated
from bone tissue, and are capable of ectopically inducing
new cartilage and bone formation. BMP-2 has been found
to act through PI3K/Akt, IKK𝛼/𝛽, and NF-𝜅B, resulting in
increased 𝛽1 integrin expression and migration of human
chondrosarcoma cells [54]. GDNF is a factor required for
survival, proliferation, and activation of glioma cells. GDNF
has been shown to promote the migration of human chon-
drosarcoma cells by upregulating 𝛼v𝛽3 integrin expression,
through activation of the MEK/ERK, IKK𝛼/𝛽, and NF-
𝜅B pathways [55]. A novel cytokine system, consisting of
receptor activator of NF-𝜅B ligand (RANKL), its receptor,
RANK, and the protein osteoprotegerin (OPG), has been
identified and extensively characterized for its role in bone
remodeling.The RANKL/RANK signaling axis has also been
found to regulate cell migration in human chondrosarcoma
cells, through MEK, ERK, IKK𝛼/𝛽, and NF-𝜅B signaling and
upregulation of 𝛽1 integrin [56] (Table 1).
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Table 1: Regulation of integrin expression in human chondrosarcoma cells.

Groups Activators Integrins Pathway References

Growth factors
Insulin-like growth factor-I (IGF-I) 𝛼5𝛽1 IGF-I receptor/PI3K/Akt/NF-𝜅B [44]
Brain derived neurotrophic factor
(BDNF) 𝛽5 TrkB receptor/PI3K/Akt/NF-𝜅B [45]

Chemokines
IL-8/CXCL8 𝛼v𝛽3 CXCR1 and CXCR2/PI3K/Akt/AP-1 [46]
CXCL12/SDF-1 𝛼v𝛽3 CXCR4/ERK/NF-𝜅B [47]

Pro-inflammatory
cytokines

TNF-𝛼 𝛼v𝛽3 MEK/ERK/IKK𝛼/𝛽/NF-𝜅B [48]
Leptin 𝛼v𝛽3 OBR1/IRS-1/PI3K/Akt/NF-𝜅B [49]
Adiponectin 𝛼2𝛽1 AdipoR/AMPK/p38/IKK𝛼/𝛽/NF-𝜅B [50]
Macrophage migration-inhibitory factor
(MIF) 𝛼v𝛽3 PI3K/Akt/NF-𝜅B [51]

Cytokines

TGF-𝛽 𝛼v𝛽3 PI3K/Akt/NF-𝜅B [52]
Bone morphogenetic proteins (BMPs) 𝛽1 PI3K/Akt/IKK𝛼/𝛽/NF-𝜅B [53]
Glial cell derived neurotrophic factor
(GDNF) 𝛼v𝛽3 MEK/ERK/IKK𝛼/𝛽/NF-𝜅B [54]

Receptor activator of nuclear factor
kappa-B ligand (RANKL) 𝛽1 RANK/MEK/ERK/IKK𝛼/𝛽/NF-𝜅B [55]

Inflammatory-
related
molecules

Cyclooxygenase-2 (COX-2) 𝛼2𝛽1 EP1/PLC/PKC𝛼/c-Src [56]
Bradykinin (BK) 𝛼2𝛽1 BK receptors/PLC/PKC𝛿/NF-𝜅B [57]

High mobility group box chromosomal
protein 1 (HMGB1) 𝛼5𝛽1

RAGE (receptor for advanced
glycation end
products)/PI3K/Akt/c-Jun/AP-1

[58]

Certain inflammation-related molecules may also play
important roles in regulating migration in human chon-
drosarcoma cells. Cyclooxygenase-2 (COX-2), an inducible
enzyme that catalyzes the formation of prostaglandin E2
(PGE
2
) during inflammation, is one such molecule. PGE

2

appears to upregulate the expression of the 𝛼2𝛽1 integrin
via the EP1/PLC/PKCa/c-Src signaling pathways, leading to
increased cell migration [57]. Bradykinin (BK) is a vasoac-
tive peptide that mediates inflammatory responses and can
also stimulate cell proliferation. BK was found to enhance
chondrosarcoma cell migration by increasing 𝛼2𝛽1 integrin
expression, through the BK receptor and PLC/PKC𝛿/NF-𝜅B
signal transduction pathways [58]. High mobility group box
chromosomal protein 1 (HMGB-1) was originally identified
as a nuclear protein that plays important roles in chromatin
organization and transcriptional regulation. HMGB-1 has
multiple functions, including the release of pro-inflammatory
cytokines, cell proliferation, and cell migration. In human
chondrosarcoma cells, HMGB-1 appears to promote cell
migration by increasing 𝛼v𝛽1 integrin expression, through
the RAGE (receptor for advanced glycation end prod-
ucts)/PI3 K/Akt/c-Jun/AP-1 signal transduction pathway [59]
(Table 1).

5. Integrins as Signaling Receptors Regulating
Chondrosarcoma Progression

High levels of integrin expression have been found in chon-
drosarcomas. Often, this is correlated with metastasis and
poor prognosis. In light of this, it is noteworthy that integrins

can regulate a wide range of signaling pathways critical for
tumor growth and metastasis.

Increasing evidence suggests that ECM and its degrada-
tion products could play important roles in cancer progres-
sion and metastasis. Many of the underlying mechanisms are
likely to involve integrin signaling. Proteomic comparison
of human chondrogenic tumors revealed that the protein
C-propeptides of procollagens I𝛼1 (PC1CP) were highly
expressed in human chondrosarcomas, but not in benign
enchondromas. Soluble PC1CP can induce the expression
of VEGF and CXCR4 in a 𝛽1 integrin-dependent manner,
and this has been linked to chondrogenic tumor vascular-
ization and progression [60]. On the other hand, a different
extracellular matrix protein, the NH

2
-propeptide of type IIB

procollagen (PIIBNP), was found to be capable of inducing
cell death in chondrosarcoma, cervical and breast cancer cell
lines, via its interaction with the integrins 𝛼v𝛽3 and 𝛼v𝛽5
[61]. Osteopontin (OPN) is an important component of the
extracellular matrix in bone. The OPN protein has also been
found to play a crucial role in determining the metastatic
potential of various cancers. For example, OPN enhances the
migration of chondrosarcoma cells by upregulating MMP-9
expression, through the 𝛼v𝛽3 integrin receptor, FAK (Focal
AdhesionKinase),MEK, ERK, andNF-𝜅B-dependent signal-
ing pathways [62, 63] (Table 2).

The CCN family of small secreted cysteine-rich proteins
has six members (CCN1 to CCN6). The name CCN is
derived from the first three members of the family to be
discovered, namely, CYR61 (cysteine-rich angiogenic protein
61 or CCN1), connective tissue growth factor (CTGF/CCN2),
and nephroblastoma overexpressed (NOV/CCN3). CCNs
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Table 2: Integrin as a receptor regulates signalings in human chondrosarcoma cells.

Groups Ligand Integrin signaling Regulation Function References

Extracellular matrix
and its degradation
fragments and
by-products

PC1CP 𝛽1 VEGF expression ↑
CXCR4 expression ↑

Inducing chondrogenic tumor
vascularization and progression [59]

PIIBNP 𝛼v𝛽3 and 𝛼v𝛽5 Inducing cell death [60]
OPN 𝛼v𝛽3/FAK/MEK/ERK/NF-𝜅B MMP-9 expression ↑ Increasing cell migration [61]

CCN family

CCN1 𝛼v𝛽3/FAK MMP-13 expression ↑ Increasing cell migration [62]
CCN2 𝛼v𝛽3/FAK MMP-13 expression ↑ Increasing cell migration [63]
CCN3 𝛼v𝛽3/FAK MMP-13 expression ↑ Increasing cell migration [64]

CCN4 𝛼5𝛽1/FAK/MEK/ERK/IKK𝛼/𝛽/NF-
𝜅B MMP-2 activity ↑ Increasing cell migration [65]

CCN6 𝛼v𝛽3 and
𝛼v𝛽5/FAK/MEK/ERK/c-Jun/AP-1 ICAM-1 expression ↑ Increasing cell migration [66]

appear to regulate numerous biological processes, such as
differentiation, migration, proliferation, and cell adhesion.
Notably, aberrant expression of CCNs has been identified in a
broad range of tumor types. In human chondrosarcoma cells,
CCN1, CCN2, and CCN3 have been found to enhance cell
migration by increasingMMP-13 expression; this is mediated
via the 𝛼v𝛽3 integrin receptor and FAK-dependent signaling
mechanisms [64–66]. Other members of the CCN family
have also been studied, including CCN4 (WISP-1) and CCN6
(WISP-3).These integrin-binding proteins appear to regulate
cell migration in human chondrosarcoma cells by inducing
integrin-dependent signaling. CCN4 (WISP-1) increases the
activity of MMP-2, via the 𝛼v𝛽1 integrin receptor and the
FAK, MEK, ERK, IKK𝛼/𝛽, and NF-𝜅B pathways, leading to
enhanced migration of human chondrosarcoma cells [73].
Likewise, CCN6 (WISP-3) appears to function by increasing
ICAM-1 expression through the 𝛼v𝛽3 and 𝛼v𝛽5 integrin
receptor, FAK, MEK, ERK, c-Jun, and AP-1 pathways [74]
(Table 2).

6. Integrins as Therapeutic Targets in
Chondrosarcomas

Given the important roles of integrin-mediated signaling in
metastasis and cancer progression, there has been increasing
interest in therapeutic strategies to target these proteins. In
human chondrosarcomas, increased expression of integrins,
including 𝛼2𝛽1, 𝛼v𝛽1, 𝛼v𝛽3, 𝛽1, and 𝛽5, is closely associated
with tumor progression and metastasis. Signaling through
integrin receptors, such as 𝛼v𝛽1, 𝛼v𝛽3, 𝛼v𝛽5, and 𝛽1, may
also promote cancer progression by regulating cell migra-
tion. This review discusses a selection of emerging thera-
peutic approaches for chondrosarcoma, together with their
underlyingmolecular mechanisms.These include (i) integrin
antagonists, (ii) inhibition of the RANK/RANKL/OPG axis,
(iii) inhibition of FAK, (iv) inhibition of the IGF-I/IGF-IR
axis, and (v) herbal medicines.

6.1. Integrin Antagonists. Since the discovery of the integrin-
binding RGD sequence motif and its importance in mediat-
ing cell attachment, efforts have been made to develop RGD-
related small molecules as integrin antagonists. Cilengitide,

a cyclic RGD pentapeptide, is the first antiangiogenic small
molecule developed to target the integrins 𝛼v𝛽3, 𝛼v𝛽5, and
𝛼v𝛽1 [75]. This drug is currently being tested in phase III
clinical trials for treatment of glioblastomas, and in phase II
trials for several other tumor types [76]. Chemical modifica-
tions to the cilengitide molecule, including N-methylation at
distinct positions, canmodulate its biological, structural, and
pharmacokinetic properties; this could enhance selectivity,
particularly for the 𝛼v𝛽3 subtype [77]. In addition, since
integrin 𝛼v𝛽3 is expressed on the blood vessels that supply
tumors, as well as on the tumor cells themselves, antagonists
to this integrin might be particularly useful for treatment
of chondrosarcoma. Another drug, ATN-161, is a non-RGD-
based peptide inhibitor of 𝛼v𝛽1 that is currently in clinical
trials for cancer. In patients with advanced solid tumors who
were given ATN-161, prolonged stable disease was observed
in up to a third of the patients [78]. In a murine model
of metastatic colorectal cancer, combination therapy with
ATN-161 and 5-fluorouracil was found to reduce metastasis
and improve survival [79]. ATN-161 has also been shown to
reduce growth andmetastasis of breast cancer cells implanted
in mice [80]. The above findings suggest that this 𝛼v𝛽1-
inhibiting drug holds promise for the treatment of human
chondrosarcomas.

Etaracizumab (also known as vitaxin, Abegrin, or MEDI-
522), a humanized anti-𝛼v𝛽3 antibody, was the first anti-
integrinmonoclonal antibody to be tested in clinical trials for
cancer. In a phase I study on etaracizumab, prolonged disease
stabilization was observed in a number of cancer patients
with metastatic lesions, who received the drug beyond the
first cycle of therapy [81]. Etaracizumab was also shown to
decrease osteoclastic bone resorption by impairing osteoclast
attachment, without affecting osteoclast formation andmult-
inucleation; this could be useful for reducing metastatic bone
loss in cancer patients [82]. Volociximab (M200) is a chimeric
mouse-human anti-𝛼v𝛽1 monoclonal antibody, which has
shown anti-angiogenic activity in vitro and in vivo [83, 84].
In clinical trials, volociximab was well tolerated, and there
is support for its efficacy in metastatic melanoma and renal
cell carcinoma [85]. Consequently, these integrin antagonists
may also have therapeutic potential for chondrosarcomas, to
reduce metastasis and control tumor progression.
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Figure 1: Schematic representation of the mediators that increase surface expression of integrin (a) and integrin-mediated signalings (b)
which are shown to be novel therapeutic targets for chondrosarcomas.

The small molecule compound L-000845704 is an orally
bioavailable nonpeptide 𝛼v𝛽3 antagonist, which has been
tested in preclinical and clinical trials for the treatment of
osteoporosis [86, 87]. Another orally active nonpeptide 𝛼v𝛽3
antagonist, SB 273005, has been shown to prevent and reduce
edema and inflammation in a rat model of adjuvant-induced
arthritis [88]. The potential applications of these integrin
antagonists in the treatment of chondrosarcomas could be
explored.

6.2. Inhibition of the RANK/RANKL/OPG Axis. In human
chondrosarcoma tissues, RANKL and RANK expressions
are higher than those in normal cartilage. Activation of
the RANK/RANKL axis leads to the upregulation of 𝛽1
integrin, and contributes to enhanced migration in human
chondrosarcoma cells [56].These observations have prompt-
ed efforts to develop therapies targeting RANKL. One prom-
ising approach involves the targeting of RANKL signaling
with a decoy receptor, OPG, or with a soluble receptor form
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(RANK-Fc); this has been shown to inhibit bone metastasis
in a number of murine models [89–91]. A number of clin-
ical trials involving denosumab, a fully human monoclonal
antibody against RANKL, support its use as an alternative
treatment option for bone metastases [92–94].

6.3. Inhibition of FAK (Focal Adhesion Kinase). Numerous
studies indicate that integrin signaling through FAK plays
a role in promoting migration of chondrosarcoma cells [62,
64–66, 73, 74, 95]. Inhibition of endogenous FAK activity
by adenoviral overexpression of the C-terminal domain of
FAK effectively interrupts FAK signaling and its downstream
events; this was found to decrease cell invasiveness in
chondrosarcoma cell lines [96]. A recent phase I trial of an
inhibitor of FAK showed antitumor efficacy and minimal
toxicity in patients with advanced solid tumors. Such results
indicate that FAK might be another promising therapeutic
target [97].

6.4. Inhibition of the IGF-I/IGF-IR Axis. Insulin-like growth
factor 1 (IGF-1) can enhance the migration of chondrosar-
coma cells by upregulating integrin expression. In addition,
integrin binding can also regulate IGF-1 receptor (IGF-
1R) signaling [98]. Consistent with this, blocking ligand
occupancy of integrins reduced IGF-1-stimulated receptor
phosphorylation, and inhibited cellular migration and DNA
synthesis in response to IGF-1 [99]. This suggests that the
IGF-1 signaling pathway may be another potential ther-
apeutic target in chondrosarcoma [100]. Various IGF-1R
monoclonal antibodies, including R1507, figitumumab, and
ganitumab (AMG 479), have emerged as promising drugs for
the treatment of Ewing’s sarcoma, a small round-cell tumor
that typically arises in the bones and soft tissues. A number
of clinical trials to test these novel therapies are ongoing
[101–105]. These drugs could potentially be explored for the
treatment of other sarcomas, including chondrosarcoma.

6.5.HerbalMedicine. Berberine, an isoquinoline alkaloid, is a
bioactive molecule found in the Ranunculaceae and Papaver-
aceae plant families. Berberine, which has been shown to
inhibit cancer cell migration, was shown to downregulate
𝛼v𝛽3 integrin expression through the PKC𝛿, c-Src, and AP-1
pathways [106].

7. Conclusion

Chondrosarcomas are the second most common form of
bone malignancy. These tumors are relatively resistant to
chemotherapy and radiotherapy; currently, surgical resection
is the only effective therapeutic option. However, 5–10%
of conventional chondrosarcomas are high-grade tumors,
which show high metastatic potential and poor outcomes
after resection alone. It is therefore crucial to identify and
develop effective adjuvant treatments. Integrins, which are
cell surface proteins involved in diverse biological processes,
have been implicated in cancer cell migration, invasion, and

metastasis, during tumor progression. Consequently, target-
ing of integrin expression and signaling has been consid-
ered a promising approach in cancer therapy. Nevertheless,
integrins play a crucial role in many physiological processes;
for example, tissue morphogenesis, inflammation, wound
healing, and regulation of cell growth and differentiation.
Any inhibition of these may cause serious adverse effects
that must be taken to into account. Clinical and preclinical
studies aimed at inhibiting integrin expression and signaling
are ongoing. To date, however, integrin-targeted therapeutics
in chondrosarcomas have not yet been successfully trans-
lated into clinical practice. This review summarizes recent
progress in elucidating the molecular basis for integrin
function in cancer. We have discussed various mechanisms
and mediators that regulate the expression of integrins and
integrin-mediated signaling (Figure 1). This understanding
of molecular mechanisms could be translated into effective
therapies for chondrosarcoma.
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