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Collisionless relaxation of a disequilibrated current
sheet and implications for bifurcated structures
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Current sheets are ubiquitous plasma structures that play the crucial role of being energy

sources for various magnetic phenomena. Although a plethora of current sheet equilibrium

solutions have been found, the collisionless process through which a disequilibrated current

sheet relaxes or equilibrates remains largely unknown. Here we show, through analyses of

phase-space distributions of single-particle orbit classes and particle-in-cell simulations, that

collisionless transitions among the orbit classes are responsible for this process. Bifurcated

current sheets, which are readily observed in geospace but whose origins remain con-

troversial, are shown to naturally arise from the equilibration process and thus are likely to be

the underlying structures in various phenomena; comparisons of spacecraft observations to

particle-in-cell simulations support this fact. The bearing of this result on previous expla-

nations of bifurcated structures is also discussed.
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Current sheets are structures generated by opposing mag-
netic fields and are ubiquitous in magnetized plasmas such
as solar flares1, the solar wind2, the heliosphere3,4, and

planetary magnetospheres5,6. They are crucial localities where
magnetic free energy can be converted to other forms of energy.
Some important examples of this conversion include magnetic
reconnection7,8, the drift kink instability9, and the tearing/plas-
moid instability10,11. Sheet structures per se are also important in
understanding, e.g., magnetosphere–ionosphere coupling12 and
the solar cycle3. Current sheets have thus been subject to exten-
sive research, and a plethora of equilibrium solutions have been
found both analytically13–20 and numerically21–24.

However, there remains an important outstanding question
regarding current sheet equilibria. Although various equilibrium
solutions have been found, the collisionless process through which a
disequilibrated current sheet equilibrates remains largely unknown.
The comprehension of this process is critical because plasma sys-
tems in general do not start from equilibria, and so they are pre-
destined to relax toward a minimum energy state. Such knowledge
therefore elucidates how a given system wants to evolve in time,
even if it does not eventually equilibrate. In addition, the equilibria
that have been found are specific solutions; a comprehensive
understanding of the equilibration or relaxation process is therefore
necessary in order to place current sheets in a general context.

A commonly observed form of current sheets is a bifurcated
current sheet, which has two current density peaks on either side
of the symmetry plane. These were first observed in the Earth’s
magnetotail by Cluster spacecraft measurements25,26 and were
initially deemed atypical. Later analyses, however, showed that
bifurcated current sheets are actually extremely common, and
that they were detected ~25% of the time Cluster was in the
magnetotail current sheet27,28. These recurrent observations were
puzzling because a current sheet had originally been thought to
involve a single current peak providing the pinching force that
opposes the diverging force due to the plasma thermal pressure;
the existence of bifurcated structures thus implied that such
naively macroscopic pictures are insufficient and more detailed
analyses are warranted. Since then, various explanations have
been put forth, including flapping motion29, magnetic
reconnection30,31, temperature anisotropy32,33, Speiser motion34,
and non-adiabatic scattering of particles in a strongly curved
magnetic field20. However, there is no consensus on the origin of
bifurcated current sheets, which largely remains a mystery despite
being readily observed even to this day35–37.

In this paper, the collisionless relaxation process of an initially
disequilibrated current sheet is studied. The process is shown in
three steps. First, particle orbits in a magnetic field reversal are
comprehensively categorized into four orbit classes. Second, the
phase-space distribution of each orbit class and the role each class
plays with respect to current sheet density, temperature, and
strength are examined. Finally, with the aid of particle-in-cell
simulations, it is shown that transitions among the orbit classes
are responsible for collisionless current sheet relaxation. The final
equilibrium is most naturally understood in terms of the relative
population of the phase-space distributions of the four orbit
classes, instead of closed-form functions such as a Maxwellian.
The bearing of this process on the origin of bifurcated current
sheets is then discussed. Two of the orbit classes necessarily
exhibit spatially bifurcated structures, and so such structures
naturally arise as a current sheet evolves towards equilibrium via
orbit class transitions. An exemplary equilibrium from particle-
in-cell simulations is compared with Magnetospheric Multiscale
(MMS) measurements of an electron-scale current sheet, and
their profiles are shown to agree well. The relevance of the
relaxation process to previous explanations of bifurcated current
sheets is also discussed.

Results
Particle orbit classes. Let us first examine single-particle
dynamics in the renowned Harris current sheet13, which is cho-
sen as the system of scrutiny in the present study. It is described
by the following magnetic field profile and distribution function fσ
for species σ (i for ions and e for electrons):

B xð Þ ¼ ŷB0 tanh
x
λ
; ð1Þ

f σ x; v; tð Þ ¼ 1
2πv2Tσ

� �3=2 n0
cosh2 x=λ

� �
´ exp � 1

2v2Tσ
v2x þ v2y þ vz � Vσ

� �2� �� 	
;

ð2Þ

where B0 is the asymptotic value of the magnetic field, λ is the
sheath thickness, n0 is the sheath peak density, and vTσ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBTσ=mσ

p
is the species thermal velocity where Tσ and mσ are,

respectively, the species temperature and mass. Vσ is the species’
mean velocity in the z direction, i.e., its drift velocity. It is also
assumed that Ti= Te := T and Vi=−Ve :=V; the latter can always
be made true by choosing a frame of reference where the electro-
static potential ϕ= 0. Equations (1) and (2) by themselves do not
describe an equilibrium. In fact, two conditions must be true in
order for this system to be an exact solution of the stationary Vlasov
equation: (i) B0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0n0kBT

p
, which describes the balance

between the peak magnetic pressure B2
0=2μ0 and the peak thermal

pressure n0kBðT i þ TeÞ ¼ 2n0kBT , and (ii) λ= λDc/V where λD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0kBT=n0e2

p
is the Debye length and c is speed of light, which

determines the equilibrium sheath thickness.
The vector potential is chosen to be A ¼ �ẑλB0ln cosh x=λ.

Normalizing length by λ, mass by the species mass mσ, and time
by ωcσ= qσB0/mσ where qσ is the species charge, then a particle
obeys Lagrangian dynamics with the normalized Lagrangian
�L ¼ ð�v2x þ �v2y þ �v2zÞ=2� �vzln cosh �x, where barred quantities are
normalized to their respective reference units, i.e.,
�L ¼ L=mσλ

2ω2
c σ , �vx ¼ vx=λωcσ , and �x ¼ x=λ. Because y and z

are ignorable coordinates, there are three constants of
motion, namely the canonical momenta �py ¼ ∂�L=∂�vy ¼ �vy
and �pz ¼ ∂�L=∂�vz ¼ �vz � ln cosh �x, and the total energy
of the particle (recall that ϕ= 0), �H ¼ ð�v2x þ �v2y þ �v2zÞ=2 ¼
�v2x=2þ ½�p2y þ ð�pz þ ln cosh �xÞ2�=2. The normalized effective
potential χ �xð Þ of the motion in the x direction is therefore
χ �xð Þ ¼ ½�p2y þ ð�pz þ ln cosh �xÞ2�=2.

Analyzing the extrema of χ �xð Þ shows that it exhibits two shapes
depending on the sign of �pz : (i) a single-well if �pz > 0 (e.g., black
line in Fig. 1d), and (ii) a double-well with a local hill at �x ¼ 0 if
�pz < 0 (e.g., black line in Fig. 1a). In case (ii), if a particle does not
have enough energy to overcome the local hill, i.e., �H < χ 0ð Þ or
equivalently

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2x þ �v2z

p
¼ �v? < ��pz , it oscillates within one of the

two wells and does not cross �x ¼ 0. In the opposite case where
�v? > ��pz , the particle has enough energy to overcome the hill
and thus undergoes a full double-well orbit while crossing �x ¼ 0.
This double-well orbit class can be further divided into two sub-
classes depending on the particle’s bounce-period-averaged
velocity in the z direction h�vzi. Because h�vzi ¼ h�pzi þ
ln cosh �xh i while �pz < 0 is a constant in the case of a double-
well χ, a particle can have either a positive or negative h�vzi
depending on its oscillation amplitude in the x direction; particles
with higher energies have higher values of ln cosh �xh i and thus
can have positive values of h�vzi.

Figure 1 summarizes the four classes of particle orbits. The
black lines in Fig. 1a–d show the effective potential χ of each class,
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and the three dashed lines in each panel represent the energies of
three particles with differing values of initial �vx and thus of �H.
Each particle is distinguished by its respective color (blue, red, or
cyan). The three lines in Fig. 1e–h show the motion of the three
particles in the left panels in the x−z plane, and the black dots
represent their starting positions.

Figure 1e represents the non-crossing orbit class38, hereafter
denoted NC, where the particles are simply∇ B drifting with
h�vzi< 0. Figure 1f represents the class where particles undergo full
double-well motion with h�vzi< 0, hereafter denoted DW−. The
blue particle in Fig. 1f belongs to NC but is plotted to show the
transition from NC to DW−. Figure 1g represents the other class
where h�vzi> 0, hereafter denoted DW+. Again, the blue particle
belongs to the DW− class but is plotted to show the transition from
DW− to DW+. Figure 1h represents the meandering or Speiser
orbit class39 with h�vzi> 0, hereafter denoted M.

The DW+ class was previously identified in a context with
curved magnetic fields as “cucumber orbits40,41” owing to its
cucumber shape. Here, we have re-identified the class to clarify
the physical origin of such motion and to distinguish more clearly
between DW+ and DW−, the latter of which does not exhibit
cucumber shapes.

Phase-space distributions. Now, let us examine how each orbit
class is represented in phase space. 108 particles were randomly

sampled from Eq. (2) with �Vσ ¼ 0:005 and �vTσ ¼ 0:05—these
specific values satisfy the equilibrium condition for the Harris sheet.
Figure 2 shows the phase-space distributions (a–c) and velocity
space histograms (d–f) in each velocity direction, and Fig. 2g shows
the spatial histograms. The orbit classes are distinguished by the
black, red, green, and blue colors. The dotted lines and the arrows in
the right panels correspond to the mean velocity and the velocity
spread (two standard deviations) of each orbit class.

The phase-space distribution of each orbit class has its own
contribution to current sheet density, temperature, and strength.
The spatial distribution in Fig. 2g is related to the density, and the
spreads and means of the velocity distributions in Fig. 2d–f are,
respectively, related to the temperature and current strength of
each orbit class.

Figure 2d shows that the velocity spread and hence the
temperature in the x direction, Txx, has the following hierarchy:
NC<DW−<DW+. This is because the transition from NC to DW
necessarily involves a passage through the unstable equilibrium as
in Fig. 1b, which in turn involves a breakdown of adiabatic
invariance and phase-mixing42. Txx of the M class is equal to the
overall equilibrium temperature. The mean velocity in the x
direction is befittingly zero for all classes owing to symmetry.

Figure 2e shows that all classes have the same temperatures and
zero mean velocities in the y direction, since �vy is a constant of
motion.

Figure 2f shows that the temperature in the z direction has the
hierarchy M<DW+<NC<DW−. The NC and DW− classes have

Fig. 1 Four classes of particle orbits and their effective potentials.
Effective potentials χ of the a non-crossing (NC) orbit class, b double-well
orbit class with a negative time-averaged velocity ( �vz

� �
<0; DW−), c double-

well orbit class with a positive time-averaged velocity ( �vz
� �

>0; DW+), and
d meandering (M) orbit class. e–h Particle orbits in the �x� �z plane
respectively belong to the four classes in a–d. The strength of the out-of-plane
magnetic field By is represented by the magenta and green colors. Three
particles are plotted for each class and are labeled by the blue, cyan, and red
colors. Each particle’s energy is represented by its corresponding color in a–d.
The blue particles in f and g, respectively, belong to NC and DW− but are
plotted to show the NC→DW− and DW−→DW+ transitions.

Fig. 2 Particle distribution in phase space, velocity space, and physical
space. Phase-space distributions of the four orbit classes distinguished by
the blue, green, red, and black colors in a �x� �vx space, b �x� �vy space, and c
�x� �vz space. Particle histograms in d �vx, e �vy , and f �vz. The dotted lines and
arrows are, respectively, the average velocities and two standard deviations
of each distribution. g Particle histogram in �x.
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negative mean velocities and the other two have positive mean
velocities.

Figure 2g shows that the three non-NC classes are spatially
concentrated near the center. Also, the DW classes have relatively
flat-top density profiles compared with the M class, a trait which
will be revisited later.

Equilibration process. We now have all the ingredients to
understand how an initially disequilibrated current sheet equili-
brates. Let us consider an under-heated Harris current sheet with
a temperature lower than its equilibrium value. In this case,
because the thermal pressure at the center is lower than the
magnetic pressure at the outskirts, one expects heating and
pinching (increase of current density) of the current sheet that
lead to an equilibrium.

Let us first predict how the heating and pinching will happen.
Inserting Eqs. (1) and (2) in the time-dependent Vlasov equation
yields

∂ln f σ
∂�t

¼ �2
�Vσ

2�v2Tσ
� 1

� �
�vx tanh �x: ð3Þ

The two aforementioned conditions for equilibrium
—B0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0n0kBT

p
and λ= λDc/V—together reduce to

Vσλωcσ ¼ 2v2Tσ or equivalently �Vσ ¼ 2�v2Tσ , for which Eq. (3)
yields the stationary solution ∂f σ=∂�t ¼ 0. However, if the sheet is
under-heated so that 2�v2Tσ < �Vσ , then the quantity ξ :¼ �Vσ �
2�v2Tσ is positive and Eq. (3) yields a solution linear in a small time
interval Δ�t:

f σ / exp � 1
2�v2Tσ

�vx þ ξΔ�t tanh �x
� �2� 	

: ð4Þ

The mean velocity in the x direction is thus �Vx �xð Þ ¼ �ξΔ�t tanh �x.
At positive �x, particles gain negative �vx and vice-versa; therefore,
the initial linear response of an under-heated Harris sheet is to
bring particles closer to the center by increasing their j�vxj.

This response induces transitions among particle classes. It is
apparent from Fig. 1a–c that an increase in j�vxj moves NC
particles to DW− and DW− particles to DW+. Applying the
analysis of the phase-space distributions of the four classes in
Fig. 2, these class transitions explain (i) current sheet heating
in the x direction, and (ii) current sheet pinching due to increases
in both density and mean velocity at the center (note that the
velocity decrease from the NC→DW− transition is more than
compensated for in the DW−→DW+ transition). Also, there is

no transition to or from the M class because the shape of χ is such
that a change in �vx does not induce orbit class transitions.

The above analysis only considers linear dynamics assuming
that the current sheet profile remains stationary. It is therefore
not valid in the nonlinear regime where the profile self-
consistently changes along with orbit class transitions. However,
we may infer from the analysis the primary mechanism—at least
in the linear regime—underlying current sheet heating and
pinching: transitions from the NC class to the DW classes and no
transitions to or from the M class.

These predictions will now be verified with a one-dimensional
particle-in-cell simulation. The initial condition was an under-
heated Harris current sheet with a temperature T= 0.2Teq where
Teq ¼ B2

0=ð4μ0n0kBÞ is the Harris equilibrium temperature. The
initial sheet thickness was λ= 10di where di is the collisionless ion
skin depth. Figure 3 shows streak plots of By, the current density
Jz, the ion temperature Ti, and the ion density ni. The current
sheet pinches and heats up until �30ω�1

ci , after which it remains
steady and thus reaches equilibrium.

Figure 4a–c show fi in x−vx space at t ¼ 0; 10; 100ω�1
ci ,

respectively. Figure 4b confirms the initial response of the under-
heated current sheet as predicted by Eq. (4), namely the focussing of
the particles towards the center. Figure 4c shows the equilibrium
reached by fi, and Fig. 4d shows the difference (Δfi) between the
initial state (Fig. 4a) and the equilibrium state (Fig. 4c). Comparing
Fig. 4d to Fig. 2a, it is apparent that the NC class de-populates and
migrates to the DW classes. The dynamics in the simulation is fully
nonlinear, so transition to the M class also occurs, albeit less
significantly than the main NC→DW transition.

Figure 4e–g, i are the same as Fig. 4a–d except that they are in
x−vz space. Again, the NC→DW transition is evident from a
comparison to the pronounced Y-shape of the phase-space
distribution of the DW classes (Fig. 2c). Therefore, we have
confirmed that collisionless equilibration of an under-heated
Harris current sheet is mainly due to orbit class transitions from
NC to DW.

It is clear from Fig. 4c, g that the final equilibrium is most
naturally described by the relative population in each orbit class,
rather than, e.g., Maxwellian or kappa distributions. Figure 4h
shows the distribution in vz at x= 0.2λ, whose profile is clearly
non-Maxwellian.

Note that electrons also mainly transition from NC to DW in
this process because the orbit classes apply generally for any
species. Figure 4 is therefore qualitatively applicable to electrons,
except that their velocities change signs owing to their negative
charge.

Fig. 3 Streak plots of variables from the particle-in-cell simulation. Streak plots of a the sheared magnetic field By, b the current density Jz, c the ion
temperature Ti, and d the ion density ni from t= 0 to 100ω�1

ci .
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Origin of bifurcated current sheets. Figure 4j–l show the time
evolution of the ion current density in the z direction, Jiz, and
Fig. 4m shows the difference between the initial and final Jiz. The
bifurcated structure is evident, which naturally arises from the
pronounced Y-shape of the phase-space distribution of the DW
classes to which particles migrate from the NC class. The total
current density—mainly carried by the electrons—is also bifur-
cated, as shown in Fig. 3b. Bifurcated current structures are thus
natural by-products of the collisionless equilibration process of a
current sheet.

Let us compare the simulation results with a current sheet
detected by the MMS mission43 from 20:24:00 to 20:24:15 UT on
17 June 2017, when the spacecraft was located at
�19:4;�10:4; 5:5ð ÞRE—where RE is the Earth’s radius—in
Geocentric Solar Ecliptic (GSE) coordinates while crossing the
magnetotail plasma sheet from the southern to the northern
hemisphere. This sheet has also been examined in previous
studies under different contexts37,44,45 and has a half-width of
~67 km, which is ~9de, where de= 7.5km is the electron skin
depth based on the background electron density ne= 0.5cm−3 37.
Because the half-width of the observed sheet is much less than the
ion skin depth di, its dynamics is mainly controlled by electrons.

The half-width of the simulated sheet pinches down to ~0.1λ
= 1di= 10de (because mi/me= 100 was used in the simulation),
as can be seen in Fig. 3a. The simulated sheet and the observed
sheet are thus similar in that their widths are ~10de and ≲1di, so
their sheet dynamics are mainly controlled by electrons. There-
fore, the focus will now be on electrons instead of ions because (i)
both sheets have electron-scale thicknesses, and (ii) as a
confirmation that electrons have similar orbit class transition
dynamics to that of ions.

Figure 5 shows a side-by-side comparison of the current sheet
detected by MMS and that from the particle-in-cell simulations.
The data are presented using a local coordinate system, LMN. The
sheared magnetic field is in the L-direction, and M and N are,
respectively, parallel and normal to the current sheet. The current

is carried mainly by the electrons in both the observation and the
simulation. The finite electron outflow veL in Fig. 5b indicates that
the observed current sheet is undergoing magnetic reconnection,
whereas the simulated current sheet, being one-dimensional, is
not. Reconnection induces perpendicular electron heating at the
sheet center46, which explains the central increase of TeMM in
Fig. 5d relative to Fig. 5j. The relative increase of TeLL at the
outskirts in Fig. 5d is also attributed to reconnection-induced
parallel electron heating46.

Apart from such reconnection-related dissimilarities, the
observed and simulated profiles agree strikingly well, including
the bifurcated current structure. In particular, the simulated
equilibrium explains the central dip and increased outskirts of the
electron temperature tensor element TeMM relative to TeNN, as
shown in Fig. 5d, j. The profile of TeNN− TeMM in Fig. 5e is
remarkably reproduced by Fig. 5k, except for the relative central
dip in Fig. 5e owing to the reconnection-induced increase of
TeMM. Same goes for the pressure tensor elements PeMM, PeNN,
and PeNN−PeMM (Fig. 5f, l).

The increased amount of electron population in the DW
classes is shown not only by the current, temperature, and
pressure structures, but also by the density plateau in Fig. 5c, i
which is due to migrations to the DW classes (see Fig. 2g). This
density plateau was also observed in Cluster measurements29.

Discussion
Although the kinetic equilibrium attained by relaxation has been
presented as an example of bifurcated current sheets, we are not
claiming that all such sheets are in equilibrium states. Instead, the
claim is that bifurcated structures are natural repercussions of the
collisionless current sheet equilibration process and so are likely to
be observed in a variety of phenomena as the underlying structure.
As mentioned in the Introduction, numerous explanations for
bifurcated current sheets have been put forth; these explanations
will now be unraveled in relation to the relaxation process.

Fig. 4 Time evolution of the ion distribution function from the particle-in-cell simulation. Ion distribution function fi in x−vx space at a t= 0, b t ¼ 10ω�1
ci ,

and c t ¼ 100ω�1
ci . d The difference (Δfi) between fi in c and a. e–g and i are respectively the same as a–c and d, except in x−vz space. h A slice through the

dotted line in g. j–l The ion current density Jiz obtained by taking the first velocity moment of e–g. m The difference between j and l.
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Magnetic reconnection has been one of the proposed causes of
bifurcated current sheets30,47, but many such sheets were also
observed without any fast flows29,48, which are signatures of
reconnection. Nevertheless, a statistical study indicated that the
thinner the structures are, the more likely they are to be
bifurcated28. These observations can be unified by the fact that
thinner current sheets are more likely to involve sub-skin-depth
collisionless dynamics, which is favorable for the occurrence of
both collisionless reconnection and the present collisionless
relaxation process. A possible scenario is one where an initially
thick, under-heated current sheet equilibrates to a thin, sub-skin-
depth bifurcated structure, which then undergoes collisionless
reconnection. In fact, the initial condition for reconnection in
collisionless situations is more likely to be the equilibrium pre-
sented here than widely used specific solutions such as the Harris
sheet49. If the sheet is not thin enough for reconnection to occur,
then it may remain bifurcated and steady.

Flapping motion was also observed in conjunction with
bifurcated current sheets29,31. This motion involves fast thinning
and thickening of the sheet31. Such fast motion will naturally
induce bifurcation via two possible scenarios: (i) disequilibration
of current sheets, followed by relaxation via spontaneous orbit
classes transitions, or (ii) unspontaneous transitions driven by the
external source that thins the sheet.

Equilibria involving anisotropic temperatures have also been
shown to exhibit bifurcated structures17,32,33, but the source of the
anisotropy was not clear so the amount of anisotropy had been set
ad hoc. The present collisionless relaxation process naturally induces
temperature anisotropy, which is thus an innate result of the equi-
libration process rather than a cause of bifurcated structures.

Speiser motion (M class) was also attributed to bifurcated
structures21,34. However, it is clear from Fig. 2 that the M class
cannot contribute to bifurcated structures if the density is peaked
near the center, unless the density itself is bifurcated21 and/or
heavier species are taken into account34.

Some studies20,40,41 invoke non-adiabatic scattering of particles
from M to DW+ via a slow diffusive process in current sheet
equilibria. However, the diffusion coefficient of such process is
zero for Bx= 0 because it scales with the curvature parameter κ
(cf. equation 7 of Zelenyi et al.41). We have shown here that
neither curved magnetic fields nor diffusive processes are neces-
sary; simply choosing a disequilibrated initial state is sufficient for
the development of bifurcated structures, although diffusion due
to field curvature may aid the process.

In summary, the collisionless relaxation process of a dis-
equilibrated current sheet was studied. The process is most
naturally understood by orbit class transitions, which were ana-
lytically predicted and numerically verified. The relaxation
mechanism was identified as the origin of bifurcated current
sheets, and the significance of this identification in regards to
previous explanations of bifurcated structures was discussed.

Methods
Sampling from and categorization of the Harris distribution function. Particle
positions and velocities were sampled from Eq. (2) using the numpy.random
package in Python 3.8. Particles with �pz > 0 and �pz<��v? were categorized into M
and NC, respectively. For the rest of the particles that belong to the DW classes, the
following steps were taken to further categorize them.

First, a simple analysis of the Hamiltonian of each particle shows that its
oscillation amplitude in the x direction is given by �xmax ¼ arccosh exp �v? � �pz


 �� �
.

Fig. 5 Comparison of a current sheet detected by MMS to that from the particle-in-cell simulation. a–f Sequentially, the magnetic field B, electron velocity
ve, electron density ne, diagonal elements of the electron temperature tensor Te, the difference between the temperature tensor elements TeNN−TeMM, and
diagonal elements of the electron pressure tensor Pe and PeNN−PeMM (shifted up by 0.04) detected by the Magnetospheric Multiscale spacecraft from
20:24:00 to 20:24:15 UT on 17 June 2017. The x axis is seconds from 20:24:00 UT. The current sheet crossing velocity is ~67 km/s, so one second corresponds
to 67 km, or 9de. g–l Quantities from the particle-in-cell simulation respectively corresponding to a–f. The x axis is in units of λ= 10di= 100de.
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The bounce-period-averaged �vz of the particle is then given by

�vz
� � ¼ 2

T0

Z �xmax

��xmax

�vz
�vx

d�x; ð5Þ

¼ 2
T0

Z �xmax

��xmax

�pz þ ln cosh �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pz þ ln cosh �xmax

� �2 � �pz þ ln cosh �x
� �2q d�x; ð6Þ

where T0 ¼ 2
R �xmax

��xmax
d�x=�vx is the bounce period. Only the sign of h�vzi matters here,

so the integral in Eq. (6) was evaluated numerically for each particle using the
scipy.integrate.quad package in Python 3.8. Particles with positive h�vzi
were categorized into DW+, and the rest into DW−.

Particle-in-cell simulation. The open-source, fully-relativistic particle-in-cell code,
SMILEI50, was used. The 1D simulation domain was 10λ= 100di long and was
divided into 215= 32,768 grid points. Open boundary conditions (Silver-Müller)
were employed for the electromagnetic fields, and periodic boundary conditions
were imposed for the particles. In all, 10,000 particles were placed per cell per
species, so ~6 × 108 particles were simulated with a mass ratio mi/me= 100. The
simulation run with a frequency ratio of ωce/ωpe= 5 is shown in this paper for
clarity of presentation; ratios as low as ωce/ωpe= 0.2 were also tried, but lower
ratios simply increased the duration of plasma oscillations that either damp or
travel away from the center without any noticeable effect on the core relaxation
mechanism. The initial conditions were Eqs. (1) and (2), and the electrostatic
potential ϕ= 0. The initial temperature was set as one-fifth of the Harris equili-
brium temperature, i.e., T= 0.2Teq where Teq ¼ B2

0= 4μ0n0kB
� �

is the temperature
that yields the Harris equilibrium. The simulation time was tmax ¼ 100ω�1

ci with a
time step Δt ¼ 7:63 ´ 10�4ω�1

ci .
The simulations were run on the KAIROS computer cluster at Korea Institute of

Fusion Energy.

MMS data and local LMN coordinates. Data from MMS2, MMS3, and MMS4
from 20:24:00 to 20:24:15 UT on June 17, 2017 were averaged to yield the profiles
shown in Fig. 5a–e. MMS1 data were omitted because the current density did not
exhibit an obvious bifurcated structure. The magnetic field data were collected by
the Fluxgate Magnetometer instrument51 and the plasma data by the Fast Plasma
Investigation instrument52. The local LMN coordinate system is obtained from a
minimum variance analysis53 of the averaged magnetic field data which are in GSE
coordinates. The values of the unit vectors are L ¼ 0:942; 0:308;�0:130ð Þ,
M ¼ 0:194;�0:189; 0:963ð Þ, and N ¼ 0:272;�0:932;�0:238ð Þ in GSE coordi-
nates. L is the direction of the sheared magnetic field, N is the direction normal to
the current sheet, and LMN form a right-handed coordinate system.

Data availability
MMS data are publicly available from https://lasp.colorado.edu/mms/sdc/public. The
data from the PIC simulations are available from https://doi.org/10.5281/
zenodo.4607112.

Code availability
SMILEI50 is an open-source particle-in-cell code available from https://smileipic.github.
io/Smilei. MMS data were analyzed using the pySPEDAS package54, available from
https://github.com/spedas/pyspedas. The codes used in the data analyses are available
from Y.D.Y. upon reasonable request.
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