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ABSTRACT

The thousand genomes project and many similar
ongoing large-scale sequencing efforts require new
methods to predict functional variants in both coding
and non-coding regions in order to understand
phenotype and genotype relationships. We report
the design of a new model SInBaD (Sequence-
Information-Based-Decision-model) which relies on
nucleotide conservation information to evaluate any
annotated human variant in all known exons, introns,
splice junctions and promoter regions. SInBaD builds
separate mathematical models for promoters, exons
and introns, using the human disease mutations
annotated in human gene mutation database as the
training dataset for functional variants. The ten-fold
cross validation shows high prediction accuracy.
Validations on test datasets, demonstrate that
variants predicted as functional have a significantly
higher occurrence in cancer patients. We also
applied our model to variants found in four different
individual human genomes to identify a set of func-
tional variants, which might be of interest for further
studies. Scores for any possible variants for all
annotated genes are available under http://ting
chenlab.cmb.usc.edu/sinbad/. SInBaD supports the
current standard format of genotyping, the variant
call files (VCF 4.0), making it easy to integrate it into
any existing next-generation sequencing pipeline.
The accuracy of SNP detection poses the only limi-
tation to the use of SInBaD.

INTRODUCTION

Understanding the principles of phenotype development
caused by genomic mutations remains a challenge. Many
Single Nucleotide Polymorphism (SNPs) SNPs are con-
sidered to have little functional effect (1). However, iden-
tifying the functional variants causing distinct phenotypes,

can immensely contribute toward a better understanding
of the causal relationship between phenotype and
genotype. Though we are still far away from a universal
solution, considerable progress has been made in recent
years. Next-generation sequencing technologies allow for
cheaper and faster sequencing of individual genomes (2)
and with the advent of the 1000 genomes project (3) and
many similar efforts, the accumulation of complete indi-
vidual genomes will contribute greatly toward the devel-
opment of better tools for the analysis of specific variants
and subsequently toward many other areas of research.
Currently, the detection of disease variants can gener-

ally be divided into two approaches. Genome-wide asso-
ciation studies (GWASs) aim at finding statistically
significant variants associated with certain phenotypes.
Properly designed association studies have shown some
success in the past (4), though they do require a large
sample size to achieve sufficient statistical power (5).
Although cost is not a major influencing factor for these
type of studies anymore, limited sample sizes and thus
multiple testing issues pose a challenge. The sample size
problem can be addressed by focusing on particular target
regions. Unfortunately this will require assumptions about
the loci correlated with a given phenotype, which might
not be known. Associations to non-genic regions fre-
quently observed in GWAS pose further problems.
Another group of approaches focuses on the identifica-

tion of deleterious mutations within protein coding
regions using different techniques to find a prediction
function between the predictor (properties or features of
a variant) and response variables (deleterious or not). The
design of these models require formulating a proper
feature representation of a variant. Typically, such a
feature representation requires annotation information
from different databases, as well as amino acid sequence
information (6–8). Some methods require protein struc-
ture annotations, which are only available for a small
fraction of the protein coding genes (6,9). The caveat of
involving protein structure in prediction has been dis-
cussed before by Ng and Henikoff (10).
Although there are many more methods predicting

phenotypic function of protein coding variants (11–14),
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the most commonly used are SIFT (15), PolyPhen (9) and
MSRV (6).
More recent studies utilize the effects of natural selec-

tion on different regions of the genome to guide the search
for functional regions. Chun and Fay (8) proposed a like-
lihood ratio test, to check for negative selection within
coding region variants.
The information required for predicting deleterious

variants is specifically chosen to aid in the prediction of
functional variants in coding regions, and therefore it is
usually a problem to extend these models to other parts of
the genome. However, it is commonly known that variants
in intergenic regions, promoter regions, and intron regions
can strongly influence the phenotypic outcome (16–18).
GERP (19) as well as MutationTaster (20) aim at
overcoming these limitations when predicting deleterious
variants. MutationTaster is based on a naive Bayes clas-
sifier in order to identify deleterious variants in coding
regions and splice junctions, GERP uses a ‘rejected sub-
stitution score’ based on nucleotide sequence alignments
in order to find regions under evolutionary constraint.
Yandell et al. (21) introduced an approach to include
variants in non-coding regions. The parameter estimation
is restricted to ENCODE annotated regulatory regions,
which does not account for the heterogeneity in molecular
mechanisms observed across the different non-coding
regions.
Here, we investigated the possibilities of extending

the detection of functional variants to all intron and
promoter regions through use of nucleotide conservation.
We have created a new model, SInBaD (Sequence-
INformation-BAsed-Decision-model), in which feature
representation of mutations is based on nucleotide
sequence conservation across multiple vertebrate species,
similar to GERP (19) and VAAST (21). Multiple species
sequence alignments, available from the UCSC database
throughout the whole human genome, allow us to find
functional variants in regions other than just the coding
regions. The idea also reveals some similarity to the evo-
lutionary model described above [8]. However, we do not
assume an explicit model of evolution, but implicitly learn
the different conservation levels and the evolutionary
history observed in disease and background variants.
Another major difference to Chun and Fay [8] is that
our feature representation is based on nucleotide informa-
tion, assuming that negative selection on amino acids
translates into sufficient negative selection at the nucleo-
tide level, similar to Yandell et al. (21). Therefore, we
expect to see high species conservation for positions
likely to be functional, whereas non-functional variants
are more likely to appear in low conserved regions.
Additional features are provided in intron and promoter
region to supplement the multiple sequence alignment
information.

MATERIALS AND METHODS

Our approach is based on a supervised learning strategy,
which requires a training dataset representing functional
and non-functional variants. The human gene mutation

database (HGMD) (22) provides a large set of disease
variants within different functional gene regions. We
used this dataset to represent functional variants.
Non-functional variants within this study are supposed
to represent a set of background variants. The properties
of different genomic regions vary with their function, so
we designed a different set of background variants for
each functional gene region. Our model for coding
regions required a random sample of synonymous
coding variants, since these are usually considered non-
functional. For any other region we created the back-
ground dataset by simulating random variants within
each functional gene region. Each variant is represented
by its level of conservation across species and the degree of
conservation is based on nucleotide sequence conserva-
tion. Essentially each variant is represented as a bit
vector of observing a particular base pair at the aligned
position within other species (Fig. 1). A logistic regression
model has been used to create a mapping function
separating the background variants from functional
variants based on these features and control for possible
over fitting behavior at the same time. Ten-fold
cross-validation has been used to determine thresholds
for 10, 5 and 1% false positive rates providing us with
comparable sets of functional variants across the different
regions.

Statistical learning

The class membership probability in logistic regression
is modeled in the following way. Let y ¼ ðy1,:::,ynÞ
being the n-dimensional vector of class labels
where yi 2 ffunctional,non� functionalg, X ¼ fxi,jgn�ðm+1Þ

denoting the feature matrix, where xi,0 ¼ 18i ¼ 1 . . . n and
� ¼ f�0,�1, . . . ,�mg with � 2 Rm+1 being the vector of re-
gression coefficients to be estimated and m is the number of
features being used, then

PðY ¼ yjX,�Þ ¼
1

1+expð�Xt�Þ
: ð1Þ

The regression coefficients can then be estimated as

�̂ ¼ arg max�
Xn
i¼1

log pðyijxi,0 . . . xi,m,�Þ ð2Þ

with n indicating the size of the training data and xi,j is
feature j for variant i. The estimated coefficients can now
be used to calculate the class membership probability for
previously unseen data.

We created three different logistic regression models
(promoter variants, coding variants and intronic
variants) based on three sets of training data, consisting
of variants provided by the HGMD and a set of simulated
non-functional background variants.

Feature representation

This section describes the design of the feature represen-
tation matrix X, which is different for different gene
regions. We represent a variant by nucleotide conservation
based on genome-wide multiple sequence alignment.
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Intron and promoter regions are designed to include
further information to aid in an accurate classification.

Features in coding regions
Our coding region feature model represents a variant
by its conservation across other vertebrates at that par-
ticular position. We used the multiple sequence alignment
dataset for hg19 provided by the UCSC database (23)
generated by the ‘Multiz’ algorithm, which compares 45
vertebrates genomes with the human genome. Based on
our assumption that functional mutations are likely to be
conserved across species, we derived a binary vector
indicating whether the human reference allele, as well as
the mutated allele, is observed in the different species. If
Vref

i andValt
i 2 fA,C,G,Tg are the reference and alternate

base pairs of variant i, and let mi,j be the base pair of
species j aligned with variant i, then

X ¼ fxi,jg ¼
1, if Vref

i ¼ mi,j if 1 � j � 45
1, if Valt

i ¼ mi,j�45 if 46 � j � 90
0, otherwise

8<
: ð3Þ

In order to avoid functional predictions at positions where
no multiple alignment coverage can be provided, we
treated gaps in the alignment like mismatches (xi,j ¼ 0),
avoiding false predictions. This binary vector (Figure 1)
is a raw representation of conservation across species
taking into account evolutionary constraints.

Coding region variants are purely based on the conser-
vation model. We did not add any further region-specific
features (24).

Features in intron regions
Let I ¼ ½I1,:::,Il� with Ii 2 fA,C,G,Tg represent the
sequence of the intron region and assume variant i is
located in position k in the intron sequence with length
l. The feature matrix in intron regions is designed to
include information about splicing signals within the
conserved 12 bp region of the splice junction
(I1,:::I12 and Il�11:::Il). We are capturing that information
by calculating scores from a position weight matrix
(PWM) for all variants within the intron region.
Without loss of generality assume that 1 � k � 12. Then
for each variant we can determine the splice junction

sequence with the reference allele as

Href
i ¼ ½H

ref
i,1 ¼ I1,::,H

ref
i,k ¼ Vref

i ,:::,Href
i,12 ¼ I12,

Href
i,13 ¼ Il�11,:::,H

ref
i,24 ¼ Il�

ð4Þ

and similarly the sequence for the alternate allele is

Halt
i ¼ ½H

alt
i,1 ¼ I1,::,H

alt
i,k ¼ Valt

i ,:::,Halt
i,24 ¼ Il�: ð5Þ

We define our PWM as

W ¼ fws,tg4�24 ¼ �ps,tlog
ps,t
qs

� �
ð6Þ

where s 2 fA,C,G,Tg and ps,t is the probability of
observing base pair s at position t of the splice junction
motif. qs is the probability of observing base pair s in the
background. 1 � t � 12 represents the ‘first’ 12 bp in
the intron region at the donor site (I1:::I12), 13 � t � 24
represents the ‘last’ 12 bp in the intron region at the
acceptor site (Il�11:::Il). ps,t is estimated from all known
human splice junctions within the UCSC database. To
capture the most common intron types found, the
training of the PWM has been restricted to introns exhibit-
ing the commonly known GT-AG motif at the splice junc-
tions. qs is estimated by using the full human genome.
Adopting the notation from the previous paragraph,
where Vref

i and Valt
i represent the reference and alternate

allele of variant i, and mi,j is the base pair of species j
aligned with the i-th variant in the dataset (1 � i � n),
then the feature matrix takes the form

X ¼ fxi,jg ¼

wHref
i,j

,j for 1 � j � 24

wHalt
i,j�24

,j�24 for 25 � j � 48

P45
u¼1

1fVref
i ¼mi,ug

45 for j ¼ 49P45
u¼1

1fValt
i ¼mi,ug

45 for j ¼ 50
minðri,l� ri+1100Þ for j ¼ 51

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ

where ri is the position of the i-th variant of the dataset
within the intron and 1fg is an indicator function.
1 � j � 48 describes the splice junction information,
while j=49 and j=50 describe the nucleotide conserva-
tion across species and j=51 describes the distance to the
nearest splice junction. Since intron regions exhibit signifi-
cant length variation we set a maximum distance of
100 bp, beyond which the distance feature is set to the
maximum in order to avoid inflation of the score for
very long intron regions. The distribution of the distance
to the nearest splice junctions of HGMD variants are
available in Supplementary Figure S1.

Features in promoter regions
Possible discriminative features for promoter regions have
been extensively discussed in (25,26). Variants within
promoter region are represented by the distance between
the transcription start site (TSS) and position of the
variant based on the TSS annotations of the UCSC
database. Since our nucleotide conservation-based

Figure 1. The generation of the conservation bit vector. The reference
allele of the human reference genome (left) is compared with the
aligned vertebrates (right). Each feature represents a species. For each
species we assign the corresponding feature a ‘1’ in case of a match,
and ‘0’ otherwise.
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feature model would be prone to overfitting problems due
to the small amount of training data available, we re-
stricted our features toward a simple frequency calculation
of the bit vector for the reference allele and the distance to
the TSS. Let l be the genomic location of the TSS, and gi
be the genomic location of variant i either upstream or
downstream of the TSS, then the feature matrix is
designed as

X ¼ fxi,jg ¼

P45
u¼1

1fVref
i ¼mi,ug

45 for j ¼ 1
l� gi for j ¼ 2

8<
: ð8Þ

Determining false positive threshold

The parameters of a logistic regression model determined
through maximum-likelihood estimation on the training
data are commonly used to generalize the model to previ-
ously unseen data. For such new data points the probabil-
ity of class membership can now be determined. Typically
a new datapoint is classified to be a member of a particular
class if its class membership probability exceeds 0.5.
However, choosing different thresholds will lead to differ-
ent specificities and sensitivities. In order to determine
what threshold needs to be chosen for 10, 5 and 1%
false positive rate we systematically explore different
thresholds and calculate the corresponding average false
positive rates based on a 10-fold cross-validation on the
training data. These thresholds are being used to deter-
mine class memberships under specific false positive rates.

The model data

The data used in this study are divided into two sets.
Throughout the manuscript, the training data refers to
the set of variants used to train our models. The test
data refers to the variants not used in the estimation of
the regression coefficients and listed below, thus providing
a measure of the performance of SInBaD.

Training data and cross-validation
The training datasets are taken from two sources. The
deleterious variants were obtained from the HGMD
(v.2011.3) (22). This database is one of the largest collec-
tion of disease causing variants, providing annotations in
promoter, intron and exon regions.
Datasets representing the non-functional variants were

selected by generating uniform random mutations across
each gene region. We defined a promoter region to be
ranging from 2000 bp upstream to 500 bp downstream of
the TSS, as annotated by the UCSC database. Within that
region, we selected uniformly a random position and
picked a random base pair to be the generated alternate
allele. Similarly, we generated variants for intron regions,
representing the background distribution. The sizes of the
training datasets are limited by the number of available
disease variants. Therefore, we generated the same
number of background variants for each dataset. We
chose a different strategy to represent non-functional
variants in coding regions, since most positions within
coding regions are more likely to be functional. For that
reason, we decided to use a random set of synonymous

variants in coding regions as the non-functional variant
dataset (Table 1).

Test data
Our analysis of the cancer variants is based on the data
available from the Supplementary Material in (27). We
also used the COSMIC (Catalogue of Somatic Mutations
in Cancer) dataset to demonstrate the performance of our
model. The mutation data were obtained from the Sanger
Institute Catalogue Of Somatic Mutations In Cancer web
site, (http://www.sanger.ac.uk/cosmic (28)).

The dataset for the p53 variants is available from the
IARC p53 database (www-p53.iarc.fr) (29). All variants
were annotated as intron or coding region variants.
Variants which appear multiple times are counted only
as one entry.

The HapMap dataset for the CEU population is avail-
able from the HapMap project webpage (www.hapmap.
org) (Phase 3, build 36) (1). The data for the variants from
the three individual genomes are available from their
project webpages (http://www.jcvi.org/cms/research/
projects/huref (30), http://yh.genomics.org.cn (2) and
http://jimwatsonsequence.cshl.edu (31). We removed het-
erozygous variants and only kept SNPs which differ from
the reference allele.

Database

Based on the full training datasets we pre-calculated scores
for all possible variants, within all genes, as annotated by
the UCSC database. Promoter region predictions are based
on the frequency of the bit vector in conjunction with the
distance to TSS. Coding region variants are purely based
on the core features, where intron region variants are based
on the combination of sequence conservation features as
described earlier, together with the scores retrieved
from the PWM and the truncated distance to the nearest
splice junction. We also support batch downloads
from next-generation sequencing pipelines (VCF-format).
In order to get a set of comparable functional variants
across all different regions, we allow download based on
FPR cut-offs determined by 10-fold cross-validation ex-
periments on the training data. Final predictions for any
possible variant within any annotated gene are available
under http://tingchenlab.cmb.usc.edu/sinbad/.

RESULTS

Basic cross-validation analysis reveals high prediction
accuracy

Ten-fold cross-validation experiments are a common way
to evaluate the performance of supervised learning

Table 1. This table shows the size of the training datasets

(equal proportion of functional and non-functional data)

Genomic region Data size

Coding 126 212
Promoter 1678
Intron 18 542
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models. We performed cross-validation experiments for
each functional gene region (i.e. exon, intron, promoter),
to get a robust estimate of the error rates in our models.
Using this method we obtain a first measure of the perform-
ance of our new model SInBaD in terms of prediction
accuracies between functional and non-functional
variants. Figure 2a shows the 10-fold cross-validation
results of the training dataset in different functional regions.

After adding region-specific features, we observe
throughout all models, prediction accuracies of at least
72%. The relationship between prediction accuracy and
dataset size can be observed. Promoter regions show a
larger cross-validation error than coding and intron
regions, which is likely to be due to the small amount of
training data available. The ROC-plots (Fig. 2b) confirm
this behavior and demonstrate the trade-off between spe-
cificity and sensitivity in our models.

We expected a high performance of SInBaD using nu-
cleotide conservation for coding regions. These regions are
usually highly conserved at the amino acid level which we
believe should also translate into conservation of nucleo-
tide sequences. Our cross-validation results confirm, that
nucleotide conservation is the most important feature in
separating functional variants from synonymous variants
in coding regions.

Distance feature in promoter regions improves
prediction accuracy

Though knowledge about promoter regions is still limited,
we can assume that variants within conserved elements of
transcription factor binding sites (TFBSs) are likely to be
functional. Therefore it would be desirable to incorporate
such information in the feature representation. Figure 2a
shows that we can obtain some signal for functional
variant prediction by using interspecies conservation. In
order to improve the prediction accuracy of functional

variants within promoter regions, we included the distance
to the TSS as a feature. We believe that due to our know-
ledge of the importance of certain distance constraints of
some TFBSs like the -10 or the -35 boxes, we might be able
to implicitly include TFBS constraints. This particular
feature has previously been explored in (25).
A decrease of the cross-validation error rate was

observed after including the distance information. Com-
paring the distance distribution of the known functional
variants against the background dataset reveals that there
is a high accumulation of disease variants close to the TSS.
In fact, more than 70% of the known disease variants
(HGMD) are located within a 500 bp window around
the TSS (Supplementary Fig. S2). Sampling the back-
ground dataset uniformly within 2000 bp upstream or
500 bp downstream of the TSS creates a bias in the
distance features between the two classes, which also
influences performance (Supplementary Table S1).
However, since many regulatory motifs are close to the
TSS, this bias also reflects current biological data, and
we retained that feature for that reason.

Additional species might not contribute toward
higher accuracy

In the light of the Genome 10 K project (32) we also
investigated to what degree each species contributes
toward the prediction accuracy within the coding regions
and whether additional species would contribute toward
higher prediction accuracy. We generated multiple models
for coding regions, using features from only one species at
a time. For each of these species-specific models, we
estimated the cross-validation accuracy. We hypothesized
that within a proper model, the species which is evolution-
ary further away should generate more informative
features since close species are too similar to provide
much information. In order to confirm this hypothesis,

Figure 2. The bar plot on the left shows the 10-fold cross-validation accuracies for each model. Each set of bars refers to a specific gene region. The
different shades of gray refer to a different set of features that were used for testing and training. ‘Conservation’ refers to the use of conservation
features only, ‘function-specific features’ refers to the use of conservation features in conjunction with additional features (e.g. distance to TSS in
promoter regions). The numbers on the x-axis indicate the size of the training dataset. The standard deviation bars demonstrate the variance of the
accuracy across the different folds. The plot on the right shows the specificity/sensitivity trade-off using various class membership probability cut-offs
to determine class membership on the training data.
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we plotted the cross-validation accuracies estimated from
each of the previous models against the evolutionary
distance between each species and human.
The results can be seen in Figure 3 and it confirms our

hypothesis that closely related species are not as inform-
ative as distantly related species. We also observe that the
combination of features from all these different species,
results in fact in a better 10-fold cross-validation
accuracy than just using the features from the most
distant species or the one with the best accuracy alone.
This indicates that the combination of species as being
used in our model, bears more functional information. It
also seems as if evolutionary very distant species are ap-
proaching an upper bound, making it questionable to
what extent additional species will contribute to a more
accurate model.

Test of functional cancer variants confirms accuracy

Ten-fold cross-validation results can be misleading in
cases where the training dataset is biased. Therefore the
validity of our scores has been tested in experimentally
curated datasets that were not part of the training
dataset. We first studied a set of mutations found within
the p53 gene of cancer patients (29). One advantage of our
model is the ability to predict functional variants in intron
and promoter regions. This dataset provides variants in
coding as well as in non-coding regions (introns) from
22 292 human individuals. Many of these cancer variants
appear in multiple individuals. The number of variants in
the test datasets used in the actual classification are shown
in Table 2.
The major fraction of these variants are postulated to be

functional. Therefore SInBaD should correctly identify
the majority of these variants as functional in each gene

region providing an estimate of the performance of our
model in both intron and coding regions. Table 2 shows
our results for the intron and coding (missense and syn-
onymous) variants. Within coding regions about 57%
of the annotated missense variants are identified as
functional by our model at a 10% FPR threshold.
Further investigation shows that within the set of
variants classified as functional (under the default
model), the average occurrence of each variant is 15.8
where non-functional variants only appear with an
average occurrence of 3.9. Testing the occurrence distri-
bution between these two datasets using a two-sided
Wilcoxon rank sum test results in a P-value< 2.2 e�16
rejecting the null-hypothesis that the two distribution are
the same. Figure 4 shows the distribution of the occur-
rence of each variant indicating the median and the
inner quartile range. These results suggests that we are suc-
cessfully classifying common cancer variants as functional
and non-common cancer variants as non-functional.

We performed a follow up analysis on the COSMIC
dataset available from the Sanger institute (28). Within
the 44676 variants we classified 20196 variants as func-
tional (10% FPR). The average occurrence of the variants
classified as functional is 5.53 compared with 1.31 within
the variants classified as non-functional. Using a Wilcoxon
rank sum test we do find that the two occurrence distribu-
tions are significantly different (P-value< 2.2 e�16) which
is consistent with the above hypothesis.

We also analyzed a set of cancer mutations determined
by Wood et al. (27). In that particular study, a combined
experimental and computational approach was used to
identify cancer-causing mutations. By comparing
variants from normal cells to breast and colorectal
cancer cells in coding regions and applying stringent filter-
ing criteria, most of the non-somatic variants were

Figure 3. For each species, we are using the training data to perform 10-fold cross-validation to determine error rates, using only the features specific
to that species. These error rates are then sorted by evolutionary distance and plotted above.
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eliminated. Examining the reported variants using our
model shows that 54.1% are predicted as functional
using a 10% FPR threshold (Table 3).

Comparison to GERP

Though GERP and SInBaD are designed with different
goals in mind, the similarity of information used, warrants
a comparison between these two approaches. GERP is
using multiple species alignment information to calculate
a substitution rejection score in order to determine regions
which are under evolutionary constraints. SInBaD is
designed to score base pair substitution to assess
whether that variant observed is functional. In order to
test both approaches on previously unseen data, we
selected randomly 2/3 of the training data in each
region. We used this dataset to estimate the regression
coefficients for each region. Based on these regression

coefficients we calculated the class membership probabil-
ity for the remaining 1/3 of the training data. Since the
class labels are known for these variants, we calculated
specificity and sensitivity for different class membership
probability cut-offs. Finally we retrieved all GERP
scores for these 1/3 of the training data and calculated
the specificity and sensitivity across different GERP
score cut-offs as well (Table 4 and Supplementary Fig.
S3). Clearly there is still room for improvement in the
classification for promoter regions, but it is encouraging
to observe that specificity and sensitivity is consistently
higher in SInBaD. As mentioned before, GERP is
designed to find evolutionary constraint regions, which
are possibly functional, and this comparison demonstrates
that using that type of evolutionary information can be
used to find functional variants.

Small amount of functional variants in the
HapMap dataset

The distribution of functional variants in the human
genome was then studied on a large scale by using
SInBaD to score population variants provided by the
HapMap project (1). The HapMap dataset is a collection
of variants curated from different healthy individuals from
different populations. Our results show that, within
coding regions, we predict about 11.57% (10% FPR)
out of 24 270 HapMap variants from the CEU (Utah resi-
dents with Northern and Western European Ancestry)
populations to be functional. Assuming that HapMap
variants are in fact not functional, we observed that
SInBaD can separate HapMap variants from a random

Figure 4. Box plot demonstrating the difference of the distributions of occurrence of p53-variants in cancer patients. The y-axis shows the number of
occurrence of a particular p53-variant in cancer patients. The variants predicted as functional are occurring more frequently in cancer patients (left),
than the variants considered to be non-functional (right). P-value is calculated based on the non-parametric Wilcoxon rank sum test. Range of box is
defined as the inner quartile range, while the box is split into two parts by the median.

Table 2. Summary of SInBaD classification results on cancer variants

found in p53 dataset

p53 dataset p53 dataset p53 dataset
Missense Intron Synonymous

Size 1345 86 365
Predicted 778 27 30
% 57.84 35.53 8.22

‘Size’ is the number of non-redundant p53 variants in the dataset,
‘Predicted’ is the number of variants classified as functional with a
class membership probability exceeding the 10% FPR threshold and
% shows the frequency of variants classified as functional.
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set of intronic and coding disease variants (see Supple-
mentary Figure S4 for Specificity/Sensitivity trade-off).
There has been some controversy around the topic of
whether and to what extent HapMap variants really
capture phenotypic variations and therefore should be
considered functional. Within the framework of our
model, most HapMap variants are classified as non-
functional. According to the neutral theory formulated
by Kimura and Ohta (33) most observed polymorphism
can be accounted for by random genetic drift of neutral
mutations, which would be consistent with observing
rather a small amount of actual functional variants.

Individual genome analysis shows a high amount of
functional variants in intron and promoter regions

In a more recent study, (8) performed an analysis of the
variants annotated within three available individual
human genomes. Their approach of identifying deleterious
variants using an evolutionary model and stringent quality
filtering on these datasets, resulted in a set of deleterious
variants for each individual. We performed a similar
analysis on four of the currently available individual
human genomes. Table 5 shows the number of homozy-
gous variants differing from the reference genome, which
we classified as functional within the different genomic
regions under the default model.
Although, we are unable to perform a validation of the

predicted functional variants, the numbers do demon-
strate that our model selects a specific subset of functional
variants. Adjusting the number of predictions by False
Positive Rate determined through cross-validation of the
training data results in comparable sets of variants from
each genic region (Table 5). After adjusting by 10% FPR,
we do predict a small subset of functional variants for
further investigation.

DISCUSSION

We have developed SInBaD, a new model to identify func-
tional variants for any set of positions within the whole
length of any gene in the human genome. Similar to
GERP (19) all scores are based on nucleotide sequence
conservation, allowing us to extent prediction to non-
coding region. The generated scores show high specificity
in intron and coding regions and suggest a high correl-
ation between the score and functionality of a variant.
Test results on various other datasets confirm the specifi-
city and overall performance of this model. Different sets
of cancer variants demonstrate the performance of our
model. Due to the size of the different datasets, results
might not be complete, but we are confident that more
training data would improve our current results. All
results of the datasets we used are consistent with each
other, providing confidence in our model.

Considering the amount and variety of phenotypes
observed in human populations, it seems likely that
many variants might have a potentially mild functional
effect. Therefore, SInBaD offers a way to quantify the
functionality of a variant, which can be integrated into a
more complex model, representing the next step toward
understanding more complex phenotypes.

SInBaD will be a useful tool for investigating functional
variants. Our model allows for the selection of candidate
variants within a specific gene for use in further experi-
mental studies or within GWASs. It will complement
current approaches by providing a more complete
picture of variants in coding regions, as well as providing
functional variant detection in non-coding regions.

We have also demonstrated the power of SInBaD by
studying variants in the currently available human
genomes. Based on our model we identified a set of
variants we believe to be functional. We are able to
analyze all variants in any coding region independent of
structural or amino acid information. We are also able to
include polymorphisms in intron and promoter regions as
well as synonymous variants in coding regions. A more

Table 5. Number of variants predicted to be functional (threshold set

at 10% FPR) by our model

Genome Coding Promoter Intron

Watson size 2533 11 426 121 624
Watson predicted 152 435 183
Watson (%) 6.00 3.81 0.15
Venter size 8045 38 032 457 316
Venter predicted 356 1265 557
Venter (%) 4.43 3.33 0.12
Chinese size 8383 36 474 333 016
Chinese predicted 379 1346 441
Chinese (%) 4.52 3.69 0.10
Korean size 7574 33 121 391 595
Korean predicted 359 1224 411
Korean (%) 4.74 3.7 0.10

The labels Watson, Venter, Chinese and Korean are referring to the
different human genomes used for this table. Size refers to the number
of variants within the different regions of the genome. Predicted shows
the number of variants predicted by SInBaD to be functional, which
are above the threshold set for 10% FPR.

Table 3. Summary of SInBaD classification results on cancer variants

found in cancer variants found by Wood et al.

Wood et al. Wood et al.
Missense Synonymous

Size 1830 243
Predicted 990 22
% 54.10 9.05

’Size’ is the number of non-redundant cancer variants in the dataset,
‘Predicted’ is the number of variants classified as functional with a class
membership probability exceeding the 10% FPR threshold and %
shows the frequency of variants classified as functional.

Table 4. Area under the curve across different gene regions based on

ROC-plots (Supplementary Fig. S3) for GERP and SInBaD

Region AUC-GERP AUC-SInBaD

Intron 0.8921 0.9339
Promoter 0.5976 0.69
Coding 0.8453 0.8933
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thorough investigation of these variants might clarify the
phenotypic effects they might be causing. Applying our
model on two different datasets of cancer variants we
observed that variants predicted as functional by
SInBaD are also observed more often across different in-
dividuals. Cancer mutations are commonly distinguished
between driver and passenger mutations. Based on these
results. We could ask why non-common cancer variants
have low conservation across species. However, we do not
think that we should draw any kind of conclusion about
non-common cancer variants based on these results but
rather take these results as an indication of the perform-
ance of SInBaD, that variants with high support are being
correctly detected.

SInBaD demonstrates how evolutionary information
can be combined with current knowledge in order to
provide predictions for functional variants. Clearly
SInBaD is heavily relying on multiple alignment informa-
tion. We are using different models across different gene
regions in order to account for the possibility of different
levels of evolutionary constraints in functional variants. A
major advantage of this approach is that we do not have
to rely on experimental data or structural information
which is limited to a subset of genes. Unfortunately in-
accurate multiple alignments and the lack of homologous
sequences in other vertebrates limit the accuracy of
SInBaD. This can be seen in promoter and intron
regions, where multiple alignments are more likely to be
inaccurate and we used additional information to be able
to make more accurate predictions. Finally we are
working under the assumption that functional variants
are under evolutionary constraints. That is a reasonable
assumption to make, but not necessarily always true. One
can imagine a situation in which a new variant might have
arisen, crucial to normal human cell function, however
never observed across other species.

SInBaD is designed to make reliable predictions and for
that reason we do predict variants with lacking alignment
information as being non-functional, sacrificing sensitiv-
ity. Clearly, our results show that functional variant pre-
diction in non-coding regions remains a challenge. Our
model is a first attempt at providing a more complete
picture of functional variants and explores the extent to
which species conservation can contribute toward func-
tional variant detection.

Improvements might be achievable through a better
variant feature representation. Such changes might be espe-
cially helpful in inter-genic and non-coding regions in order
to overcome common issues associated with genome-wide
multiple alignments. These problems are particularly prom-
inent in non-coding regions, and therefore are likely to be
affecting our predictions in non-coding regions. We have
already studied a few such features here and incorporated
them into our model (e.g. PWM in introns). Some features,
like simple word-counts did not prove to be helpful in
building the model for promoter regions. Further studies
are necessary to reveal properties useful for improving and
complementing current approaches. Classification of
promoter region remains a particular challenge. The small
dataset available, inaccurate alignments and our limited
understanding of regulation pose a challenge to construct

a proper feature set. Sophisticated approaches for finding
regulatory signals exist and should be explored further.
Studying different types of features revealed that in order
to avoid over fitting, a simple two feature model consisting
out of distance to TSS and reference allele conservation gave
the best results. However, this approach limits the available
information for a particular SNP and therefore our model
cannot distinguish the effects of possible different derived
alleles, which poses a limitation for our promoter model.
A better understanding of promoter region and more
accurate multiple alignment approaches might possibly
help to overcome these problems in the future. Alternative
splicing and overlapping gene causes another significant
problem. Variants can be part of different non-coding
regions at the same time. Furthermore it is known that
splicing can be influenced by elements in the exon region
of a gene. Therefore, a solution which is independent of
categorizing a variant by gene region would be more
desirable.
Using SInBaD to analyze variants encountered in four

individual genomes (8) demonstrates the potential of such
models. There is already an increased interest in using this
type of method in GWASs or prioritizing variants and
genes in experimental research (34–36) showing possible
applications. To make it possible for anyone to evaluate
any variant within any annotated gene, we generated all
possible variants within annotated gene regions. Scores for
all of these variants have been evaluated by our model and
are available at http://tingchenlab.cmb.usc.edu/sinbad/
index.html. Any score from any set of variants within
annotated gene regions can be accessed this way and
tested for functionality. We believe that further improve-
ments on these methods are possible and these types of
methods are likely to become an integrated part of
genomic research in the future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Sup-
plementary Table 1 and Supplementary Figures 1–4.
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