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Abstract: p-Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target
in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides.
A combined in silico structure-based pharmacophore and molecular docking-based virtual screening
were performed to identify novel potential HPPD inhibitors. The complex-based pharmacophore
model (CBP) with 0.721 of ROC used for screening compounds showed remarkable ability to retrieve
known active ligands from among decoy molecules. The ChemDiv database was screened using
CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking with two methods
of LibDock and CDOCKER in Accelrys Discovery Studio 2.5 (DS 2.5) to discern interactions with
key residues at the active site of HPPD. Four compounds with top rankings in the HipHop model
and well-known binding model were finally chosen as lead compounds with potential inhibitory
effects on the active site of target. The results provided powerful insight into the development of
novel HPPD inhibitors herbicides using computational techniques.

Keywords: HPPD inhibitors; pharmacophore model; molecule docking; HipHop model; virtua
screening; ChemDiv

1. Introduction

Weeds compete with crops for sunshine, water, nutrients, and space, which influences
the growth of crops and undermines both crop quality and yield. In agrochemical research,
the discovery of novel high-activity and low-toxicity herbicide lead compounds still remains a
challenge. 4-Hydroxyphenylpyruvate dioxygenase belongs to the non-heme Fe(II)-dependent
dioxygenase family [1,2]. As an important enzyme correlated to the pigment synthesis and tyrosine
catabolism in most organisms, HPPD is important in drug discovery in both agricultural and
therapeutic areas [3–5]. HPPD catalyzes the conversion of 4-hydroxyphenylpyruvate (HPPA) to
homogentisate (HGA), and this transformation involving decarboxylation, aromatic hydroxylation,
and substituent migration in a single catalytic cycle is unique in Nature [6]. In plants, HGA can be
further transformed into tocopherol and plastoquinone, both of them are crucial for the normal growth
of plants [7]. Inhibition of HPPD will block photosynthesis, which leads to the deficiency in isoprenoid
redox cofactors such as plastoquinone and tocopherol, and finally causes growth inhibition, necrosis
and death of treated plants [8–11].

Herbicides which inhibit HPPD, represent one of the newest classes of agrochemicals available
for use in crop production [12]. HPPD-inhibiting herbicides show many advantages, such as low
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application rates, low toxicity, broad-spectrum weed control (including herbicide-resistant weed
biotypes), excellent crop selectivity and benign environmental effects [13,14]. Several of them
are currently used as selective broad leaf herbicides including triketones, pyrazoles, isoxazoles,
diketone nitriles and benzophenones [15,16]. The triketone herbicides have spurred a variety of
commercialized HPPD inhibitors through chemical modification, such as sulcotrione, mesotrione and
benzobicylon [17–19], but the main problem associated with the use of herbicides is the occurrence
of herbicide-resistant weeds. Therefore, it is necessary to develop efficient herbicides with novel
structures actives against HPPD.

The use of computational techniques in drug discovery and development has become the most
effective method. Among them, virtual screening is a conventional method used in drug discovery,
which screen large collections of compounds to identify molecular structures that are most likely to bind
into a particular biological target [20]. It has been reported that molecular docking, pharmacophore
modeling, and structure-based virtual screening have been successful applied in drug discovery.
Structure-based virtual screening has emerged as an efficient strategy in identifying potential a
natural product-like STAT3 dimerization inhibitor from a database of natural product and natural
product-like compounds, and molecular docking analysis suggested that compound 1 if the structure
is not shown calling the compound “1” is useless—give name of structure in a figure to identify
might putatively function as an inhibitor of STAT3 dimerization by binding to the SH2 domain [21].
Novel TLR1–TLR2 inhibitors were obtained through molecular docking from a database of natural
product and natural product-like compounds and the results of activity experiments show that
compound 1 was the most effective in inhibiting TNF-a and IL-6 secretion induced by Pam3CSK4 in
RAW 264.7 cells [22]. High-throughput, ligand-docking based virtual screening methods were applied
to identify small agents targeting menin–MLL binding from a natural product/natural product-like
chemical database. From the activity assay, compound 1 which was tested in a bimolecular fluorescence
complementation (BiFC) assay emerged as the top candidate for inhibiting menin–MLL interaction.
Moreover, a high degree of shape complementarity is observed between compound 1 and the binding
pocket of menin, suggesting that this protein–ligand interaction could also be stabilized by significant
hydrophobic interactions [23]. Rutin, as a promising lead compound, would be further developed
into an antidyslipidemic molecule as a good alternative to statins using a docking-based strategy and
MD stimulation [24]. A metadynamics-based protocol was developed to investigate the unbinding
mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. The calculation
results showed that the salvation of the ligand and of the active site played crucial roles in the
unbinding process and demonstrating that metadynamics could be a powerful tool in designing new
drugs with engineered binding/unbinding kinetics [25].

The virtual filtered strategy graph is shown in Figure 1. The goal of this study is to identify the
novel and potential structure of HPPD inhibition through 3D pharmacophore models based on the
known crystal complex of HPPD (PDB ID: 1TFZ). CBP-Hypo2 with quality = 0.721 (Fair) was selected
as the best hypothesis, which included one hydrogen bond donor (HBD), one ring aromatic (RA) and
two hydrophobic features (HY). Subsequently, the reliable pharmacophore hypotheses were used in
virtual screening ChemDiv databases to identify potential HPPD inhibitors. The virtual screened hit
compounds were then docked into active pocket of HPPD in DS2.5. Further, the selected screened hits
were performed binding energy calculation and precision docking. Nine compounds with good affinity
were obtained. The nine hits obtained were matched to HipHop model. Finally, four compounds
displayed good match to ligand-based pharmacophore HipHop-hypo2.
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Six hypotheses were generated. As shown in Figure 2, CBP-Hypo2 desired Quality (0.712, Fair) was 
selected as the best hypothesis. One hydrogen bond donor (HBD), one ring aromatic (RA) and two 
hydrophobic features (HY) were regarded as the critical features of the model. During HipHop 
pharmacophore generation, six highly active inhibitors were selected from the literature to serve as 
training set (Table 2). Ten hypotheses were generated and ordered by ranking score. All 10 
hypotheses ranked scores ranging from 81.54 to 72.16 (Table 3). The rank values and feature 
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Figure 1. The workflow of virtual screening.

2. Results and Discussion

2.1. Pharmacophore Model Generation and Validation

CBP that was generated based on protein 1TFZ and inhibitor DSA869 was used as a virtual
screening model to discovery novel HPPD inhibitors. Twenty two active compounds and 38 inactive
compounds were used as testing set to validate the receptor-ligand pharmacophore automatically.
Six hypotheses were generated. As shown in Figure 2, CBP-Hypo2 desired Quality (0.712, Fair)
was selected as the best hypothesis. One hydrogen bond donor (HBD), one ring aromatic (RA) and
two hydrophobic features (HY) were regarded as the critical features of the model. During HipHop
pharmacophore generation, six highly active inhibitors were selected from the literature to serve as
training set (Table 2). Ten hypotheses were generated and ordered by ranking score. All 10 hypotheses
ranked scores ranging from 81.54 to 72.16 (Table 3). The rank values and feature pharmacophore of
HipHop-Hypo1 were same as HipHop-Hypo2.
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The Receiver Operating Characteristic (ROC) curve was used to evaluate the degree of false
positivity of the model screening compound. The curve was obtained by plotting false positive rate for
x-axis against true positive rate on y-axis in Figure 2. The accuracy of the test was shown by measuring
the area under the curve (AUC). The result of the model represented with excellent AUC score of
0.721. For the HipHop model, a test composed of active compounds and inactive compounds was
used evaluate the selective model. HipHop-Hypo2 was considered as the best chemical hypothesis
due to the fact the model was better at distinguishing active and inactive compounds. As can be seen
from the Figure 3, the Fit values of the 12 active compounds were above 2.0, compared to the inactive
molecules distributed in blue area.
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2.2. CBP Pharmacophore Model-Based Virtual Screening

Initially, the CBP model was used as a query to search the ChemDiv databases with
151047 compounds. Fit Value is a measure of the overlap between the features in the pharmacophore
and chemical features in the molecule, which helps understand the chemical meaning of the
pharmacophore hypothesis [26]. According to the Fit Value greater than 2.5, 1196 hit compounds
mapping onto the pharmacophore model CBP-Hypo2 were retrieved, which included some
compounds structurally similar to existing HPPD inhibitors and some novel scaffolds. As shown in
Figure 4, the obtained compounds were well matched to the CBP model and formed π-π interactiona
with the Phe360 and Phe403 residues. Simultaneously, residues Pro259 and Met314 generated
hydrophobic interactions with the aromatic ring or methyl.
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namely, HBD, RA and HY are pink, orange and cyan, respectively. (A) Compound L503-0533;
(B) compound G622-0791; (C) compound G883-0326 (D) compound G883-0470.

2.3. Molecular Docking

In order to reduce the number of false positive screened virtual hits, docking analysis was
performed at the active site of AtHPPD using DS2.5. The ligand in the protein 1TFZ was extracted
and hydrogen atoms were added. The docking method was carried out applying two docking
methods, which were LibDock and CDOCKER. Subsequently, binding poses of the docking compound
were compared with the ligand in the crystallographic complex and RMSD values of 0.74 and 0.55
were calculated, respectively. As can be seen from Figure 5, the ligands docked by the two docking
methods could be well aligned with the ligands in the crystallographic complex, so the two methods
demonstrated the accuracy and reliability of the docking.
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(A) The ligand by the LibDock docking method; (B) the ligand by the CDOCKER docking method.
Docked ligands are green, the ligand in the crystallographic complex is yellow.

These virtual 1196 molecules retrieved after pharmacophore-based screenings were subjected
to receptor-based virtual screening by using LibDock methods. Docking experiments was applied
to compare the binding affinities of known inhibitors with that of the screened hits and to rank
the screened hits on the basis of interactions with amino acid residues of the active site. 287 Hit
compounds were chosen that showed LibDockScore values above 129. Further, the selected screened
hits were subsequently submitted for their binding energy value calculation and precision docking
in the ‘Calculate Binding Energies module’ and ‘CDOCKER module’ of DS2.5, respectively. Finally,
according to binding modes, binding affinity, nine hit compounds with the highest docking score and
lowest binding energy were selected as the target hits. The different significant chemical interactions,
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viz., π-alkyl, π-π, hydrogen bonds, etc., of the best hits have been presented in the following figures.
As shown in Figure 6, for compound L503-0533, Phe360 generated π-π interactions with the benzene
ring and Arg269 interacted with the fluorine via a hydrogen bond.
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Compound G622-0791 was found to fully embed into the active pocket (Figure 7), and interacted
with amino acids Gln272, Phe398 and Lys400 via H-bonds, meanwhile, the two benzene rings formed
two pairs of sandwiches interacting with Phe360 and Phe403 at the binding site.
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Compound G883-0470 formed π-π stacking interactions with Phe398, Phe403 and Phe406
and generated hydrogen bond interactions with His287 and Phe398 as depicted in Figure 8.
Compound G883-0326 formed π-π stacking with benzyl ring of Phe398, Phe403 and Phe360. His287
interacted with carbonyl via hydrogen bond was shown in Figure 9.
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2.4. HipHop Pharmacophore Model-Based Virtual Screening

The nine compounds obtained were matched to the HipHop model in the Figure 10, two figures
with same number and the results indicated that four compounds were well matched to the
ligand-based pharmacophore HipHop-Hypo2 and all the colors of the other five compounds with low
fit values in the heat map were light blue. Compound L503-0533 exhibited the highest matching value
of 3.8. Finally, four new compounds with diverse scaffolds were selected as possible candidates for the
designing of potent HPPD inhibitors (Table 1). The values of the four compounds were higher than
those of the reference compound with Binging Energy, LibDockScore -CDOCKER ENERGY, Fit Value.
The compound G622-0791 was finally selected as the most potent HPPD inhibitor based on its least
binding energy (−167.41 kcal/mol). The -CDOCKER score of this compound was −39.18 with a Fit
Value (pharmacophore-based on CBP-Hypo2) of 2.97.Further investigations on these four compounds
involving testing in vitro and in vivo against HPPD are currently underway in our laboratories.
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Based on the known HPPD inhibitor [29–31] six typical compounds, as the training set in the
HipHop model, were used to generate common feature based pharmacophore models. The bioactivity
value IC50 and molecular properties of these compounds were listed in Table 2. Twenty seven
compounds were selected as a test set, among which 12 compounds were HPPD inhibitors with .ligand
file, and 17 compounds randomly obtained from the ZINC database were used as inactive molecules
with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0.

Table 2. Chemical structures and molecular properties of the training set compounds in HipHop model
and screening compounds.

Structure AlogP Weight Num-H
Acceptors

Num-H
Donors

Num-H
Rotatable

Bonds

Molecular
Polar Surface

Area
IC50
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
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screening. 

3.2. Pharmacophore Model Generation 

The CBP model was developed within CBP module in Catalyst using the known crystal 
complex of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and 
ligand, respectively. Validation option was set as True. 22 Reported active HPPD inhibitors and 38 
inactive compounds were used as the active ligands and inactive ligands, respectively. The 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
molecules with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0. 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
molecules with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0. 
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The CBP model was developed within CBP module in Catalyst using the known crystal 
complex of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
molecules with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0. 
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3.2. Pharmacophore Model Generation 

The CBP model was developed within CBP module in Catalyst using the known crystal 
complex of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and 
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bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
molecules with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0. 

Table 2. Chemical structures and molecular properties of the training set compounds in HipHop 
model and screening compounds. 

Structure AlogP Weight 
Num-H 

Acceptors 
Num-H 
Donors 

Num-H  
Rotatable  

Bonds 

Molecular  
Polar Surface 

Area 
IC50 

 

 

3.429 444.54 7 2 6 104.32 - 

 

 

2.53 329.23 5 0 4 97.03 0.28 

 

 

2.216 372.82 6 0 5 102.95 0.01 

 

 

2.827 369.39 7 2 4 137.48 0.01 

 

 

1.883 328.77 5 1 3 93.72 0.01 

 

 

2.336 442.91 7 1 7 115.35 0.01 

 

 

1.965 458.91 8 1 6 124.57 0.04 

 

 

3.086 445.55 4 1 6 78.09 - 

 

 

3.371 417.43 4 1 6 71.53 - 

 

 

4.659 384.47 2 1 4 49.41 - 

 

 
3.629 391.85 3 1 4 62.3 - 

 represents the ligand in the crystallographic complex,  represents the training set 

compounds in the HipHop model, and  represents the hit compounds identified by virtual 
screening. 

3.2. Pharmacophore Model Generation 

The CBP model was developed within CBP module in Catalyst using the known crystal 
complex of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and 
ligand, respectively. Validation option was set as True. 22 Reported active HPPD inhibitors and 38 
inactive compounds were used as the active ligands and inactive ligands, respectively. The 

4.659 384.47 2 1 4 49.41 -

Molecules 2017, 22, 959 9 of 13 

bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
molecules with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0. 

Table 2. Chemical structures and molecular properties of the training set compounds in HipHop 
model and screening compounds. 

Structure AlogP Weight 
Num-H 

Acceptors 
Num-H 
Donors 

Num-H  
Rotatable  

Bonds 

Molecular  
Polar Surface 

Area 
IC50 

 

 

3.429 444.54 7 2 6 104.32 - 

 

 

2.53 329.23 5 0 4 97.03 0.28 

 

 

2.216 372.82 6 0 5 102.95 0.01 

 

 

2.827 369.39 7 2 4 137.48 0.01 

 

 

1.883 328.77 5 1 3 93.72 0.01 

 

 

2.336 442.91 7 1 7 115.35 0.01 

 

 

1.965 458.91 8 1 6 124.57 0.04 

 

 

3.086 445.55 4 1 6 78.09 - 

 

 

3.371 417.43 4 1 6 71.53 - 

 

 

4.659 384.47 2 1 4 49.41 - 

 

 
3.629 391.85 3 1 4 62.3 - 

 represents the ligand in the crystallographic complex,  represents the training set 

compounds in the HipHop model, and  represents the hit compounds identified by virtual 
screening. 

3.2. Pharmacophore Model Generation 

The CBP model was developed within CBP module in Catalyst using the known crystal 
complex of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and 
ligand, respectively. Validation option was set as True. 22 Reported active HPPD inhibitors and 38 
inactive compounds were used as the active ligands and inactive ligands, respectively. The 

3.629 391.85 3 1 4 62.3 -

Molecules 2017, 22, 959 9 of 13 

bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
molecules with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0. 

Table 2. Chemical structures and molecular properties of the training set compounds in HipHop 
model and screening compounds. 

Structure AlogP Weight 
Num-H 

Acceptors 
Num-H 
Donors 

Num-H  
Rotatable  

Bonds 

Molecular  
Polar Surface 

Area 
IC50 

 

 

3.429 444.54 7 2 6 104.32 - 

 

 

2.53 329.23 5 0 4 97.03 0.28 

 

 

2.216 372.82 6 0 5 102.95 0.01 

 

 

2.827 369.39 7 2 4 137.48 0.01 

 

 

1.883 328.77 5 1 3 93.72 0.01 

 

 

2.336 442.91 7 1 7 115.35 0.01 

 

 

1.965 458.91 8 1 6 124.57 0.04 

 

 

3.086 445.55 4 1 6 78.09 - 

 

 

3.371 417.43 4 1 6 71.53 - 

 

 

4.659 384.47 2 1 4 49.41 - 

 

 
3.629 391.85 3 1 4 62.3 - 

 represents the ligand in the crystallographic complex,  represents the training set 

compounds in the HipHop model, and  represents the hit compounds identified by virtual 
screening. 

3.2. Pharmacophore Model Generation 

The CBP model was developed within CBP module in Catalyst using the known crystal 
complex of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and 
ligand, respectively. Validation option was set as True. 22 Reported active HPPD inhibitors and 38 
inactive compounds were used as the active ligands and inactive ligands, respectively. The 

represents the ligand in the crystallographic complex,

Molecules 2017, 22, 959 9 of 13 

bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
molecules with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0. 

Table 2. Chemical structures and molecular properties of the training set compounds in HipHop 
model and screening compounds. 

Structure AlogP Weight 
Num-H 

Acceptors 
Num-H 
Donors 

Num-H  
Rotatable  

Bonds 

Molecular  
Polar Surface 

Area 
IC50 

 

 

3.429 444.54 7 2 6 104.32 - 

 

 

2.53 329.23 5 0 4 97.03 0.28 

 

 

2.216 372.82 6 0 5 102.95 0.01 

 

 

2.827 369.39 7 2 4 137.48 0.01 

 

 

1.883 328.77 5 1 3 93.72 0.01 

 

 

2.336 442.91 7 1 7 115.35 0.01 

 

 

1.965 458.91 8 1 6 124.57 0.04 

 

 

3.086 445.55 4 1 6 78.09 - 

 

 

3.371 417.43 4 1 6 71.53 - 

 

 

4.659 384.47 2 1 4 49.41 - 

 

 
3.629 391.85 3 1 4 62.3 - 

 represents the ligand in the crystallographic complex,  represents the training set 

compounds in the HipHop model, and  represents the hit compounds identified by virtual 
screening. 

3.2. Pharmacophore Model Generation 

The CBP model was developed within CBP module in Catalyst using the known crystal 
complex of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and 
ligand, respectively. Validation option was set as True. 22 Reported active HPPD inhibitors and 38 
inactive compounds were used as the active ligands and inactive ligands, respectively. The 

represents the training set compounds in the

HipHop model, and

Molecules 2017, 22, 959 9 of 13 

bioactivity value IC50 and molecular properties of these compounds were listed in Table 2 . Twenty 
seven compounds were selected as a test set, among which 12 compounds were HPPD inhibitors 
with .ligand file, and 17 compounds randomly obtained from the ZINC database were used as inactive 
molecules with .zinc files. All the molecules were prepared and optimized using SYBYL-X 2.0. 

Table 2. Chemical structures and molecular properties of the training set compounds in HipHop 
model and screening compounds. 

Structure AlogP Weight 
Num-H 

Acceptors 
Num-H 
Donors 

Num-H  
Rotatable  

Bonds 

Molecular  
Polar Surface 

Area 
IC50 

 

 

3.429 444.54 7 2 6 104.32 - 

 

 

2.53 329.23 5 0 4 97.03 0.28 

 

 

2.216 372.82 6 0 5 102.95 0.01 

 

 

2.827 369.39 7 2 4 137.48 0.01 

 

 

1.883 328.77 5 1 3 93.72 0.01 

 

 

2.336 442.91 7 1 7 115.35 0.01 

 

 

1.965 458.91 8 1 6 124.57 0.04 

 

 

3.086 445.55 4 1 6 78.09 - 

 

 

3.371 417.43 4 1 6 71.53 - 

 

 

4.659 384.47 2 1 4 49.41 - 

 

 
3.629 391.85 3 1 4 62.3 - 

 represents the ligand in the crystallographic complex,  represents the training set 

compounds in the HipHop model, and  represents the hit compounds identified by virtual 
screening. 

3.2. Pharmacophore Model Generation 

The CBP model was developed within CBP module in Catalyst using the known crystal 
complex of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and 
ligand, respectively. Validation option was set as True. 22 Reported active HPPD inhibitors and 38 
inactive compounds were used as the active ligands and inactive ligands, respectively. The 

represents the hit compounds identified by virtual screening.

3.2. Pharmacophore Model Generation

The CBP model was developed within CBP module in Catalyst using the known crystal complex
of HPPD (PDB ID: 1TFZ) and ligand (DSA869), and both were chosen as the receptor and ligand,
respectively. Validation option was set as True. 22 Reported active HPPD inhibitors and 38 inactive



Molecules 2017, 22, 959 10 of 13

compounds were used as the active ligands and inactive ligands, respectively. The remaining
parameters were set to default values. Six hypotheses were generated, and CBP-Hypo2 with desired
Quality (0.721, Fair) was subsequently used to screen the library.

HipHop pharmacophore models were generated from a set of known molecules with promising
activity towards HPPD. Based on the atom-types presented in the molecule, HipHop selected the key
common chemical features for creating 3D-pharmacophore models. The principal value 1 for all the
ligands and maximum-omit feature as 2. The common features pharmacophore generation module
“Feature Mapping” was used to identify the important chemical features of the training set compounds
before building HipHop pharmacophore model. Hydrogen bond acceptor (HBA), hydrogen bond
donor (HBD), hydrophobic features (HY) and ring aromatic (AR) were considered for generation of the
pharmacophore model. The diverse conformation option was applied and 250 conformations within
20 kcal·mol−1 cutoff were generated using the “BEST”. The final common feature 3D-pharmacophore
models were ranked based on pharmacophore fit value. The fit value of the ten chemical hypothesis
generated along with the key 3D-pharmacophoric chemical features are presented in Table 3.

Table 3. Chemical feature compositions for the ten hypotheses generated from six known
HPPD inhibitors.

Hypothesis Features Rank

HipHop-Hypo1 RHAAAA 81.854
HipHop-Hypo2 RHAAAA 81.854
HipHop-Hypo3 RHAAAA 81.788
HipHop-Hypo4 RAAAA 72.750
HipHop-Hypo5 RAAAA 72.347
HipHop-Hypo6 RAAAA 72.293
HipHop-Hypo7 RAAAA 72.234
HipHop-Hypo8 RAAAA 72.188
HipHop-Hypo9 RAAAA 72.188
HipHop-Hypo10 RAAAA 72.167

R (ring aromatic), H (hydrophobic features), A (Acceptor).

Validating the hypothesis is one of the significant methods in pharmacophore generation. Test sets
including active compounds and inactive compounds was prepared using the same protocol as the
training set preparation and used to determine whether the hypothesis was able to discern active
compounds. Fit value was used as an important evaluation criterion [32].

3.3. Pharmacophore-Based Virtual Screening

About 151,047 small molecules were obtained from the ChemDiv database (www.chemdiv.com)
and subjected to virtual screening. All the compounds which were optimized in DS2.5 were used
as virtual screening library. Subsequently, the fist screening of CBP-Hypo2 was used to retrieve the
database in ‘Search, Screen and Profile module’ of DS2.5. The number of conformations was set to
200, while the conformation method was set to BEST, which provided a complete and improved
coverage of the conformational space by performing a rigorous energy minimization and optimizing
the conformations in both torsional and Cartesian space by the poling algorithm [33]. Minimum
Interfeature Distance was set to 2. Limit Hits was set to First N, and Maximum Hits was set to 500.
The rest parameters were set to default values.

3.4. Molecular Docking

The AtHPPD crystal structure (PDB ID: 1TFZ) with resolution of 1.8 Å was used for molecular
docking studies. The protein was prepared by removing the water and some other co-crystallized small
molecules, and potentials were assigned using CHARMm force field, the missing atoms residues were
building using the ‘Build and Edit Protein’ module, and cleaning protein were prepared in ‘Prepare

www.chemdiv.com
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Protein module’. The protein structure was energy minimized for 5000 steps (with the heavy atoms
constrained) using the conjugate gradient algorithm with the ‘Minimize and Refine Protein’ module
in DS2.5. After the protein preparation, the binding site of the protein was defined based on volume
occupied by the known ligand pose already in an active site. The obtained receptor was used as the
“Input Receptor Molecule” parameter. All hit compounds subjected to fist filtering processes were
saved as .sd file. The saved structures were chosen as “Input Ligand” and docked into the active site of
HPPD. Docking was performed to ensure the proper binding orientation and placement of each ligand
and to confirm the geometric fit of each ligand inside the active site. During the docking process top
10 conformations were saved for each ligand based on dock score value after the energy minimization
using the smart minimize method through LibDock and CDOCKER methods.

4. Conclusions

In this study, a strategy for the selection of new chemical compounds with HPPD inhibition by
virtual screening was performed. Virtual screening was divided into receptor-based virtual screening
and ligand-based virtual screening. Receptor-based virtual screening was more effective in detecting
novel chemical scaffolds and is more commonly used in academic labs.

The CBP model was generated based on the HPPD enzyme receptor and active ligands that
extracts the essential structural features required for inhibition, which was helpful for screening of
novel molecules having inhibitory activity against HPPD based on receptor, CBP-Hypo2 was used
to screen the ChemDiv library to find potential HPPD inhibitors and Fit Value was selected as an
important criterion. The hydrophobic groups (benzene and methyl) of the four compounds obtained
from the ChemDiv database formed hydrophobic interactions with Met314 and Pro205, and the
intermediate aromatic ring generated π-π interactions with Phe403 and Phe360. Further, molecular
docking was performed to provide insights into molecular recognition via protein–ligand interactions.
The result was analyzed based on the docking score, binding modes, and molecular interactions
with active site residues. Subsequently, the binding free energy of selected compounds relevant to
ligand and receptor was calculated, and nine novel scaffold hits with good docking scores and low
binding energy were chosen. The screened compounds could be completely embedded into the HPPD
active pocket and interact with the Phe360, Phe403, Arg269, Phe398 and Asn402 residues of the active
site and so on. Finally, compounds obtained through docking were matched with a HipHop model,
and four hits with high Fit value were identified that could be used as potential leads for further
optimization in designing new HPPD inhibitor herbicides. This study provided a set of guidelines that
will greatly help in designing novel and more potent HPPD inhibitors herbicides.
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