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Abstract: Studying relationships among gene products by expression profile analysis is a common
approach in systems biology. Many studies have generalized the outcomes to the different levels
of central dogma information flow and assumed a correlation of transcript and protein expression
levels. However, the relation between the various types of interaction (i.e., activation and inhibition)
of gene products to their expression profiles has not been widely studied. In fact, looking for any
perturbation according to differentially expressed genes is the common approach, while analyzing
the effects of altered expression on the activity of signaling pathways is often ignored. In this study,
we examine whether significant changes in gene expression necessarily lead to dysregulated signaling
pathways. Using four commonly used and comprehensive databases, we extracted all relevant gene
expression data and all relationships among directly linked gene pairs. We aimed to evaluate the
ratio of coherency or sign consistency between the expression level as well as the causal relationships
among the gene pairs. Through a comparison with random unconnected gene pairs, we illustrate
that the signaling network is incoherent, and inconsistent with the recorded expression profile.
Finally, we demonstrate that, to infer perturbed signaling pathways, we need to consider the type of
relationships in addition to gene-product expression data, especially at the transcript level. We assert
that identifying enriched biological processes via differentially expressed genes is limited when
attempting to infer dysregulated pathways.

Keywords: gene expression; signaling network; network biology; transcriptomics; differentially
expressed genes; causality analysis

1. Introduction

In network biology, defining causal relationships among nodes is crucial for static and dynamic
analysis [1,2]. The most available high-throughput data for inferring molecular relationships are
arguably whole-transcriptome expression profiles analyzed with statistical models [3]. The challenge
is extrapolating causality in signaling and regulatory mechanisms from a significant correlation
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between any given gene pair. Many spurious correlations among gene pairs lacking any direct causal
relationship are possible, both stochastically and as a result of indirect effects [4]. So far, reverse
engineering algorithms have been developed to tackle this challenge and to infer gene networks and
regulatory interactions from expression profiles [5–7].

When considering signaling networks as a portrait of causal relationships among the molecular
entities in biology, their leading players are proteins, whose activity is often regulated by
post-translational modifications such as phosphorylation and acetylation [8,9]. Therefore, inference of
signaling networks can be directly inferred from (Phospho) proteomic and protein–protein interaction
data [10]. However, these kinds of data are expensive and laborious to acquire. Given the correlation
between protein and gene expression, a common alternative approach is using gene expression to
infer interactions between proteins. It is known that gene expression or transcriptome refers to “what
appears to happen in a biological system”, while the signaling network explicates “what makes it
happen and what has happened in a complex view of the system” [11]. Meanwhile, in transcriptomic
studies, differentially expressed genes (DEGs) are identified based on the changes in mRNA levels
between two or more groups of samples, and several affected biological pathways are recognized by
node-centric enrichment analysis [12,13]. This, therefore, begs the question of whether gene expression
profiles amplify the mechanism of signaling circuits, i.e., activatory/inhibitory relationships.

In this study, we aimed to examine the coherency between expression profiles and the signs
of relationship in signaling networks for all possible gene pairs. To elaborate on what we mean by
coherency, imagine a gene pair (GI, GII) where gene GI activates gene GII. If the expression profiles
of both are correlated positively, we infer that expression data strengthen the activation type of this
signaling relationship and are thus a coherent gene pair. In contrast, let gene GI inhibit gene GII.
In this case, the coherent gene pairs are negatively correlated, and the inhibition type of this signaling
relationship is strengthened in accordance with the expression levels of transcripts. If gene GI activates
gene GII while there is a negative correlation between them or if gene GI inhibits gene GII while there is
a positive correlation between them, this implies the incoherency between the gene pair relationships.
In other words, incoherent gene pairs’ effects on the action of each other are not supported by their
mRNA expression levels. In addition to these simple scenarios, we also considered more complicated
subgraphs in a signaling network (See Table 1). Edges appear between gene pairs, indicating a
relationship. Since all edges have a direction, the type of logical relationship is determined using the
sign of edges. We then performed a correlation analysis between the connected gene pairs compared
with unconnected gene pairs to infer coherency. To this end, we used expression datasets in the Gene
Expression Omnibus (GEO) [14] and Genomics of Drug Sensitivity in Cancer (GDSC) databases [15] to
extract the relevant gene expression profiles. Two literature-curated databases for signaling pathways,
namely the Kyoto Encyclopedia of Genes and Genomes (KEGG) [16] and OmniPath [17] (which
integrates literature-curated human signaling pathways from 34 resources) were used to extract the
sign of relationships among directly linked gene pairs. Therefore, a coherency analysis was undertaken
independently for all four combinations of databases in parallel (see Table 1). This analysis allowed
us to explore the importance of having coherent gene pair relationships to infer the dysregulated
signaling pathways.
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Table 1. Details of different subgraphs present in all biological signaling networks. The dashed lines
indicate multiple edges between nodes. The last two columns provide the number of each subgraph in
the two signaling databases.

Simple Subgraphs

Structures Names Abbrev. KEGG OmniPath

Unconnected Gene Pairs UGP __ __

Activation Act 19,170 15,841

Inhibition Inh 7320 5012

Complex Subgraphs

Dual Negative Feedback
Loop DNFBL 37 279

Dual Positive Feedback
Loop1 DPFBL1 186 912

Dual Positive Feedback
Loop2 DPFBL2 14 173

Multiple Negative
Feedback Loop1 MNFBL1 17,712 14,913

Multiple Positive
Feedback Loop1 MPFBL1 3731 4104

Multiple Negative
Feedback Loop2 MNFBL2 2417 1005

Multiple Positive
Feedback Loop2 MPFBL2 3232 3279

Multiple Feed-Forward
Loop1 MFFL1 12,869 6729

Multiple Feed-Forward
Loop2 MFFL2 6618 4718

Multiple Negative
Feed-Forward Loop1 MNFFL1 8918 9663

Multiple Negative
Feed-Forward Loop2 MNFFL2 2925 842

2. Materials and Methods

In this study, four independent analyses were performed based on two gene expression databases,
i.e., GEO and GDSC, and two signaling pathway databases, i.e., KEGG and OmniPath, in parallel
(Figure 1) [14–17]. The signaling pathway databases were thus independently used to reconstruct
a whole signaling network, and the gene expression databases were separately used to apply a
correlation analysis to each gene pair in the pathways to undertake and compare the distinct analyses
and findings of KEGG/GEO, KEGG/GDSC, OmniPath/GEO, and OmniPath/GDSC. To briefly introduce
the utilized gene expression databases, GEO is an international public repository of National Center
for Biotechnology Information (NCBI) that archives microarray and next-generation sequencing
expression data. The GDSC database is the largest public repository that archives information about
drug sensitivity in cancer cells and biomarkers of drug response in these cells. In this work, gene
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expression profiles from GDSC cell lines and GEO studies were used to extract pairwise association
between genes.

Figure 1. Visual overview of how information from different databases was integrated to analyze the
coherency. An edge list was constructed from Kyoto Encyclopedia of Genes and Genomes (KEGG) and
OmniPath databases. All the gene expression profiles for the edge list genes were then downloaded
from Gene Expression Omnibus (GEO) and Genomics of Drug Sensitivity in Cancer (GDSC) databases.
Next, data were preprocessed, and a suitable structure was created for correlation analysis among the
gene pairs. By interpreting the information from correlation tests and the proportional tests, coherency
analysis was implemented on different forms of subgraphs. There are a total of four coherent conditions
in panel A and four incoherent conditions in panel B. For instance, in panel A, if gene1 is up-regulated
and there is an activation between the gene pair, gene2 must be up-regulated. In panel B, if gene1
is up-regulated and there is an inhibitory relationship between the gene pair, gene2 is expected to
be up-regulated.
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2.1. Signaling Network Reconstruction

Here, we focused on human signaling pathways based on available datasets. All human-related
signaling pathways were downloaded from the KEGG database. Using the KEGGgraph package [18],
these pathways were imported into the R environment [19]. Edge information was extracted, and each
graph was converted to an edge list. Next, all edges (n = 26,490) were merged, and a directed signed
signaling network was reconstructed (Supplementary File 1 (Section 1), and Supplementary File 4).
Eligible edges (see Section 2.3) were then selected, and correlation analysis was undertaken on eligible
gene pairs. The pypath python module [17] was also used to do the same and create an edge list based
on the OmniPath database (see Supplementary File 4). This edge list (n = 20,853) was also imported
into the R environment for the downstream statistical analysis on the gene pairs.

2.2. Gene Expression Profiles Extraction

The standard GEO query format (GEO Profiles) was used to identify all up- and down-expressed
genes or DEGs represented within the KEGG and/or OmniPath edge lists. For each study, a number
of differentially expressed genes are identified based on the desired thresholds of log fold change
and p-values indicating significance. As the up- and downregulated gene expression profiles are
derived from different kinds of studies corresponding to different periods and different genomic
technologies, we relied on the definition of up- and downregulated genes in the GEO database to define
DEGs. Gene expression profiles available in GDSC were downloaded for both edge lists, followed
by preprocessing and outlier detection. Finally, based on GEO and GDCS, four expression matrices
were created using the genes which make up of KEGG and OmniPath edge list (Supplementary
File 1 (Sections 2 and 3) and Supplementary File 5). For more details about the total number of gene
expression profiles, DEGs, and total number of samples that were downloaded from GEO and GDSC,
see Figure 1 and Table 2.

2.3. Mutual Association Analysis

In the next step, the correlation of the expression profiles of each gene pair was statistically
tested. For computing correlation coefficients for any gene pair, including Pearson, Spearman’s rank,
and Kendall rank coefficients, we only considered gene pairs having more than two samples. These gene
pairs were considered as eligible edges for downstream statistical analysis (Supplementary File 1
(Section 4)). Samples with expression data for the gene pairs may have come from different datasets
with multiple organisms and tissues and therefore they were analyzed separately and independently.
Figure 2A represents the effect of this preprocessing on an exemplary gene pair in our dataset.
In this study, the gene expression profiles were considered dataset-specific, as mentioned, to avoid any
inconsistency among the samples collected from diverse datasets, as sample heterogeneity can easily
obscure pairwise relationships. An edge is therefore considered homogeneous if the correlation sign is
consistent throughout. These homogeneous edges were used for correlation analysis. Then, according
to the statistical significance and the sign of the correlation coefficient, the coherent and incoherent
gene pairs were inferred (Supplementary File 1 (Section 5)). Note that a p-value less than 0.05 was
considered to represent the cutoff.
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Table 2. General properties and date retrieved of the signaling networks. The number of differentially expressed genes (DEGs) is also given, which are those common
between the edge list genes and gene expression profile genes and identified by the GEO/GDSC database as either up- or down-regulated. Samples are the total number
of samples in GEO and GDSC databases for which expression data were available for the given gene pair. The node number of the giant component, the diameter of
the network, and the ratio of shared genes between edge list genes and gene-expression-profile genes are presented in the last three columns.

KEGG OmniPath

Date
Retrieved DEGs Samples Giant

Component Diameter Ratio Date
Retrieved DEGs Samples Giant

Component Diameter Ratio

GEO 2017.08 3047 40,903 2549 17 0.95 201,905 4724 40,774 3848 17 0.95

GDSC 2017.10 2745 1018 2583 17 0.16 201,905 4402 1018 4045 15 0.25
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Figure 2. (A) An exemplary relationship between gene pair expression. These scatter plots contain the
Pearson coefficient correlations and fitted linear regression line. The X-axis and Y-axis values differ
according to the expression profile of this gene pair in different gene expression datasets. The gene
expression profiles of these exemplary gene pairs in the edge list before pre-processing are depicted.
The same gene pairs’ expression profiles were separated according to the four relevant datasets. (B) The
proportion of eligible and ineligible edges in the four parallel analyses. The numbers around each chart
represent the number of edges at that point.

2.4. Randomly Selected Unconnected Gene Pairs

The edge lists obtained in the previous step were converted into adjacency matrices using the
igraph package in R [20]. Then, the adjacency matrix was self-multiplied more than the diameter of the
network (e.g., n > 17) (Table 2). We then randomly selected 1000 unconnected gene pairs ten times,
for which the corresponding elements in the matrix were zero (gene pairs with no direct immediate and
non-immediate interactions). For these gene pairs, which we called unconnected gene pairs (UGPs),
the same downstream analyses, i.e., pre-processing and correlation analysis, were implemented to
compare the significance and sign of correlation coefficients to connected gene pairs (Supplementary
File 1 (Section 6) and Supplementary Files 7).

2.5. Complex Subgraphs

Since gene pairs are not isolated within the whole signaling networks, the larger subnetworks,
which consisted of gene pair relationships, needed to be considered. Therefore, we extracted specific
subgraphs from the signaling networks to investigate any association between gene expression profiles
and the complex structures of relationships for each gene pair. DNFBL (Dual Negative Feedback
Loop), DPFBL1 (Dual Positive Feedback Loop 1), and DPFBL2 (Dual Positive Feedback Loop 2) are
subgraphs of gene pairs that influence each other directly twice (see Table 1 for the full names of
subgraphs). These pairs are readily found by checking the source and target nodes in the edge lists
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(or upper and lower triangles in adjacency matrices). We then focused on the connected gene pairs,
which also influence each other indirectly by a sequence of intermediate nodes. Following matrix
self-multiplication, the weighted and unweighted adjacency matrices of the giant component of eligible
edges in the signaling network were powered by the network radius magnitude. Considering that the
network is directed and the adjacency matrix is not symmetric, the feed-forward and feedback loops,
i.e., MNFBL1-2, MPFBL1-2, MFFL1-2, and MNFFL1-2, were determined (Table 1). For a more detailed
explanation of procedures, see Supplementary File 1 (Sections 7 and 8).

3. Results

The overall details of the four parallel coherency analyses are presented, including the dimension
of the expression matrices generated from whole-transcriptome expression profiles, and the size and
diameter of the giant component in each analysis (Table 2). Notably, the number of DEGs was higher in
OmniPath than KEGG, even though the size of the KEGG network is 1.8-fold larger than the OmniPath
network. The ratio of eligible edges to all edges was calculated for all four analyses (see Figure 2B).
The ratio of eligible edges in the OmniPath edge list also was higher than KEGG based on both GDSC
and GEO databases. In addition, the ratio of eligible edges was higher in GDSC compared with GEO.
This comparison may indicate the higher quality of gathered and annotated data in OmniPath and
GDSC databases.

3.1. The Ratio of Coherency for Gene Pairs

After filtering out heterogeneous edges, an extensive list of homogeneous edges was constructed
(Supplementary File 1 (Sections 3.5−3.7) and Supplementary File 6) for correlation analysis.
We performed correlation analysis in datasets with more than two samples, and the majority of
the datasets had more than five samples. The violin plots of Pearson correlation coefficients for
each analysis are shown in Figure 3A. The distribution of the coefficients showed a nearly uniform
distribution with a little left skewness for KEGG/GEO and OmniPath/GEO, while for KEGG/GDSC and
OmniPath/GDSC, it followed a normal distribution with the median at approximately zero. In addition
to the issue of different sample sizes in GEO and GDSC, this suggests that for GDSC-based edges,
correlations between the expression profiles of the gene pairs do not tend to show a high positive or
negative correlation. In other words, for a given gene pair (I, II), over- or under-expression of gene I
does not have a substantial effect on the expression of gene II regardless of the edge sign.

Figure 3B depicts the ratios of coherent and incoherent gene pairs along with the number of
non-significant edges that have False Discovery Rate (FDR) adjusted p-values larger than 0.05, and we
could not establish the coherency status at a likelihood greater than or equal to 95%. In addition,
the sum of the ratio of incoherent gene pairs and non-significant edges was more than the ratio of
coherent gene pairs in all four analyses. The ratio of coherent gene pairs in OmniPath was, in general,
higher than for KEGG, while the ratio of coherent gene pairs in the GDSC database was higher than
that of GEO. In more detail, when we considered GDSC as a cancer-specific homogenous dataset, the
percent of coherent edges increased from 13.5% in GEO to 28.1% according to the KEGG database and
from 11.1% in GEO to 34.2% based on the OmniPath database. In the following figures, the results
correspond to the Pearson correlation coefficient. However, note that the ratio of coherency for gene
pairs is also similar when using Spearman and Kendall rank correlation coefficients (Supplementary
File 1 (Section 4)).
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Figure 3. (A) Distribution of Pearson correlation coefficient values for the four parallel coherency
analyses. (B) The ratio of coherent and incoherent edges in addition to the ratio of non-significant
edges that have adjusted p-values of correlation test larger than 0.05. The values around each pie chart
represent the exact numbers.

Figure 4 shows the FDR-adjusted p-values versus correlation coefficients of activation and
inhibition edges in all four analyses. The symmetric pattern of coefficients is recognizable for both
activation and inhibition edges in the four analyses. This suggests that the correlation between a
given gene pair is not predominantly affected by the sign of the interaction. In other words, although
activation edges illustrate an overrepresentation of strongly positively correlated gene pairs in all
four analyses, the inhibition edges do not display any enrichment in the strong negative side of plots
compared with the strong positive side. This also demonstrates that the majority of coherent gene
pairs are activation rather than inhibition edges. In the next step, we tried to explore and provide
supporting evidence for the incoherent gene pairs by focusing on more complex subgraphs in the
signaling network.
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Figure 4. The volcano plots of the activation and inhibition edges. The horizontal axis is the Pearson
correlation coefficient, and the vertical axis shows log transformed False Discovery Rate (FDR)-adjusted
p-values. The threshold line (blue) represents the significance cut-off value of 0.05. (A–D) plots
correspond to KEGG/GEO, OmniPath/GEO, KEGG/GDSC, and OmniPath/GDSC analyses, respectively.

3.2. The Ratio of Coherency on Subgraphs

In this step, we explored whether complex subgraphs are coherent compared to when only single
edges are considered. Briefly, we assumed that observing some incoherency of activation and inhibition
edges may depend on the complex structure of the signaling network and, thus, the behavior of
larger subgraphs should be considered to infer coherency (Figure 5). Like the simple activation or
inhibition edges, correlations are computed and categorized by taking into account the correlation sign
for each mentioned subgraph and the calculated FDR-adjusted p-values (see details in Supplementary
File 2 for all the four analyses). For example, we expected that the proportion of significant positive
correlations is more than the negative correlations in DNFBL as a negative feedback loop when
compared with DPFBL1 and DPFBL2, because the two edges of the DNFBL do not have the same sign,
and overexpression of one protein entails the under-expression of the other one in a negative feedback
loop. However, this expectation was only partially fulfilled in KEGG/GEO analysis.

To statistically compare the coherency of different subgraphs, the correlation analysis was also
implemented on multiple sets of 1000 randomly unconnected gene pairs (UGPs), and a binomial
proportion test was then undertaken to compare all of the proportions as illustrated in Figure 5.
UGP sets were employed to compare the results of the coherency analysis with the ones obtained from
gene pairs where relationships exist between them. In most cases (>60%), the comparison showed a
statistically significant difference between pairwise proportions of UGPs and the connected gene pairs,
e.g., Act, Inh, DNFBL for all four combinations of databases (Supplementary File 3). It is possible
that the connected genes are affected by each other with respect to UGPs, but it may happen in a
more complex way that it is not inferred by correlation analysis (Figure 5). We also aimed to continue
our search to check coherency in larger subgraph structures. We therefore identified subgraphs that
contained more than two edges, i.e., MNFBLs (Multiple Negative Feedback Loop 1 and 2), MPFBLs
(Multiple Positive Feedback Loop 1 and 2), MFFLs (Multiple Feed-Forward Loop 1 and 2), and
MNFFLs (Multiple Negative Feed-Forward Loop 1 and 2), using matrix self-multiplication (See Table 1).
The purpose of self-multiplication was to retrieve the related gene pairs in complex subgraphs and
unrelated gene pairs in unconnected gene pairs. However, our results demonstrated the limitation of
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strong coherent relationships among gene pairs, suggesting that, independent of the structure of the
subgraph, gene expression profiles are discordant with the functionality of signaling circuits.

Figure 5. The ratio of eligible and homogeneous edges involved in different subgraphs are represented
by stacker bar plots for all four analyses. (A,B) are KEGG/GEO and OmniPath/GEO plots, and (C,D)
plots correspond to KEGG/GDSC and OmniPath/GDSC. Note that the unconnected gene pair (UGP)
ratios are the average ratio over of all UGP sets. See Table 1 for the full names of subgraphs.

4. Discussion

Incoherency in signaling networks at the transcript level might be a strategy used by cells to
tune both genetic and environmental signals or a byproduct resulting from frequent modulation of
signal transduction within biological systems. In fact, cells acquire the characteristics they need by
setting different layers of gene regulations, which illustrates the importance of different layers of post
transcriptional regulation [21]. High-throughput technologies, such as mRNA microarray, CHIP-seq
(Chromatin Immunoprecipitation Sequencing), and mass spectrometry proteomics, have uncovered
the amount of expression through determination of mRNA and protein levels [22]. There is an
apparent correspondence between mRNA and protein concentrations [23]. Nonetheless, more than
fifty percent of protein variation cannot be explained by variation in mRNA concentration [23–25].
These unexplained variations might come from organism-specific translational and post-translational
regulations, including protein degradation by ubiquitylation and sumoylation [26]. Because we were
dealing with whole-human signaling networks, considering all aspects that impact the expression
of each gene is far-fetched. Such an analysis would represent the total coherency based on the
analysis of gene expression at the mRNA level. The correlation between transcript and protein
concentrations are considerable for some house-keeping genes. However, in many eukaryotes, there is
no strong correlation for genes of signal transduction or transcriptional regulation, while their encoded
proteins are often involved in different signaling networks and determine cell fate and behavior of the
system [27].
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Although the regulation of gene expression results in a particular concentration of proteins, it is not
sufficient to completely describe protein abundances [28,29]. The roles of other mechanisms, such as
post-transcriptional, post-translational, and protein degradation regulations, have been reported
to control steady-state protein abundance and protein activity [28,30]. For example, miRNAs are
associated with proteins and diseases as regulators of gene expression [31,32]. There are several
studies focusing on the regulatory role of long noncoding RNAs (lncRNAs) in wound healing and
cancers [33–35]. Alternative splicing also results in diverse forms of proteins, and the functions of
proteins and corresponding signal transduction pathways are affected by this type of regulation in
some diseases [36]. Moreover, numerous methylation sites have been discovered on human proteins
that impact cell signaling [37]. Therefore, the incoherency might come from the effects of complicated
regulatory networks to buffer signaling networks within biological systems. These modifications are
thus likely to be the source of poor coherency between signal transduction and gene expression and
are particularly valid for multicellular eukaryotes such as worm and fly. In contrast, yeast genes
engaged in signal transduction exhibit high correlation between mRNA and protein concentrations [24].
Interestingly, Larsen et al. recently demonstrated that there is no causal relationship between the
expression of transcription factors and their targets in the gene regulatory network of Escherichia coli
and, therefore, the transcriptional regulation cannot be adequately addressed by examining the current
static gene regulatory networks [38]. As a result, inferring gene regulatory or signaling relationships
from transcript data is challenging because these data are not the proxy of molecular activity. Only
in some cases are the results acceptable for constructing logical circuits of biological elements, e.g.,
if the components of the system are all kinases and the transition of the signals is related to the
phosphorylation process [10,39,40]. Different layers of gene regulation need to be considered for
each gene pair when inferring causal relationships between a pair of genes. Previously, we also
demonstrated the association of altered expression with the signaling circuits in chronic obstructive
pulmonary disease [41] and rabies infection [42] as case studies.

We implemented three different types of correlation analyses, namely Pearson, Spearman,
and Kendall, all of which exhibited similar findings. Based on the correlation results in Figure 3A,
the volcano plots in Figure 4, which exhibit no significant difference between activation and inhibition
edges, and the ratios in Figure 5, causal relationship can be inferred poorly at the transcript level, at least
in multicellular eukaryotic organisms such as Homo sapiens. Proportional binomial tests suggested
that there are statistically significant differences between UGPs and other subgraphs (Supplementary
File 3), and this demonstrates that the structure of subgraphs affects the coherency. Based on these
considerations, it is therefore strongly advocated that information in signaling networks be used or that
relationships between the genes are defined in addition to assessing gene expression at both transcript
and protein levels.

5. Conclusions

Although there is a general assumption that the expression level could strengthen or weaken
the signal to transduce in the signaling pathways, we show that the mRNA level of gene pairs is
generally incoherent with the way they manipulate one another (Figure 5). We also showed that there
is a level of association between the structure of the subgraphs and gene pair expression profiles.
Expression profiles of the unconnected gene pairs were statistically more independent than connected
ones. Note that these observations are according to the four datasets used here, and independent
investigation of gene pair relationships based on more accurate and specific datasets is recommended.

In this study, we aimed to focus on the impact of the type of relationship on any given stimulated
signaling pathway, an area which is usually ignored in functional genomic studies. We demonstrate
that DEGs have only partial information on the whole story of the associated mechanism. The presented
findings support the idea of using interaction- or edge-centric (based on DEG–DEG activatory or
inhibitory relationships) enrichment analysis against node-centric (based only on a list of DEGs)
analyses to provide a more vivid perspective of implicated pathways. This is because the majority of



Biomolecules 2020, 10, 850 13 of 15

the altered expression of DEGs gradually disappears and is then overlooked by the whole signaling
network system, whether stimulated endogenously or exogenously.

Supplementary Materials: The following are available online at https://zenodo.org/record/3822611#.Xr0F52gzbIU,
Supplementary File 1: The experimental procedure based on KEGG/GEO analysis in detail. This file contains
nine sections. The first section describes how the KEGG edge list with 26,490 edges was built. Next, in the
second section, downloading and merging the up-down gene expression profiles is explained for KEGG genes.
Section three walks you through the preprocessing of the expression profiles. In this step, an extensive list
containing 1969 experiments (GDS) was built. A large expression matrix called Exprtable with 40,903 samples in
column and 3187 genes in rows was constructed. From this matrix, a list called SignalingNet was constructed,
with an element for each gene pair in the KEGG edge list. In the fourth section, each element of SignalingNet
contAPCains the expression values and correlation information for the source and the target genes. Section five
includes the information for coherency of the edges and the number of activation and inhibition edges having a
specific p-value and correlation coefficient. Then, in the sixth section, ten sets of 1000 unconnected node pairs
were built in which the genes never reach one another (based on KEGG information). The correlation analysis
was also performed on these node pairs. In the seventh section, the number of edges having a specific p-value
and correlation coefficient engaged in two-edge subgraphs was computed. Afterward, in the eighth section,
the number of edges having a specific p-value and correlation coefficient engaged in multiple-edge subgraphs
were computed. Finally, in the ninth section, the results are summarized in some tables. Supplementary File 2:
Correlation analysis of all four analyses. Results are the number of edges having specific p-values and correlations
in different subgraphs. Supplementary File 3: The proportional statistical tests between the rows in the tables in
supplementary File 2 for all four analysis in separate sheets. Supplementary File 4: The KEGG and OmniPath
edge lists. Supplementary File 5: The large expression matrices constructed based on four analysis analyses.
Supplementary File 6: The SignalingNet list for the four analyses. Supplementary File 7: The unconnected
SignalingNet list for the four analyses.
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