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Abstract: Among abiotic stresses, heat stress is described as one of the major limiting factors of crop
growth worldwide, as high temperatures elicit a series of physiological, molecular, and biochemical
cascade events that ultimately result in reduced crop yield. There is growing interest among re-
searchers in the use of beneficial microorganisms. Intricate and highly complex interactions between
plants and microbes result in the alleviation of heat stress. Plant–microbe interactions are mediated
by the production of phytohormones, siderophores, gene expression, osmolytes, and volatile com-
pounds in plants. Their interaction improves antioxidant activity and accumulation of compatible
osmolytes such as proline, glycine betaine, soluble sugar, and trehalose, and enriches the nutrient
status of stressed plants. Therefore, this review aims to discuss the heat response of plants and to
understand the mechanisms of microbe-mediated stress alleviation on a physio-molecular basis. This
review indicates that microbes have a great potential to enhance the protection of plants from heat
stress and enhance plant growth and yield. Owing to the metabolic diversity of microorganisms,
they can be useful in mitigating heat stress in crop plants. In this regard, microorganisms do not
present new threats to ecological systems. Overall, it is expected that continued research on microbe-
mediated heat stress tolerance in plants will enable this technology to be used as an ecofriendly tool
for sustainable agronomy.

Keywords: heat stress; bio stimulant; microbes

1. Introduction

Heat stress is defined as the rise in the temperature of 10–15 ◦C above ambient. Heat
stress negatively affects plant growth and development at all stages, from germination
to harvesting [1–3]. Plants are sessile in nature and are exposed to variable temperature
ranges. The optimal temperature for plant growth is 60–75 ◦F [4,5]. A high temperature is
an environmental hazard and leads to abiotic stress that limits crop yield. Among all abiotic
stresses such as drought, salinity, heavy metal exposure, and temperature, heat stress
has the most devastating effect on plant metabolism and growth. Temperatures greater
than 75 ◦F are referred to cause heat stress. Above the normal temperature range, plants
restrict growth, development, and physiological cellular metabolism. Heat stress raises
the morbidity and mortality of plants and deteriorate their quality [6–8]. If the duration
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of heat stress increases, it may cause irreversible changes, such as cellular destruction, in
plant cells. Plants show various signs of heat stress, such as wilting, leaf damage, fruit drop,
blossom end rot, and bolting [9,10].

Higher temperatures lead to a cascade of cellular functions and the release of heat
shock proteins (HSPs), which minimize cellular damage in plants. Heat stress affects the
physiological processes of plant growth and development in several ways [11,12]. Several
studies conducted worldwide suggest various regulators of heat stress using different
omics approaches, as shown in Table 1. Heat stress increases membrane fluidity, leading
to the uncoupling of a reaction series resulting in altered metabolism, and impairs cell
machinery and chromatin changes in plants. The uncoupling of reactions leads to accretion
of intermediate products and reactive oxygen species in plant cells. Heat stress that turns
the central dogma blocks the degradation of proteins and disturbs the cytoskeleton of plant
cells [13–15]. The thylakoid membrane of chloroplasts falls off in response to heat stress,
which minimizes the function of the electron transport chain and impairs photosynthesis in
the photosystem II (PSII) [16]. A comparative analysis of the gradual heat stress response
and shock heat stress response was conducted in strawberry plants [17]. The results showed
a high level of peroxidase and minimal protein content. Increased peroxidase activity is
involved in thermotolerance [17]. Triticum aestivum subjected to heat stress restricted plant
seedling characteristics and germination index. The plant produced reactive oxygen species
and antioxidant enzymes that impaired photosynthesis and degraded proteins, thereby
affecting the entire germination process [18].

Heat stress is an extremely serious issue that is responsible for extensive crop loss and
will likely worsen in the future [19–21]. Temperatures above the optimal threshold value
have a negative impact on crop physiology from mild to permanent damage. Since heat
stress is a direct consequence of climate change, which ultimately increases the frequency
of heatwaves, resulting in global warming [22], ensuring plant recovery and survival
becomes a major challenge [23–25]. Moreover, as global warming worsens daily, strategies
to enhance plant thermotolerance are urgently needed.

Various measures can be taken to minimize heat stress such as shading and deep-water
planting of vulnerable plants. Furthermore, microbes are fundamental living components
on Earth that provide sustainability to plants against various stresses and provide nutrition
and resistance to combat diseases [26–28]. Microbial application is an advanced, globally
accepted, environmentally friendly, and sustainable technique that uses soil microbes in
stress-compromised plants to lessen the lethal effects of ecological stress. It is cheaper,
ecofriendly, and easily available; it can be adopted and applied to produce high-quality
yields. Plant–microbial interactions enhance the accessibility of plants towards organic
materials [29]. They also play an important role in sustainable agronomy and ecology.
Plant growth-promoting rhizobacteria synergistically improve plant growth by producing
phytohormones, minimizing stress levels, and elevating the nutritional status [30,31]. Cyclic
phosphorylation induces the expression of HSPs, which are molecular chaperones that may
also be produced by galactinol synthases [13,32]. Beneficial microorganisms associated
with plants can improve their resistance towards biotic and abiotic stresses. They alleviate
adverse effects of stress and promote plant growth [33–35]. It is important to explore the
plant microbial community that contributes towards providing resistance against different
environmental stresses. Only a few studies have reported plant–microbial interactions in
tackling heat stress in plants. The aim of this study was to gather information regarding
plant microbial endophytic and rhizospheric communities in the mitigation of heat stress.
Such information may enhance our current understanding of the role of microorganisms
in plant stress mitigation and thus enabling their use in a strategy to attain sustainable
agriculture under changing climatic conditions.
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Table 1. Physiological and molecular responses in plants against heat stress (NA: Not Applicable).

References
Country

Year
Plants Model/Approach Heat Stress

Regulators

Kotak et al. [22]
2007 Arabidopsis Omics

Phytohormone
HS

MBF1c
HOT2

Postgate et al. [36]
2013 Arabidopsis Microarray

HSP70
HSP60
APX

Peoples et al. [37]
2007 NA Appraisal TATA box proximal

5′ flanking regions

Allahverdiyeva et al. [38]
2004

Arabidopsis,
Lycopersicon esculentum Experimental HsfA1,2

HsfB1

Giller et al. [39]
2001

Lycopersicon esculentum,
Citrullus lanatus Experimental Phenolic components

Szymanska et al. [12]
2011 NA Appraisal

Dhn,
Sag,
Sgr

Ghosh et al. [17]
2004 Fragaria × ananassa Experimental Antioxidant enzymes

Saha et al. [18]
2010 Triticum aestivum Experimental Cellular, molecular

and metabolic cascade

Glick et al. [40]
1999 Soybean and Arabidopsis In vivo and In vitro

HSP90
HSP60
HSP20

2. Role of Microorganisms in Thermotolerance

Microbes are biological control agents that combat heat stress. Microbial inoculation
causes thermotolerance. Exopolysaccharides are released by bacteria under heat stress
containing 97% water, which improve the soil structure. Water remains available to plants,
so it is helpful during the stress period. Thermotolerance is a complex mechanism. It
has also been hypothesized that the production of proline and glycine betaine contributes
to thermoregulation [41,42]. The details of the two major categories of thermotolerant
microbes are discussed as below.

2.1. Endophytes

Endophytes are microorganisms that live in plant cells and form biofilms that interact
with plant exudates. Endophytes are used as biostimulants to produce various compounds.
Most endophytes are inaccessible because they live inside plant tissues and remain in sym-
biotic relationships [43,44]. In the light of plant–microbe interaction-mediated heat stress
mitigation, only limited studies are available. Endophytes form symbiotic relationships
with plants. To maintain a stable relationship, they produce various kinds of compounds
that promote the growth and development of the plants. They produce biochemicals that
cannot be synthesized [45,46]. Evidence of endophytes, their mode of action, and their
growth-promoting traits have been reported by increasing number of recent publications,
indicating their importance.

A field experimental study was designed to evaluate the inoculation effects of endo-
phytic microbe SA187 on Arabidopsis thaliana and wheat plants [47]. The plants were divided
into two groups: the untreated normal group, and the group inoculated with Enterobacter
SA187. The plants were exposed to high temperatures up to 44 ◦C to induce heat stress.
Agronomic traits were also assessed. Enterobacter sp. SA187 induced thermotolerance in
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plants and promoted thermopriming. The results were repeated over three consecutive
seasons. The inoculation treatment group showed an increase in overall plant biomass and
height by 10–14%, grain yield by 40%, and seed weight by 12%. These results suggest that
SA187 inoculation is beneficial to plants to enhance the heat tolerance [47].

Meena et al. studied tomato plant seedlings subjected to heat and drought stress.
Septoglomus deserticola and S. constrictu were inoculated, and cellular parameters were
measured. Inoculation decreased oxidative stress and minimized the level of reactive
oxygen species. The symbiotic effect improved cellular performance, stomatal conductance,
and leaf water content. The mycorrhizal inoculation improved and enhanced physiological
features under combined stress [48].

The inoculation of B. cereus SA1 on soybean plants under heat stress conditions causes
thermoregulation [49]. The analysis showed increased chlorophyll a and b, carotenoid, pro-
tein, ascorbic acid peroxidase, and superoxide dismutase levels in plants. SA1 significantly
improved thermoregulation [49] (Table 2).

Table 2. Application of endophytes in mitigating heat stress in plants (↑: Increase Traits, ↓: De-
crease Traits).

References
Country

Year
Microbes Model Plant Parameters MOA Stress Effect

Park et al.
[47]
2021

Enterobacter
SA187

Vitro
Experimental

field

Arabidopsis
thaliana,

Wheat plant

↑ Biomass, ↑
10–14% height,↑
40% grain yield
and seed weight

12%.

Chromatin
modification Long term Beneficial

Meena et al.
[48]
2018

Septoglomus
deserticola

and
Septoglomus

constrictu

In vitro Solanum ly-
copersicum

Improved
Stomal

conductance,
water content
and leaf water

content

↓ Oxidative stress Heat
+drought Improved

Anli et al.
[41]
2011

Pseudomonas
fluorescens,

Pantoea
agglomerans,

Mycobacterium
sp., Bacillus
amyloliquefa-
ciens, Pantoea
agglomerans

Appraisail Triticum
aestivum

HSP90
Antioxidant

enzymes, HSTP
Thermoregulation High temp Significant

Anli et al.
[41]
2011

B. phytofirmans NA Solanum
tuberosum

↑ Proline and
glycine betaine Thermotolerance High tem-

perature
Good bio-

control

Bisht et al.
[49]
2020

B. cereus SA1 Experimental Soybean

↑ Chlorophyll a
and b

↑ Carotenoid,
↑ Chlorophyll

florescence

Thermotolerant Medium to
high temp

Bio
fertilizer

2.2. Plant Growth-Promoting Rhizobacteria (PGPR)

Bacteria that colonize in the roots of plants or along the rhizopheric axis and promote
plant growth are known as PGPR. They promote plant growth directly by regulating
nutritional status (phosphate solubilization, N fixation, iron sequestration) and hormone
synthesis (IAA, GB, CK, etc.). They also promote plant growth indirectly by providing
immunity to plants against environmental stress and by producing compatible solutes such
as proline, sugars, organic acids, and glycine betaine [50,51]. Table 3 summarizes the recent
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studies on inoculation of PGPR to plants under heat stress, their effects, and mechanism
of action. Overall, the inoculation of PGPR is beneficial to the plants to overcome the
deleterious effects of heat stress as illustrated in Figure 1.
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Microbes are beneficial for the thermotolerance of plants. In the field experiments,
Triticum aestivum was selected as a model plant for inoculation with Bacillus amyloliquefa-
ciens UCMB5113 and was exposed to short-term heat stress. Glutathione reductase and
transcription factors were selected as gold standards for comparative analysis. The results
showed that the inoculated plants had reduced APX1, GR, SAMS1, and HSP17 expression.
The recovery and survival of inoculated plants were more significant than those of non-
inoculated plants [52]. The inoculation of B. cereus SA1 on soybean plants under heat stress
conditions caused thermoregulation. The analysis showed increased chlorophyll a and b,
carotenoid, protein, stress tolerant enzymes levels in plants. SA1 significantly improved
thermoregulation [49].

In 2021, in vitro experimental plants grown in a growth chamber suggested that
PGPR play a key role in thermotolerance. The bacterial species Bacillus cereus, Pseudomonas
spp., Serratia liquefaciens, P. fluorescens, and Pseudomonas putida, which were hosted in
Solanum lycopersicum L, Cajanus cajan, G. max, and Triticum spp., caused the production of
phytohormones, antioxidant enzymes, and ACC-deaminase consequently mitigated heat
stress [53].

The microbial isolates Burkholderia phytofirmans PsJN, Curvularia proturberata isolate
Cp4666D, which were hosted in T. aestivum, Dichanthelium lanuginosum, and S. lycopersicum
caused remarkable thermotolerance in plants. Microbes increased the production of IAA
and cytokines, as well as the molecular protein and chlorophyll contents, suppressing plant
pathogens and production of free radicals [54].

Kang et al. conducted an experimental study in the Republic of South Korea on Glycine
max (Soybeans) that was subjected to heat stress to reveal the effect of microbial inoculation.
The heat stress conditions were a day/night cycle of 16 h at 38 ◦C and 8 h at 30 ◦C for
1 week. Soybeans are highly sensitive to heat stress, and the use of PGPR counters the
negative effects of heat stress. The bacterial strain Bacillus tequilensis SSB07 was inoculated
into the plant and various growth attributes such as seedling growth and production of
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GBs, IAA, and ABA were recorded. SSB07 increased shoot length and biomass. SSB07
countered the negative effects of heat stress on crop growth and development [55].

The Pseudomonas sp. strain AKM-P6 was inoculated into sorghum. Sterilized seeds
were smeared with a talc-based formulation (108 cells/g) of strain AKM-P6 and sown
in plastic cups. Five-day-old seedlings were exposed to heat stress and harvested after
10 d. The samples were analyzed using a scanning electron microscope, and other plant
biochemical parameters were assessed. The conditions were a temperature of 47–50 ◦C
during the day and 30–33 ◦C at night for 10 days. The microbial strain AKMP6 improved
the high temperature stress in sorghum seedlings. The microbial strain AKMP6 helped
sorghum seedlings endure and grow at preeminent temperatures for up to 15 days, whereas
the inoculated plants died after 5 days. Bacterial inoculation promoted the biosynthesis of
high-molecular-weight proteins in leaves under increased temperature, compact membrane
injury, and increase in the levels of cellular metabolites. The strain AKM-P6 augmented the
lenience of sorghum seedlings by inducing physiological and biochemical changes in the
plants [56].

Triticum aestivum was inoculated with Pseudomonas putida strain AKMP7. The disin-
fected seeds were planted in plastic pots. After 2 weeks, each seedling was dispersed in
one pot. The plants were unprotected from heat stress, and after 95 d, the seedlings were
collected to assess their growth and enzymatic activities on the 110th day of growth. The
temperature conditions were 37–40 ◦C during the day and 27–30 ◦C at night for 95 d. The
inoculation of AKMP7 increased the levels of cellular constituents, plant development, and
total biomass. AKMP7 also convalesced with the survival and growth of wheat plants
under heat stress by increasing their root and shoot length, dry biomass, tiller, spike, grain
formation, and reducing membrane injury and antioxidant enzyme activities such as SOD,
APX, and CAT activities under heat stress. The results showed that AKMP7 could be effec-
tive in relieving heat stress and subsequently improving the growth of wheat plants under
heat stress [55]. In other trials, the thermotolerance potential of Glycine max inoculated with
Bacillus aryabhattai SRB02 and subjected to 38 ◦C/30 ◦C day/night heat stress for 0, 12, and
48 h was measured. At vegetative stage 3 (V3), 10 mL of bacterial culture (1 × 108 cfu/mL)
was applied for 3 days. Growth parameters were recorded after the application of heat
stress. SRB02-treated soybean plants showed significantly better thermotolerance than the
untreated plants, based on their ABA-mediated stomatal closure and increased IAA, JA,
and GA contents, plant growth, and biomass. SRB02 also endured extraordinary nitrosative
stress induced by the nitric oxide donors GSNO and CysNO. These results suggest that
SRB02 may be a valuable source of biofertilizers to increase crop production [47].

In 2014, Abd El-Daim performed an experimental study on microbial mitigation of
heat stress in wheat crops. Triticum aestivum seeds were soaked in a bacterial suspension
(1 × 107 cfu/mL) for 2 h at 28 ◦C and grown in pots in a growth chamber for 12 days. The
plants were subjected to a higher temperature of 45 ◦C, following which the expression
levels of ascorbate peroxidase (APX1), S-adenosylmethionine synthetase (SAMS1), HSP17.8,
heat-inducible transcription factor (HsfB1), heat shock factor 3 (HsfA3), and MBF1c was
determined. Bacterial treatment improved the heat stress control in both cultivars of wheat
by levering the transcription levels of several stress-related genes and ascorbate-glutathione
enzymes. Seeds treated with two PGPR strains that colonized the roots amended their
thermotolerance [57].

In 2015, another scientist, Meena, conducted an experiment using another bacterial
species to observe the effect of beneficial microbes under heat stress in plants. A T. aes-
tivum cultivar (HUW-234) was inoculated with Pseudomonas aeruginosa strain 2CpS1 in a
greenhouse experiment. The growth chamber conditions were 30 ◦C/25 ◦C day/night for
24 days. Strain 2CpS1 increased the seedling length, leaf area, biomass, total chlorophyll
content, relative water content, and soil moisture contents. The application of stress-tolerant
PGPR strains could be used as a reasonable approach for cultivating crops at elevated
temperatures [48].
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In another experiment, T. aestivum were subjected to high temperature stress, and
their thermotolerance potential towards heat stress was recorded. Seeds were grown in
hydroponics for 7 days, and after one day of microbial constrain of SN13 inoculation,
seedlings were exposed to 45 ◦C. After completing the experiment, physiological and
biochemical factors such as membrane potential, osmolytes accumulation, proline content,
lipid peroxidation, total soluble sugar, and six stress-responsive genes were assessed. The
results suggest that SN13 positively controls the expression of stress-responsive genes and
phytohormones, suggesting its multidimensional role in stress response. The differential
responses of rice seedlings to heat stress and phytohormones were confirmed using princi-
pal component analysis (PCA) based on the effects of SN13 inoculation on the response of
rice to heat stress and phytohormone treatments [58].

Moreover, 23-day-old sprouts of Lycopersicon esculentum were bio-primed with a
bacterial inoculum of Paraburkholderia phytofirmans strain PsJN at 106 CFU/mL and planted
into the green house. Leaf gas exchange ratio, chlorophyll fluorescence rate, photosynthetic
pigment content, and other parameters were evaluated. The greenhouse temperature was
maintained at 32 ◦C under 16 h of light and at 27 ◦C for 8 h of dark for 45 days. PsJN
improved plant growth attributes such as chlorophyll content, photosystem II, and sugar
and total protein content. The PsJN strain can improve the destructive effects of heat stress
by stimulating the thermotolerance mechanism of tomato plants [52].

Table 3. Application of plant growth-promoting rhizobacteria in mitigating heat stress (↑: Increase
Traits, ↓: Decrease Traits).

References
Country

Year
Microbes Model Plant Parameters MOA Stress Effect

Abd El-Daim
et al. [57]

2014

Bacillus
amyloliquefaciens

UCMB5113
Field Triticum aestivum ↑ Survival * rate

↓ GR
↓ APX
↓ HPS17

Short Beneficial

Rana et al. [54]
2012

Curvularia
proturberata isolate

Cp4666D,
Burkholderia

phytofirmans PsJN

Field
experiment

Triticum aestivum,
Dichanthelium
lanuginosum,

Solanum
lycopersicum

Production of IAA,
cytokines, protein
and ↑ chlorophyll

↓ Pathogen, ↓
ROS Heat stress Beneficial

Mitra et al. [59]
2021

Bacillus cereus,
Pseudomonas,

Serratia
liquefaciens,

P. fluorescens and
Pseudomonas putida

In vitro
S. lycopersicum L.,

Cajanus cajan,
G. max, and

Triticum spp.

↑ ACC-deaminase,
Production,

↑ phytohormone
and ↑ antioxidant

defense

Thermal
tolerance High temp Sustainable

Maitra we al.
[58]
2011

Aeromonas
hydrophilla

Serratia liquefaciens
Serratia

proteamaculans

In vitro Glycine max ↑ Exopolysacchrides
production Thermotolerance High temp Remarkable

Kang et al. [53]
2019

Bacillus tequilensis
SSB07 Experimental Glycine max

↑ Gibberellins
↑ IAA and ↑ ABA,
jasmonic acid and

salicylicacid
contents

Thermotolerant Moderate Improvement

Ali et al. [55]
2011

Pseudomonas
putidaAKMP7 Experimental Triticum aestivum

↑ Root and shoot
length, ↑ biomass, ↑

SOD, ↑ CAT
and APX

Thermotolerant High Improvement

Ali et al. [56]
2009

Pseudomonas
AKM-P6 Experimental Sorghum ↑ Cellular

metabolites Thermotolerant High Improvement

Park et al. [47]
2017

Bacillus aryabhattai
SRB02 Experimental Glycine max ↑ ABA ↑ IAA, JA,

GAs contents,
Fertilizers+

thermotolerance Medium Improvement

Meena et al.
[48]
2015

Pseudomonas
aeruginosa 2CpS1

Net house
experiment

Triticum aestivum
cultivar

(HUW-234)

↑ Plant height and
root length,
↑ chlorophyll

content,

Mitigation High Improvement
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Table 3. Cont.

References
Country

Year
Microbes Model Plant Parameters MOA Stress Effect

2018 Bacillus
amyloliquefaciens Experimental Oryza sativa

↑ Proline, Total
Soluble Sugar,
↑ Lipid Peroxida-

tion and over
expression of six

stress-responsive of
dehydrin (DHN),

glutathione S-
protein 6

(NRAMP6) genes

↑Modulated
stress-

responsive gene
expressions ↑

phytohormone

High Significant

Issa et al. [52]
2018

Paraburkholderia
phytofirmans PsJN

Green house
experiment

Lycopersicon
esculentum

↑ Growth
Biomass

Chlorophyll
content

↑ Chlorophyll
content,

Photosystem II,
↑Accumulations
of sugars, total
amino acids,
proline, and

Malate.

Thermotolerant Improvement

3. Physiological Changes Induced by Thermotolerant Microbes in Plants under
Heat Stress
3.1. Photosynthesis

Photosynthesis is a natural cellular respiration process by which plants convert light
energy into chemical energy [60]. Heat stress disrupts the photosynthetic apparatus,
resulting in the inhibition of plant growth and development. Studies have suggested
that it inhibits the production of ribulose 1, 5-bisphosphate (RuBP), which is involved
in the electron transport chains [61,62]. Heat stress also inactivates enzymes involved in
photosystem 11 lowering the rate of photosynthesis [63,64]. However, under heat stress,
oxygenic microbes contain light-harvesting pigments that induce the reprogramming of
cellular events in the thylakoid membrane [65–67]. They release oxygen and absorb carbon
dioxide. Cyanobacteria are one of the bacteria that support photosynthesis and promote
plant growth [68].

3.2. Changes in Respiration

Respiration is a chemical process that involves oxygen and glucose to produce energy
for plant survival and is important in maintaining plant growth as well as the carbon cy-
cle [69,70]. Higher temperatures enhance cellular respiration owing to the increased kinetic
energy. However, most of this energy is apportioned to maintain respiration, resulting in a
general reduction in the energy utilization efficiency of plants [70,71]. Beneficial microbes
increase soil respiration and improve nutrient cycling in plants. Microbes can minimize
stress levels and restore ecosystems to an equilibrium state. Plant–microbe interactions
maintain nitrogen, hydrogen, sulfur, and oxygen levels in a biogeochemical cycle [72,73].

3.3. Stomatal Closure

Stomata are microscopic openings present in the epidermis of leaves. Stomatal opening
and closing are important for maintaining the physiological functions such as transpiration,
and stomatal closure is a common adaptative response to heat stress [74,75]. Under heat
stress, there is a possibility of rapid water loss. Plant–microbial interaction enhances the
production of abscisic acid (ABA), a phytohormone, also known as a stress hormone, that
activates various biotic and abiotic stress conditions, causes the closure of stomata, and
is also important in osmoregulation [76,77]. The microbial production of ABA causes
simultaneous stomatal closure [78,79]. Plants close their stomata to reserve water loss
caused by evaporation [75].
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4. Molecular Mechanism of Action of Microbes in Mitigating Heat Stress in Plants
4.1. Nitrogen Fixation

Nitrogen fixation is a natural process by which gaseous N2 is converted into biological
forms of NH3 and NH4. Nitrogen is a macronutrient in plants. Heat stress promotes N
accumulation in the meristems of plant cells via apical blade erosion and plays a vital role
in energy metabolism, protein synthesis, and photosynthesis [80,81]. Higher temperatures
delay the development of nitrogenase activity in plants, resulting in inhibition of N fixation,
leading to stunted growth of plants [82,83]. Microbes can mitigate heat stress by enhancing N
fixation. Microbes can transfer inert atmospheric N into the most reactive forms of ammonia,
nitrates, and nitrites through a series of chemical reactions [84–86]. Thus, microbes possess
a relatively symbiont relationship with plant species known as diazotrophs [87,88]. There
are two kinds of nitrogen fixating microbes (symbiotic and no symbiotic) that improve the
soil nitrogen concentration, rhizobacterial population levels, soil nitrogenase activities and
N uptake in plants [89]. Zhang et al. in [90] tested the beneficial effect of several bacterial
strain on soybean growth under suboptimal temperature and found that the bacterial growth
promoting effects are caused by the bacterial nitrogen fixing potential. Various recent studies
are reported in favor of mitigation of heat stress by nitrogen fixing bacteria [91,92].

4.2. Microbial Production of Siderophore

Siderophores are organic compounds with low molecular weights. These compounds
have a high affinity for iron-chelating compounds. Microbes can produce siderophores,
which are microscopic, high-affinity iron-chelating combinations. These serve primarily
to transport iron across the cell membranes through membrane receptors. Various gram-
positive and gram-negative bacteria produce and secrete siderophore to scavenge iron from
the environment [93,94]. Plant–microbial interactions enhance siderophore production, ulti-
mately improving the nutritional status and growth of plants under stress [95]. Application
of siderophore producing bacteria Pseudomonas putida and Pseudomonas sp. have shown
the improvement in growth, chlorophyll and plant biomass in wheat and sorghum under
heat stress [55,56].

4.3. Microbial Production of 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase

Some microorganisms can produce the enzyme ACC-deaminase and promote plant
growth by sequestering and splitting plant-produced ACC, producing α-ketobutyrate and
ammonia, which lowers the level of ethylene in plants. This is the most efficient mechanism
of action for plants to tolerate stress and promotes a much easier lifestyle in the soil [96–98].
Plant–microbial interactions enhance ACC-deaminase production, which facilitates plant
growth under stress conditions [99]. Recently reported ACC deaminase activity produced
Achromobacter piechaudii, which moderated ethylene metabolism and ultimately resulted
in better heat tolerance in pepper [100]. Furthermore, ACC deaminase producing Brevibac-
terium linens enhance combined heat and UV-B radiation stress in rice plant and enhance
plant biomass, photosynthetic traits and decrease ethylene emission [101]. In another study
of Mukhtar et al. in [102], they reported that ACC deaminase producing Bacillus cereus
mitigate heat stress in tomato and observed drastic morphological and physiological effects
on tomato plants under heat stress.

4.4. Microbial Production of Phytohormone

In response to stress, microbes can produce phytohormones that act as endogenous
growth regulators by reducing stress and optimizing plant growth. Microbes produce vari-
ous hormones such as gibberellin (GB), cytokinin (CK), salicylic acid (SA), indole-3-acetic
acid (IAA), and ABA [103,104]. The mechanism of stress mitigation involves modulating
antioxidant potential and maintaining the osmolyte potential of plants. Most prominently,
ABA is produced under stress conditions and is termed a stress hormone. It causes stomatal
closure, preventing osmolyte loss through evaporation [57,105]. Phytohormones form
signaling networks. Various studies have suggested that the exogenous application of ABA
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mitigates heat stress and its consequences. ABA is a vital hormone that reduces oxidative
stress by activating the defense system, leading towards redox homeostasis [54,55,59].
Plant–microbial interaction also enhances the production of the GB hormone, which is
important in regulation of developmental process such as germination, flowering, fruit,
and leaf senescence. It controls major aspects of plant growth. Under plant–microbial
interaction, there is an increase in the level of auxin, which positively modulates the genetic
expression and enhances the activity of the defensive antioxidant system of the plants [106].
Auxin producing Azospirillum brasilense was reported to mitigate heat stress in wheat by
maintaining water status [107]. Khan et al. had demonstrated how thermotolerant Bacillus
cereus mitigate heat stress in tomato and soybean through moderation in the auxin lev-
els. Similarly, gibberellins is another phytohormone that are produce by bacteria and are
involve in all plant growth and development including stem elongation, leaf expansion
and fruit ripening [108]. Atzorn et al. in [109] reported gibberellin producing bacteria first
time in Rhizobium meliloti. Nowadays, several genera of Pseudomonas, Serratia, Bacillus, and
Arthrobacter bacteria have been reported for the production of different GAs.

4.5. Molecular Approaches

To sustain crop yield through thermotolerance, plants evolve through a series of
cascade events. Previous electronic data on heat stress phenomena are available, including
data on the production of classical chaperone proteins. In Germany, an experiment was
designed to evaluate the thermotolerance mechanism of Arabidopsis. Results showed
that phytohormones (ABA, SA, and ethylene), oxidative stress, and several mutants were
involved in thermotolerance. An applied molecular dynamics study revealed that the genes
MULTIPROTEIN BRIDGING FACTOR 1c (MBF1c) and HOT2, which encode chitinase-like
proteins, are involved in acquiring hemostatic heat tolerance [110].

Molecular dynamics studies have extended our knowledge of plant thermotolerance
and its associated genes. Microarrays suggest that heat stress causes the development of
various HSPs. Among them, HSP70, APX, and HSP60 are potent and thermodynamically
involved [36]. The responses of plants to heat stress are unique. Various studies have
strengthened our understanding of the vital roles of HSPs. HSP70, HSP90, and HSP20b func-
tion to analyze mutants, denature proteins, and for homooligomerization, respectively [40].
Heat stress deranges chromatin organization in plant cells. JUMONJI (JMJ proteins are
responsible for chromatin organization. These are histone demethylase proteins found in
nature [111–113]. Demethylases are enzymes that eliminate methyl groups from molecules
and promote structural support to chromosomes. Plants maintain heat memory stress because
of lowered H3K27me3 (histone H3 lysine 27 trimethylation) expression in small heat shock
genes [114–116]. These are an important family of proteins that control heat shock genes, thus
allow plant cells to tolerate heat stress via a memory mechanism [117–119].

The production and accumulation of HSPs range from molecular mass 10 kDa to
100 kDa. Studies have shown that the application of genetic stock, where heat shock
elements are present in a TATA box in the proximal 5 flanking regions of heat shock genes,
and the application of osmoprotectants can combat heat stress [37]. In 2011, a study on
heat stress reported detailed information about the heat mechanism wherein senescence-
associated genes (sag), dehydrins (dhn), and HSP stay-green (sgr) genes are involved
in stabilizing heat stress. Plant thermotolerance can be improved through molecular
breeding [12]. To minimize heat stress, more than 20 heat shock factors are involved in
initiating a cascade event series to trigger, maintain, and recover the plants. Two main
factors HsfA1, 2 and HsfB1 are responsible for thermotolerance. HsfB1 is a co-regulator
that activates Hsf, a working horse that is activated in the summer [11]. Acute and chronic
heat stress affects plant growth, development, and yield [120].

4.6. Microbial Production of Volatile Compounds

Plant–microbial interactions enhance the production of volatile compounds. Various
microorganisms, such as Bacillus and Pseudomonas produce volatile compounds when
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inoculated into the host plants. These are important compounds with a range of more than
200 types such as isoprenoids and terpenoids, which are known as growth inducers. They
also promote the defense system of plants. In an experimental setup of tomato and water-
melon plants grown in a growth chamber for 30 days at various temperatures, the authors
evaluated the responsive components against heat stress. Moreover. HSPs and other plant
components are also involved in thermoregulation. The acclimatization of plants is because
of the bioactivity of phenolic compounds and the inhibition of oxidation [39,121,122].

4.7. Organic Acid Production

Organic acid are considered as an essential source of carbon and are rich in vitality. Plant
growth promoting bacteria synthesize various secondary metabolites such as phytohormones
and organic osmolytes that activate host plants stress management mechanisms and solubilize
nutrients for easy absorption by plants [123]. Organic acid producing bacteria alleviate heat
stress and enhance plant growth in soybean and tomato [105,124,125]. Table 1 summarizes
the physiological and molecular approaches of microbes in mitigation of heat stress.

5. Conclusions and Future Prospective

It is evident that there is an increasing demand for sustainable agronomy to meet
the needs of the growing population and enhance agronomic yield without disturbing
ecological components. Since 2000, there has been an increase in the demand for bio
stimulants as growth promoters, and research interest and publication are increasing in
the area of heat stress management using beneficial microbes [126,127]. Microorganism
inoculation enhances resistance and tolerance towards heat stress. The isolation and
identification of beneficial microbes in the cross-protection of plants would be highly
valuable. Beneficial microorganisms alleviate the adverse effects of stress through the
production of phytohormones and certain metabolites and enhance plant defense systems
as shown in Figure 2 (Both images were created using Biorender.com). Plant–microbial
interactions activate the antioxidant defense system. They have also been found to improve
ion homeostasis by maintaining osmo-protectant levels. Therefore, it is important to
explore plant-associated microbial communities. Only a few studies have reported plant–
microbial interactions in heat stress regulation. Overall, this review suggests that use of
microorganisms needs to be thoroughly explored in the field of agronomy for mitigating
heat stress and attaining the goal of sustainable agriculture.
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