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Abstract

This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or
connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate
localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to
impact with degradation in the structural connectome for a single individual. The finite element model incorporates various
length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging.
Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular
injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the
‘‘damaged’’ network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most
axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage
that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death
relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations
predict no network nodes were completely disconnected from the network, despite significant damage to network edges.
At early times (tv24 hrs) network measures of global and local efficiency were degraded little; however, as time increased
to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform
functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based
understanding of injury, but also neurophysiological insight.
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Introduction

The finite element method is often used to study neurotrauma

[1–9] and continues to emerge as a useful tool in the field of

neuroscience [10–13]. Models continue to advance in biofidelity

by incorporating an increased level of anatomic detail [4,13,14],

improved representation of the material behavior at various

loading rates [15–20], and advanced measures and predictions of

injury [8,21,22]. Finite element models are commonly used to

understand the biomechanics of brain and skull deformation when

the head is subjected to insult, leading to improved insight into

mechanisms of acute injury. For example, modeling axonal injury

mechanisms within white matter of the brain has been the focus of

some recent efforts and provides a means to relate an insult to a

cellular injury mechanism [8]. By using diffusion tensor imaging

(DTI) fiber tractography, the structural orientation of neuronal

axonal bundles can be incorporated into the finite element model

and can be used to compute the axonal strain during brain white

matter deformation [8,23]. Then, by using an axonal injury

threshold, the occurrence of diffuse axonal injury (DAI) is

predicted [8]. Wright and Ramesh [8] show that the degree of

injury predicted is highly dependent on the incorporation of the

axonal orientation information and the inclusion of material

anisotropy into the constitutive model for white matter. By

modeling the underlying mechanism of DAI, an enhanced

understanding of the neurotrauma is attained through a spatio-

temporal description of tissue deformation. In general, finite

element simulations may help to elucidate the injury mechanisms

of neurotrauma.

As finite element models advance, experimentally based models

of neurotrauma also continue to become more sophisticated,

ranging from the macroscopic [24,25] to the cellular level [26–29].

Various biomechanical and physiological injury thresholds for

neurotrauma have been proposed in the past, including intracra-

nial pressure [21] and strain [8,30,31]. While these thresholds offer

an immediate prediction of injury, they lack a long-term

description of functional degradation. A time-evolving injury

model is attractive since the biological response occurs on a slower

time scale than an injurious stimulus as a consequence of

mechanotransduction cascades [27]. There have been significant
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efforts to develop empirically based time-evolving cellular injury

thresholds, which many times use in vitro cellular and tissue

culture models. Morrison III et al. [27] suggest that for brain

biomechanics, neuronal culture models that accurately mimic

specific brain features can be used to explore tissue properties and

tolerances or thresholds to mechanical loading. Cell death has

been primarily used as a definition of injury within the neuronal

culture model community and has been applied to determine

tissue-level tolerance criteria using local values of axonal strain,

strain rate, and time from ‘‘insult’’ [32,33]. Furthermore, as

Morrison III et al. [27] point out, empirical functions for cellular

death based on culture models could be incorporated into finite

element analyses, thereby enabling biological predictions to

supplement mechanical predictions of local tissue stress and strain.

In the study presented here, this concept is further explored and

used as a bridge to a network-based analysis of the brain.

As physics-based models become more capable of predicting

tissue-level injury mechanisms from improved computational and

experimental resources for biomechanics, there remains a need to

understand how structural damage in a given location of the brain

evolves, and how it may influence functional or cognitive

performance over time. Such a goal is complex and difficult. For

example, as Kaiser et al. point out [34], in some instances the

brain can be robust to physical damage, and in other instances

physical damage can cause severe functional deficits. Nevertheless,

Kaiser et al. [34] pursue the important and unanswered question:

Are the severity and nature of the effects of localized damage

predictable? To help explore the answer to this question, tools are

being developed for the quantitative analysis of brain network

organization, based largely on graph theory [35,36]. Typically,

network nodes represent brain regions, often obtained from high

resolution magnetic resonance imaging (MRI). The network links

or edges between brain regions represent interregional pathways

that convey neuronal signals and are commonly obtained from

non-invasive DTI or diffusion spectrum imaging (DSI) [37,38].

The connection matrix of the network of the human brain forms

the so-called ‘‘human connectome’’ [35,36,39,40]. Recently, Jirsa

et al. [41] used connectomics to establish a framework for a

‘‘virtual brain’’, in which network modeling is used to understand

the intact and damaged brain. Similar to previous work,

hypothetical or random deletion of nodes or edges were used to

degrade the structural connectome [42]. More recently, structural

and diffusion images from 14 healthy subjects were used to create

spatially unbiased white matter connectivity importance maps that

quantify the amount of disruption to the overall brain network that

would be incurred if that region were compromised [43]. In this

study, we attempt to extend the capabilities of neurocomputational

models by providing a physics-based approach for predicting

degraded regions of interest. Physics-based injury predictions may

help inform structural connectome analysis.

In this study, neurotrauma is investigated by using finite element

simulations of a single individual subjected to a simulated head

impact. Tissue damage is computed using empirically based

damage models that provide a link from macroscopic biomechan-

ical deformation to mesoscopic damage. Axonal bundle tracts are

explicitly modeled using a multiscale description of white matter

tracts obtained from diffusion tensor imaging. Then, using the

physics-based injury predictions for white matter tissue from finite

element simulations, the structural brain connectivity or con-

nectome is degraded, and various network measures are comput-

ed. This is an important contribution because finite element

simulation predictions of tissue damage provide physics-based

reasoning for removing nodes or degrading edges to create the

‘‘damaged’’ brain connection matrix. In turn, this approach may

provide further insight into mild traumatic brain injury by

shedding light on the relationship between mechanical stimulus

to the brain and neurobiological processes that result. Further-

more, if successful, the computational framework presented herein

could supplement ongoing efforts to evaluate the use of non-

invasive medical imaging tools, such as diffusion tensor and

spectrum imaging, to detect white matter disruption for neuro-

trauma diagnostics [44,45] by providing a time-evolving history of

tissue injury.

Methods

A suite of medical imaging and software tools are used to obtain

an individual-specific finite element model and structural con-

nectome-based analysis. The overarching process is schematically

shown in Figure 1 and is outlined below.

Individual Specific Models
T1 and diffusion tensor magnetic resonance images are taken

from a single individual (the corresponding data can be found in

[37]). The T1 image (Figure 1a) is segmented into different head

materials (Figure 1b) using the software Amira [46] and the

Connectome Mapper Toolkit [47]. The segmented geometry is

then used to create a biofidelic three-dimensional finite element

volume mesh (Figure 1c). In order to create a corresponding

structural connectome or network, the T1 image is parcellated into

83 regions of interest (ROI) representing the location of

anatomical regions of the brain based on the Desikan-Killiany

atlas extended to include subcortical regions [48]. Since diffusion

tensor images (Figure 1e) are used to generate axonal bundle fiber

tractography based on the direction of peak water diffusion in each

voxel [49], the DTI fiber tractography (Figure 1f) represents the

approximate location of neuronal axonal bundles [50]. Fibers are

filtered for connectome creation to include only fibers that begin

and end within ROI. The structural connectome is assembled

using the Connectome Mapper Toolkit [47] and is composed of

nodes representing ROI generated at the centroid, connected by

edges that represent structural pathways for which the DTI

tractography traverses. Following the segmentation enabled

by the Desikan-Killiany brain atlas, there are 83 network nodes

and 1029 network edges. Furthermore, DTI fiber tractography is

Author Summary

According to the Centers for Disease Control and
Prevention in the United States, approximately 1.7 million
people, on average, sustain a traumatic brain injury
annually. During the last few decades, brain neurotrauma
biomechanics has been an active area of research
involving medical clinicians and a broad range of scientists
and engineers. In addition, advances and fast growth of
human connectomics continues to reveal new insights into
the damaged brain. With recent advances in computa-
tional methods and high performance computing, we see
the need and the exciting possibility to merge brain
neurotrauma biomechanics and human connectomics
science to form a new area of investigation - connectome
neurotrauma mechanics. For neurotrauma, the idea is
simple - inform human structural connectome analysis
using physics-based predictions of biomechanical brain
injury. If successful, this technique may be further used to
inform human functional connectome analysis, thus
providing a new tool to help understand the pathophys-
iology of mild traumatic brain injury.

Connectome Neurotrauma Mechanics
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Figure 1. A flowchart of the process for creating the finite element model and connectome from T1 and diffusion MRI. (a) The T1
image is (b) segmented into different head materials. The segmented geometry is then used to create (c) a biofidelic three-dimensional finite element
volume mesh. The mesh is required for (d) an explicit dynamic finite element simulation that captures the biomechanical response from frontal
impact. (e) Diffusion tensor images are used to generate (f) axonal bundle fiber tractography which is used to inform finite element transversely
isotropic constitutive descriptions of white matter tissue behavior (c). Tractography is also used to create (g) a network model of the brain that can be
(h) degraded over time.
doi:10.1371/journal.pcbi.1002619.g001
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incorporated into the finite element model by using a transverse

isotropic material model specifically developed for representing

white matter tissue [23,51] where each finite element within white

matter regions is assigned an orientation based on the superpo-

sition of fiber tractography [52]. Details of the numerical

implementation are published elsewhere [52], but it is important

to point out that various different cases needed to be considered

while assigning one orientation per finite element. For example, in

the case of multiple fibers that overlap the spatial bounds of a

single element, the multiple fiber orientations were averaged.

Damage and Injury Thresholds for Coupling FEM Results
to the Connectome Analysis

Herein, finite element simulations of the human head are

designed to mimic experimental conditions for cadaveric impact

tests, which are conducted to understand the dynamics of a frontal

impact and the associated compression-tension damage [53]. In

this study, the explicit dynamic finite element method [54] is used

to capture the transient response of head impact. Supplementary

information about the finite element method is included in the

supporting information, Text S1. In addition to a volume mesh for

the head, the finite element model also requires material

constitutive descriptions and properties for all its components:

skull, cortex, brain stem, cerebrospinal fluid, and soft tissue, which

represents a homogenized mixture of muscle and skin. A detailed

list of the material constitutive laws used to relate tissue strain to

stress is included in the supporting information, Text S2. Once

again, we point out that diffusion tensor imaging is used to inform

the constitutive model for white matter tissue, which has been

applied in the past for studying non-human primates [31] and

human injury [8,22,55]. The entire finite element model consisted

of 1,394,945 tetrahedral elements and 237,115 finite element

nodes. For boundary conditions, the bottom of the neck is fixed,

and a force was applied to a circular area on the forehead (about

3 mm2) in the anteroposterior direction. The input force-time

curve was a sinusoidal shape with a peak force of 7,000 N at

2:75 ms. The finite element simulation computes the time-evolving

mechanical strain and stress in the direction of axonal fiber

bundles. The strain in the direction of axonal bundles is referred to

as the axonal strain.

One limitation of the current finite element model is the

exclusion of viscoelasticity in the constitutive description of brain

matter. The authors acknowledge that to accurately model the

progression of damage, the constitutive model should be extended

to account for the time-dependent behavior of brain tissue. The

exclusion may have an effect on the outcome of our results, leading

to larger shear stresses, but smaller shear strains, thus, less

predicted damage. For example, Chafi et al. [56] shows that

viscoelasticity plays a major role in the dynamic response of the

brain under blast loading. Future efforts are focused on improving

the mechanical description of brain tissue.

In order to model damage using a physics-based approach,

either an explicit failure mechanism should be modeled or an

empirically based failure threshold is required. For this study,

measures of axonal strain and strain rate computed for white

matter regions are used as input for empirically based injury

threshold predictions that are obtained from cellular culture

experiments. Specifically, experimental results for cellular death

are described using a mathematical function for tolerance criteria

that relates strain to resultant cell death evaluated for up to four

days post-injury [27,32,33]. Experimental data exists for the CA1

and CA3 regions of the hippocampus, dentate gyrus, and cortex

for the rat. Experiments suggest that some regions of the rat brain

are sensitive to loading rate, while other brain regions are not.

That is, Elkin et al. [33] found that cortical cell death was

dependent on applied strain rate, whereas hippocampal cell death

was not. The relations used in the present model, obtained from

Morrison III et al. [27], are:

DCA1=CA3~0:0389 e 0:3663
� �

t 2:015
� �

ð1Þ

DDG~0:0323 e 0:3721
� �

t 1:8209
� �

ð2Þ

DCortex~0:094 e 1:5293
� �

t 0:8337
� �

_ee 0:1175
� �

ð3Þ

where t is time from insult, e is the local strain, and _ee is the local

strain rate [27]. Similar to Morrison III et al. [27], the units of

time are days, strain is dimensionless and strain rate is inverse

seconds. The damage parameter, D, is defined as the percent area

of cell death. Using Equations 1–3, the axonal strain and strain

rate from the finite element simulations, as well as time, are used to

calculate percent cell death for a tissue region. Due to insufficient

resolution of the MRI data used in this study, segmentation of the

hippocampus into CA1, CA2 and dentate gyrus regions was not

possible, thus the more conservative equation for DDG was used to

compute cell death for the entire hippocampus. Equations 1–3 are

monotonic functions that only increase with time, thus cellular

repair mechanisms and regeneration are not currently captured.

Potential issues with monotonic cellular death predictions, as well

as using rat brain injury thresholds instead of human cellular

injury thresholds, will be discussed later. Since the explicit

dynamic finite element method is used, the transient wave

propagation for solid mechanics is resolved; however, this is

computationally costly and limits the total time of biomechanical

prediction. The explicit dynamic simulation runs to 15 ms, thus

the ‘‘long-term’’ structural mechanics of brain swelling, relaxation,

etc., are not captured in the current model, although could be

adapted in the future by using quasi-static, implicit finite element

solvers.

The reader should understand that we use the local tissue strain

and strain rates predicted from finite element simulations of short

duration, about 15 ms, as input to experimentally based cellular

death models that were developed over a 96 hour period. This

assumes that the tissue damage due to large deformations occurs

immediately and initiates an injury process that grows with time.

This assumption is based on the observation that cell death was

not immediate in response to deformation, but instead, increased

over 4 days after injury [27].

It should be noted that the cellular death estimates that

Morrison III et al. [27] developed were not based on axonal strain

but instead on nominal strain applied to the back of the substrate

on which the neuronal cells were attached. Thus, Equations 1–3

may not accurately describe the actual relationship between

axonal strain and injury. Furthermore, the neuronal cell bodies in

the experiments were not aligned in a specific orientation, so the

response is not strictly representative of axonal strain injury. There

are research efforts examining stretching of individual axons but

have not proposed empirical relationships for cellular death in

terms of applied strain, rate of loading and time from insult

[57,58]. Experimental measurements of the cellular response of

white matter, especially axonal bundles, would be interesting to

explore and could provide a more accurate representation of cell

damage in the future.

Furthermore, the experiments performed by Morrison III et al.

[27] used the rat hippocampus, which is mostly comprised of gray

Connectome Neurotrauma Mechanics
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matter. Thus, it should be noted that the empirical data described

in Equations 1–3 was not intended to describe white matter injury

response so there may be limitations in applying Equations 1–3 to

predict cellular white matter injury. Cellular injury threshold data

for isolated white matter is currently limited; however there have

been some efforts to characterize mechanical damage to axons

[57–59]. We hope a computational framework described here will

help to motivate efforts to obtain different white matter and gray

matter empirical functions, which could then be used for each of

region of the brain separately. As mentioned before, the

application of this approach raises the possible need for

understanding properties of white matter fiber bundles.

In order to map the finite element results to network-based

analysis tools, output data from each finite element that represents

white matter is mapped to a corresponding voxel in the MRI data

that is used to create the DTI tractography. This mapping is

referred to as the element-to-voxel map. Multiple finite elements

within a single voxel are averaged. The element-to-voxel map

enables voxels to be assigned additional data, including axonal

strain and strain rate from the finite element simulation. Alstott et

al. [42] chose to generate brain lesions by altering the structural

connectivity matrix of the brain by deleting nodes using various

methods. In the present work, instead of deleting nodes, we

degrade the edges of the network based on the computed cellular

death at the voxel level.

To understand how the structural network is degraded, consider

the schematic shown in Figure 2. Edges in the network are

constructed from voxels that connect two different ROIs. The

edge strength is relative to the number of tracts between two ROI.

Cellular death for each voxel is computed using Equations 1–3

and may grow to reach the chosen critical value of cellular death,

Dc (discussed shortly). Voxels with a predicted cellular death

greater than Dc are shown in red in Figure 2. For this study, if a

tract traverses a voxel that is greater than the threshold, the entire

tract is considered damaged, thus the edge strength is decreased.

This procedure is similar to that used by Kuceyeski et al. [43] who

simulated lesions at each voxel and removed tracts passing through

the lesion in order to create a damaged network to enable analysis

of changes in network measures and the evaluation of the

importance of each voxel. Similar to Honey et al. [60], the

connection strengths were resampled to a Gaussian distribution

with a mean of 0:5 and a standard deviation of 0:1. As Alstott et al.

point out [42], this transformation does not alter the rank-ordering

of strong to weak pathways, but simply compresses the scale of

connection strengths. There are other possible ways to degrade the

structural network that will be discussed later.

Since Equations 1–3 predict some degree of cell death for non-

zero values of axonal strain, strain rate, and time, the additional

critical value of cell death, Dc, was required as a rule in order to

degrade a voxel. The critical cellular death of Dc~3% was chosen

Figure 2. Schematic showing how structural network edges are degraded over time. Red voxels indicate that the chosen critical cellular
death threshold, Dc , is reached. For this study, DTI tracts that traverse a damaged voxel are removed, thus degrading the connection strength of the
network edge.
doi:10.1371/journal.pcbi.1002619.g002
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because it predicted similar levels of damage as compared to other

proposed thresholds, including 18% axonal strain, which was used

previously as a threshold that indicated degradation in electro-

physiological function [30]. During the calculation of cellular

death, positive values of strain and strain rate were used (negative

strain was not used to calculate cellular death). The choice of

injury threshold, as well as the micromechanics of axonal fiber

bundles, is an active area of research that would assist making the

current methodology more accurate in the future. During the

15 ms dynamic simulation, strain and strain rate data for each

voxel is output at 0:1 ms increments. Cell death is calculated at

each voxel for each of these increments. Then, the maximum cell

death value calculated in each voxel is used to predict cell death up

to 96 hrs. It is important to note that cell death calculations are the

result of the combination of variables at each increment rather

than considering each variable independently.

Results

Finite Element Analysis of Head Impact
The deformed configurations of the head, along with contours

and response curves for various locations within the brain (frontal,

parietal, occipital, temporal, corpus callosum and cerebellum) are

shown in Figures 3a–f. Output variables including pressure, axonal

strain, and effective strain rate, useful for understanding the

anisotropic biomechanical response for white matter, are shown.

Confidence in the finite element model is established by

comparing output from the computations to pre-existing experi-

mental data on cadaveric head impact [53]. The values of axonal

strain and strain rate were taken from specific locations in each of

the six regions plotted in Figure 3. Four out of six of the locations

represented the locations of the pressure transducers for the

experiments of Nahum et al. [53]. Locations within the cerebellum

and corpus callosum were also added for the strain and strain rate

analysis. A variation of results will exist in each region, and taking

an average of values in a anatomical region could help resolve this

problem, but including simulation data points that are located

farther from the experimental sampling points could also make the

results less accurate. The head impact simulation took about

30 hours on 32 processors in order to reach 15 ms.

As seen in Figure 3b, the intracranial pressure quickly increases

to positive values in the frontal and parietal regions, while quickly

increasing to negative pressures in the occipital and posterior fossa

regions. The anteroposterior pressure gradient (seen in Figure 3a)

is commonly observed in experimental and computational studies -

giving rise to the so-called coup and contrecoup loading scenario,

for which there are an associated number of proposed injury

mechanisms. Short duration intracranial pressure gradients with

high positive pressures are observed at the coup region, with

negative pressures at the contrecoup region. The maximum

positive pressure of approximately 160 kPa is reached in about

2:5 ms in the frontal lobe, closest to the impact, while the

maximum negative pressure of approximately {80 kPa is reached

in about 2:0 ms in the posterior fossa region. The computed

pressure response is directly compared to Nahum et al.’s [53]

experimental results in Figure 3b and show similar trends. In

addition, validation of the strain response against cadaveric

experiments of Hardy et al. [61] is also described in the

Supplemental Text S3.

Axonal strain at the various brain regions responds slower than

the pressure response. The axonal strain begins to substantially

grow at 1 ms and shows a gradual rate of change of strain, with a

maximum of 33% at 12 ms over the duration of the simulation

within the temporal region. Unlike the pressure, an obvious

transcranial gradient is not apparent for the axonal strain. While

the frontal region had the highest predicted pressure, the temporal

and occipital brain locations have the largest values of axonal

strain in the regions specifically examined. Later, in the structural

network analysis, these areas are associated with the largest

amount of cellular death. Interestingly, if a threshold of injury of

18% axonal strain is chosen [8,30], our results show the onset of

injury occurs at approximately 9.1 ms within the temporal lobe,

despite the intracranial pressure reaching approximately 100 kPa
in 2 ms. The time scales at which the pressure and strain grow will

be discussed later in the context of injury cascades.

The effective strain rate, also commonly referred to as rate of

loading or loading rate, has a maximum value of approximately

85 s{1 in the temporal lobe. From the contours shown in Figure 3e

there appears to be a strain rate focusing, with lower strain rates

closer to the skull and higher values more central to the brain.

Shear strain focusing has been reported earlier [3,62] and is

attributed to the partial conversion of energy of the axial impact

into a shear mechanical stress wave as a result of the material

response of the brain, cerebrospinal fluid, and skull [62]. The

maximum strain rate is observed before maximum axonal strain

because the axonal strain accounts for magnitudes of deformation,

while the strain rate relates to the rate of change of strain.

FEM Informed Structural Connectome Analysis
The axonal strain and strain rate output from the finite element

simulations are used to compute the amount of cellular death,

according to Equations 1–3. Figure 4 shows the evolution of

damaged tractography up to 96 hrs post-impact, using a critical

cellular death of Dc~3% as a threshold for injury and the

corresponding evolution of the degraded structural network for

sagittal and transverse views. The edges in the network, which are

fully damaged, are shown in red for visualization. In reality, each

edge is weighted and has degraded values before it is fully

damaged. The network nodes are scaled by the percentage of

connections that were removed, so that larger nodes have lost

more connections compared to original values (1{ Degreenew½
=Degreeoriginal�). The sagittal and transverse views are shown to

provide insight about where the damage is predicted and how it

progresses through time. At 24 hrs, the top four regions affected

include the cuneus (medial surface of left cerebral hemisphere in

the occipital lobe), fusiform gyrus (temporal lobe), lingual gyrus

(occipital lobe), and peri-calcarine. Together, damage in these

brain regions have 559 tractography fibers removed from network

edges. Note that the total number of fiber tracts prior to impact

was 497,442, so this damage corresponds to a 0.011% degradation

of tractography. The percentage of fully degraded edges for 24, 48,

72, and 96 hrs are listed in Table 1. Using an 18% strain criterion,

17.3% of the edges were fully degraded.

Figure 4b shows that structural damage occurs first in left

cuneus and the right superiotemporal regions, resulting in one fully

damaged edge at 24 hrs. The edge between the two regions had

only three tract fibers with less than one voxel or 2 mm between

them. The edge also had a high mean fiber length of 131:7 mm
(the original total mean fiber length was 81:7 mm). This suggests

that network edges associated with few tract fibers and long fiber

length are more susceptible to damage. Asymmetry of the

predicted damage occurs due to the asymmetry of the underlying

anatomy associated with the finite element mesh, as well as

potential asymmetry of the fiber tractography, which has been

studied in recent work [63]. At 48 hrs, predicted damage seems to

show a high density of damaged fibers in the anteroposterior

direction in both hemispheres of the brain. Lateral tractography

damage is also predicted within the corpus collusum. As time

Connectome Neurotrauma Mechanics
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progresses, fully damaged rostrocaudal tracts are predicted and

continue to increase.

Structural changes to the tractography and resulting network

arise because of the underlying voxel condition. That is, if a tract

goes through a voxel that has reached the critical cellular death

value, Dc, the tract is removed. Therefore, it is useful to examine

how the inherent voxel properties influence results. Figure 5a

shows the distribution of voxels above the predicted critical cellular

Figure 3. Orthographic view of the local three-dimensional response measured at various locations in the brain for (a–b) pressure,
(c–d) axonal strain and (e–f) strain rate predicted using a finite element simulation for impact to the head. Prediction of the intracranial
pressure response is compared to cadaveric experiments [53] and is shown in (b).
doi:10.1371/journal.pcbi.1002619.g003
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death of 3% as a function of angle between the axonal fiber bundle

direction and the direction of the head impact (i.e., frontal impact

on the anteroposterior axis). If the tract fiber direction within a

voxel is parallel with the impact direction, the angle is zero. This

shows the distribution of damage as a function of angle with respect

to the impact direction. Because of the high degree of mechanical

rotation observed through the shear focusing in the temporal and

occipital brain regions, tract fibers with large angles with respect to

the impact direction are damaged initially. This is seen in Figure 5a

at 24 hrs (see red bars in plot) and in Figure 4a–b.

This data can be further analyzed by normalizing the number of

damaged voxels for a given orientation by the total number of

undamaged voxels with a given orientation from the impact

direction. This measure is referred to as the angle-normalized

number of damaged voxels. The distribution of angle-normalized

number of voxels is shown in Figure 5b, and is important because

it takes into account the original distribution of the number of tract

fibers eligible to be damaged with respect to the impact direction.

For example, Figure 5a shows 18 voxels above the 3% cell death

threshold at 48 hrs; thus, one might assume that axonal bundles

oriented 0{100 from the impact direction have little importance.

Figure 4. Evolution of damaged tracts and the corresponding structural networks. Using empirically-based cellular death predictions
obtained from in vitro models of neural tissues, local strain and strain rate values computed from finite element simulations are used to specify injury.
A computed cellular death of 3% was used as a critical value for defining white matter disruption. Damage is shown in red and the node size
represents the percent change of degree. The predicted evolution of damage is shown for the sagittal and corresponding transverse views for 24 (a
and b), 48 (c and d), 72 (e and f), and 96 hours (g and h).
doi:10.1371/journal.pcbi.1002619.g004

Table 1. The percentage of fully degraded edges and
percentage of voxels above the 3% threshold for 24, 48, 72,
and 96 hrs post-injury.

Post-Injury (hrs) % Fully Damaged % Voxels Above

Edges 3% Threshold

24 0.097 0.008

48 7.19 1.1

72 14.1 2.7

96 19.7 4.2

doi:10.1371/journal.pcbi.1002619.t001
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However, when the original number of voxels available to be

damaged is taken into consideration (Figure 5b), 11{200 angles

have the highest percentage of damage at 48 hrs. In other words,

depending on the underlying white matter microstructure, i.e., the

axonal bundle orientation, with respect to the direction of impact,

the node, and edge degradation in the structural network may be

affected differently. This is directly related to the structural

mechanics (as opposed to structural connectomics) of the

underlying constitutive or material law used within the finite

element simulation.

However, because a monotonic function is used to describe the

empirical cellular death prediction, this trend becomes more dilute

as time progresses (but should not be extrapolated past 96 hrs

since Equations 1–3 are not validated beyond that time). From

Figure 4g–h, at 96 hours the predicted damaged axonal pathways

can be seen in many directions and across all white matter brain

regions indicating diffuse structural degradation. To summarize, at

24 hrs fibers in the areas of large rotational tissue strain are

susceptible, while at greater times, neuronal tracts that align with

the direction of impact seem more susceptible to damage (using

the assumed threshold of cellular death). In the future, additional

empirical cellular death predictions that are non-monotonic (if

valid), or cellular regeneration and repair models, would be useful

to explore.

Figure 6a–e shows the evolution of the structural connectivity

strength matrices predicted as a result of head impact simulations.

The original structural connectivity strength is defined as a

Gaussian distribution, created by using a mean of 0:5 and

standard deviation of 0:14 distributed over the total number of

edges in the network. Each figure represents a snapshot in time

starting with t~0 and ending at 96 hours. Within the 96 hr period

(for which the monotonic cellular death criteria are validated), as

long as regions have non-zero strain and strain rate computed

from the finite element simulation, edges in the network become

degraded. This decline in network strength is evident in Figure 6e.

Since a 3% critical cellular death value is only one possible injury

criteria that could be chosen, an additional criterion was

examined. Results using two different damage thresholds are

shown in Figure 6e and f. Figure 6e is the connection matrix using

the 3% threshold at 96 hrs, while Figure 6f is connection matrix

using the 18% axonal strain threshold at t~15 ms, as used in

previous work [8,31]. Connection strengths show qualitatively

similar trends in magnitude and location of edge degradation.

While the two criteria offer a similar prediction of network

damage, the cellular death Equations 1–3 are, perhaps, more

useful because effects of strain, strain rate, and time have been

decomposed into separate multiplicative terms that allow a

compartmentalized study of extrinsic biomechanical conditions.

In general, a network’s global efficiency represents how well-

connected the network is compared to a perfectly connected

network [64] and captures the network’s capacity for communi-

cation along short paths [65]. Herein, values are reported as

normalized global efficiency, which is the global efficiency of the

network divided by the efficiency of an ideal network. Ideal

network efficiency is calculated as a network where all nodes are

connected at the minimum cost. The cost for each edge is defined

as unity minus Gaussian strength. While strength offers a measure

of the capacity to send information, the cost indicates the

resistance to sending information - connections with high strength

are low in cost. Local efficiency is a network measure that Latora

[65] suggests helps to reveal the fault tolerance of the network

system and shows how efficient communication between first node

neighbors is. For this study, local efficiency is calculated for the

same set of nodes used to make the local network of the

undamaged network, even if a node loses its edge to the primary

node. This method is used to provide a more direct comparison of

Figure 5. Distribution of (a) the number of voxels with predicted cellular death above 3% for each day as a function of angle
between axonal fiber bundle direction and direction of impact to the head, and (b) the number of voxels with predicted cellular
death above 3% for each day as a function of angle between axonal fiber bundle direction and direction of impact to the head
normalized by the initial distribution of fiber angle with respect to the loading condition.
doi:10.1371/journal.pcbi.1002619.g005
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the network after damage by accounting for edges that were

removed. As a result, edges can no longer be part of a short path

between nodes and cannot contribute to the efficiency, while also

taking into account all nodes that should be a part of the local

network without damage.

The normalized global and mean local efficiencies as a function

of time are shown in Figure 7. The normalized global efficiency is

approximately 0.14 at t~0 hrs and is about the same at 24 hrs,

indicating the network remains capable to send information.

However, at 48 hrs an 8.8% reduction in normalized global

efficiency is predicted and continues to reduce with time. A similar

trend is observed in the mean local efficiency. At 96 hrs the

normalized global efficiency was reduced 24%, while the mean

local efficiency was reduced 27%. By 96 hrs, all but sixteen nodes

had greater than 20% reduction of local efficiency. Also, note that

there were no nodes completely disconnected from the network,

although there were edges completely removed. The total number

of edges at t~0 hrs was 1029; at t~96 hrs, 203 edges were

removed using the cellular death threshold. Using an injury

threshold of 18% strain, 161 edges were removed.

Watts and Strogatz [66] define the small-world network based on

the clustering coefficient of the network and the characteristic path

length of the network. The clustering coefficient, C, is the fraction of

triangles around a node and is weighted by the geometric mean of

weights associated with edges of a triangle [64]. It measures how

well the first neighbors of a node are connected to each other. The

characteristic path length, L, is the average shortest path between all

nodes of the network. To qualify as small-world, the networks

clustering coefficient should be greater than that of an equivalent

random network, whereas the characteristic path length should be

approximately equal [66]. The small-world coefficient is defined as

(C=Crand)=(L=Lrand) [64]. This value was found to be 1.87, 1.87,

2.03, 2.31, and 2.64 for t = 0, 24, 48, 72, and 96 hrs, respectively.

When using axonal strain as the threshold variable, a value of 2.38

was computed. The increase seen in the small-world coefficient is

due to the more rapid decrease in clustering coefficient of the

random network compared to the damaged network that it is based

on. In addition, the increase seen in the small-world coefficient also

shows the ability of the network to maintain its modular structure

more effectively than the random network that it was compared to.

Figure 6. Connection strength matrices showing degradation over time, t. Connection strengths were resampled to a Gaussian distribution
with a mean of 0.5 and a standard deviation of 0.1. Because of the monotonic cellular death criterion, as long as regions have non-zero axonal strain
and strain rate from the finite element simulation, edges in the network eventually become degraded. The connection strength matrices at t~0 hrs is
shown in (a). The evolution of connection strength matrices for 0 (a), 24 (b), 48 (c), 72 (d), and 96 hours (e) are shown, as well as (f) the connection
strength matrix for the case when a 18% strain threshold is used.
doi:10.1371/journal.pcbi.1002619.g006

Connectome Neurotrauma Mechanics

PLoS Computational Biology | www.ploscompbiol.org 10 August 2012 | Volume 8 | Issue 8 | e1002619



The percent reduction of local efficiencies and the associated

betweenness for the top 10 regions affected by impact at 96 hrs are

listed in Table 2. Betweenness is defined as the number of times a

node is part of a shortest path between nodes, and is one indication

of a node’s network centrality that help to describe the

‘‘importance’’ of a node [64,65]. Hubs within the connectome

are identified using betweenness centrality. The maximum

betweenness of the original network at t~0 is 226, while the

minimum value is zero. Recall from Figures 4a–b and 5a, white

matter disruption is observed in the left cuneus and the right

superiotemporal regions, which has a betweenness centrality of 41

and 17, respectively. The moderate to low betweenness of the

regions first affected at 24 hrs helps to explain why the normalized

global efficiency was not significantly reduced during this time and

shows the importance of a robust brain network. At 96 hrs, the

right hemisphere lateral orbitofrontal region shows the largest

degradation in local efficiency of approximately 45.4%; however,

that region also has a zero betweenness centrality. On the other

hand, the right hemisphere medial orbitofrontal region has a

betweenness of 110 and shows a 37.4% reduction of local

efficiency, indicating it may have a more significant effect to the

brain network. At 96 hrs, there are 10 network nodes with

betweenness greater than 100 that have at least a 20% reduction of

local efficiency. Local efficiency and betweenness for all ROIs are

included in Supplemental Figures S2 and S3, respectively.

The results reported thus far are based on a critical cell death

value of Dc~3%, as well as a critical strain threshold of 18%.

However, it is also useful to evaluate the sensitivity of the results to

the choice of Dc. An analysis of network properties was performed

for multiple critical cell death values, in the range from

Dc~2{10%, and are shown in Figure 8a–b. Figure 8a shows

the percent reduction in total edge strength as a function of the

critical cell death threshold choice. Figure 8b shows the percent

reduction in global efficiency as a function of the critical cell death

threshold choice. Results show that the choice of the critical

threshold significantly affects both network measures that were

examined. For example, for a change of Dc between 3% or 4%,

the reduction in global efficiency is 23.9% and 16.4%, respec-

tively. In other words, from only a 1% change in the choice of Dc

results in a 7.5% change in global efficiency reduction. Therefore,

Figure 7. Global and local efficiency in terms of time from impact.
doi:10.1371/journal.pcbi.1002619.g007

Table 2. Structural measures of simulated lesions for the top
ten regions ranked according to percent reduction in local
efficiency.

Brain Region % Reduction Betweenness

Local Eff. at 96 hrs at 0 hrs

Lateral Orbitofrontal (RH) 45.4 0

Parahippocampal (RH) 44.2 0

Parsorbitalis (RH) 44.1 0

Transverse Temporal (RH) 42.0 0

Pericalcarine (RH) 39.4 1

Parstriangularis (RH) 39.3 2

Temporal Pole (RH) 39.1 3

Rostral Anterior Cingulate (RH) 38.4 0

Frontal Pole (RH) 38.1 12

Superior Temporal (RH) 37.9 21

RH and LH refer to right and left hemispheres, respectively.
doi:10.1371/journal.pcbi.1002619.t002
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the choice of Dc will be important in obtaining accurate results

and highlights the need for future experimentation to characterize

cellular injury criteria for all areas of the brain in order to improve

the accuracy of this modeling approach.

Discussion

For the first time, a physics-based model has been linked to a

network-based analysis that establishes a coupled computational

method to study the effects of localized structural damage or

lesions. In the presented work, lesions are simulated by using a

state-of-the-art finite element model of the human head, developed

for a single individual directly from MRI, impacted on the

forehead region. The local finite element variables are coupled to a

network-based analysis through an empirically based cellular

injury model. The new approach attempts to capture the

spatiotemporal structural characteristics of brain trauma. Foun-

dations of this idea stem from previous studies that attempted to

establish relationships of lesion sites and the resulting functional

impact [42,67].

The first part of our study involved developing a new three-

dimensional human head finite element model for simulating the

biomechanical response from frontal impact and comparing it to

experimental data obtained from cadavers. The finite element

model is unique in that it uses diffusion tensor imaging

tractography to inform structural mechanics constitutive laws of

the underlying white matter anisotropy in an effort to help

elucidate the injury mechanisms of impact neurotrauma. Simula-

tions of frontal impact capture the coup and contrecoup loading

profiles, including short duration intracranial pressure gradients

with high positive pressures at the coup region, and negative

pressures at the contrecoup region (Figure 3a–b). The computed

pressure compares well to past experimental results [53]. While the

frontal region had the highest predicted pressure, the temporal

and occipital brain locations had the largest values of axonal strain

in the regions specifically examined and responded slower than the

pressure response. Because of varied mechanical tissue properties

and constraints with the head, translational cranial motion causes

relative brain movements that happens after peak pressure, and

leads to large brain deformations and significant localized regions

of axonal strain (Figure 3e–f).

Empirically based cellular death thresholds were used to predict

the time-evolving damage in various brain regions based on finite

element-based predictions of local axonal strain and strain rate.

The biomechanical simulations predict that the temporal and

occipital regions undergo the most axonal strain and strain rate at

short times (less than 24 hrs), which leads to cellular death

initiation that produces damage which shows dependence on angle

of impact and underlying microstructure of brain tissue. The

cellular death model that was used in this study is based on

experimental observations that cell death was not immediate in

response to deformation, but instead increased over four days after

insult. Tissue damage becomes more dilute as time progresses

(Figure 4g–h). At 96 hours, the predicted damaged axonal

pathways can be seen in many directions and across all white

matter brain regions, indicating diffuse structural degradation.

Interestingly, when using injury criteria proposed in the past,

including thresholds of axonal strain [8,30] or intracranial pressure

[21], the finite element simulations predict injury within 10 ms of

frontal impact. However, when using a cellular death criteria,

damage takes longer to develop but offers a similar result to the

resulting network strength (Figure 6). Thus, while the model may

be limited in the most accurate description of cellular injury, it

does seem to capture the underlying pathology of diffuse brain

injury, i.e., widespread damage to axons in the brain, to some

degree. While the two criteria offer similar prediction of network

damage, cellular death, is perhaps, more useful because effects of

strain, strain rate, and time have been decomposed into separate

multiplicative terms that allow a compartmentalized study of

extrinsic biomechanical conditions. On the other hand, as

Morrison et al. [27] point out, purely mechanical definitions of

injury thresholds may be too insensitive to identify the onset of

injury for the brain, since biological tissues are alive and perform

some form of active, physiological functions. For brain tissue,

Figure 8. Changes in (a) total edge strength and (b) global efficiency with change in critical cell death threshold for 24, 48, 72, and
96 hours.
doi:10.1371/journal.pcbi.1002619.g008
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failure can be defined in various ways and may occur far below

mechanical failure limits. Therefore, additional tolerance criterion

that capture degradation of the electrophysiological function may

be also required for brain tissue, since injury mechanisms that may

alter neuronal function without requiring cell death are observed

and may become activated more quickly than cell death [68].

This work has attempted to establish a physics-based method-

ology to inform structural connectome analysis. In the current

model, network edges are degraded by weight rather than simply

deleting nodes, in an attempt to include the effects of damage on

white matter ‘‘fibers of passage’’ that Alstott et al. [42] refer to. It is

assumed that tracks representing bundles of axons are able to be

disconnected when passing through regions of high cell death,

simulating reduction in the strength of a structural connection, and

are related to a decrease in localized white matter integrity. All

network damage was linked directly to predicted tissue deforma-

tion and predicted cellular death. Interestingly, at 96 hrs post-

impact, the methods used here did not lead to any node

completely disconnected from the network (although there were

edges completely disconnected). At early times (tv24 hrs) network

measures of global and local efficiency were degraded little,

however, as time increased to 96 hrs the network properties were

significantly reduced (Figures 6 and 7). Alstott et al. [42] found that

random removal of nodes did not affect network integrity until

almost all of the nodes were deleted. Thus, this method may

capture some structural network features of very mild neuro-

trauma at early times, but would benefit from a functional network

analysis to explore the potential outcomes. As the network was

damaged in certain areas, edges were lost or degraded, raising the

cost to send information between nodes and producing different

short paths between nodes. As a result, the brain network was not

able to maintain efficiency by using alternate paths or finding

strong hub connections past 24 hrs post-impact, thus demonstrat-

ing a potential limitation of the brain to retain network robustness

in extreme conditions that cause neurotrauma.

While global efficiency is able to demonstrate widespread effects

of damage, local efficiency provided a measure to investigate

localized damage within the network related to areas of

concentrated axonal strain and strain rate in particular areas of

the brain. There was a much larger reduction in local efficiency at

areas of high cell damage compared to reduction in the

normalized global efficiency, indicating that the brain as a whole

is resistant to some degree of localized damage. Brain regions that

experienced the largest cellular death showed a larger reduction in

local efficiency compared to the global efficiency of the network

(Table 2). However, the low betweenness of many of these ROI

suggest that they were not as necessary for communication outside

their local area. This suggests that the modular nature of the

network, including its small world properties, helped to prevent

loss of efficiency on the global scale from damage at the local scale.

This is interesting because the network considered here is a rigid,

static, anatomic network in which there is no adaptability built into

the model. However, it seems that damaged structural network

hubs retain the ability for long distance communications. In

addition, the increase predicted in the small-world coefficient also

shows that modularity was not as affected by the damaged static

network, as compared to a random network.

Limitations and Future Work
There are exciting possibilities for future work, as well as

limitations to the current modeling approach. The current model

did not attempt to model the coupled effects to the functional

network; instead, we provided an example for a single individual in

order to establish a methodology to link physics-based predictions

of tissue damage with structural network analysis for frontal

impact neurotrauma. It is important to note that the empirical

relationships may only be accurate for the rat (not the human), and

most likely, there are many more regions that need to be

characterized. Our results and conclusions may be altered

according to these injury thresholds. Although human injury

thresholds are currently limited, as additional brain region injury

thresholds are experimentally characterized and improved they

can be included in the future. Due to the computational cost of the

finite element simulations, the brain was only segmented into 83

different regions. In the future, increased segmentation of regions

of interest and improved biofidelity of the finite element model

would increase the resolution of the analysis. While this study does

not address the resulting functional outcome from structural

degradation, coupled structure-function relationships as a result of

neurotrauma would be interesting to explore. For example, a

coupled analysis may enable functional stimulus that may prohibit

or enhance further cell death. For the prediction of tissue damage,

additional physics, such as electrochemical reactions, may be

useful by incorporating diffusional properties. In addition,

increased resolution of the biomechanical response may also be

improved by further developing white matter material response

descriptions that use multiple fiber tract orientations within a

single element, thereby enabling the capability to use diffusion

spectrum imaging. There is also an opportunity to use this

framework to explore additional injury mechanisms or thresholds

from empirical or experimental data, such as intracranial pressure.

Note that the current methodology degrades network edges,

instead of nodes. In the future, it may be useful to investigate

methods for degrading nodes in addition to edges because the all

of the nodes represent cortical gray matter, and the gray matter

does experience significant strains. This would require a choice of

strain measurement other than axonal strain since the gray matter

is treated as isotropic. With this type of criteria, it may be possible

to degrade a node based on a ratio of damaged voxels within a

region of interest compared to the voxel volume of the region as a

whole.

Further work should also work to validate this approach in

humans. There are at least two distinct areas associated with

connectome damage that should be explored in order to validate

the approach described herein. The first deals with how well the

location of damage within the network description is captured

using physics-based predictions. The second validation strategy

should address the nature in which edges and nodes in the network

are degraded. There are various approaches that may be useful for

addressing both areas. For example, in order to validate how well

the location of damage is captured, further understanding about

how cellular level changes effect fractional anisotropy, that results

in altered fiber tractography would be useful to develop. Some of

this information may be obtained from various ongoing studies

that are examining the ability of DTI to diagnose mTBI, which

could also be extended to create degraded structural connectomes.

One way to do this may be to use DTI studies pre- and post-injury

from typical loading conditions that cause rotation-induced diffuse

axonal injury. By providing similar loading profiles within the

simulation and comparing computed DTI tractography damage

with the clinical data set, maybe results can be compared. Perhaps

this may be accomplished using sports-related impact injury, such

as American football, where many helmets have sensors built-in to

record impact loads.

In conclusion, this work has explored ‘‘connectome neuro-

trauma mechanics’’ by using physics-based finite element simula-

tions to help elucidate injury mechanisms associated with

neurotrauma by using various cellular injury thresholds to define
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tissue damage, and established a coupled computational frame-

work to inform structural connectome analysis.
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