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Abstract: This study aimed to evaluate skeletal pain associated with osteoporosis and to examine
the inhibitory effects of cytotoxic T lymphocyte-associated antigen-4Ig (CTLA-4Ig) administration
in ovariectomized (OVX) mice. Eight-week-old female ddY mice were assigned to three groups:
sham-operated mice (SHAM) treated with vehicle, OVX mice treated with vehicle (OVX), and OVX
mice treated with CTLA-4Ig (CTLA-4Ig). Vehicle or CTLA-4Ig was injected intraperitoneally,
starting immediately after surgery. After 4 weeks of treatment, mechanical sensitivity was
examined, and the bilateral hind limbs were removed and evaluated by micro-computed tomography,
immunohistochemical analyses, and messenger RNA expression analysis. Ovariectomy induced bone
loss and mechanical hyperalgesia in the hindlimbs. CTLA-4Ig treatment prevented bone loss in the
hindlimbs compared to vehicle administration in the OVX group. Moreover, mechanical hyperalgesia
was significantly decreased in the CTLA-4Ig treatment group in comparison to the OVX group.
The expression levels of tumor necrosis factor-α (TNF-α) and sclerostin (SOST), as well as the number
of osteoclasts, were increased, and the expression level of Wnt-10b was decreased in the OVX
group compared with the SHAM group, whereas these parameters were improved in the CTLA-4Ig
group compared with the OVX group. The novelty of this research is that CTLA-4Ig administration
prevented bone loss and mechanical hyperalgesia induced by ovariectomy in the hindlimbs.
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1. Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease in which proinflammatory
cytokines act as mediators of synovial inflammation, with resulting progressive inflammatory
polyarthritis. One of the most deleterious effects is bone loss induced by the RA inflammation [1].
Osteoporosis is recognized as a major comorbidity in RA, and can result in estimated double risk of
pathological fractures [2]. Bone fragility in RA patients results from a mix of systemic inflammation,
circulating autoantibodies, and proinflammatory cytokine secretion that collectively have deleterious
effects on bones. Systemic bone loss occurs in nearly 60% of patients with early RA, and it is also a
strong predictor of radiographic joint damage [3]. RA patients typically have low bone mass at the start
of their disease, indicating that bone damage already occurs before clinical inflammation starts [4].

Over the last 15 years, better knowledge of the cytokine network involved in RA enabled
the development of potent inhibitors of the inflammatory process, which are classified as biologic
disease-modifying antirheumatic drugs (bDMARDs) [5]. The development of bDMARDs in the late
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1990s has dramatically improved the management of RA. These new drugs are very effective in the
inhibition of inflammation, but there are only a few studies regarding their role in bone protection.
Clinically, studies with tumor necrosis factor (TNF)-blocking agents show preservation or increase in
spine and hip bone mineral density (BMD) and a better bone marker profile. Treatment with biologic
drugs is associated with a decrease in bone loss [5].

Abatacept (ABT) is a recombinant fusion protein containing components of immunoglobulin
G (IgG) and cytotoxic T-lymphocyte-associated protein-4 that inhibit costimulatory signals from
antigen-presenting cells and prevent activation of T cells [6]. ABT, i.e., CTLA-4Ig, has been approved
for the treatment of RA [7]. CTLA4-Ig significantly ameliorated signs and symptoms, improved physical
function, and retarded the radiological progression of structural damage of affected joints in patients
with RA. CTLA-4Ig is currently indicated for the treatment of moderate-to-severe RA resistant to
methotrexate or TNF antagonists [8]. A previous prospective comparative study investigated the effects
of ABT and other bDMARDs on BMD and bone metabolism markers in RA patients and revealed the
effects of ABT on bone metabolism [9]. This study showed that ABT increases BMD at the femoral
neck and maintains the lumbar spine, offering comparable efficacy to other bDMARDs.

Our previous studies using an animal model of ovariectomy (OVX)-induced osteoporotic pain
suggested that treatment of osteoporosis is useful for osteoporotic pain [10,11]. The objective of the
current study was to investigate the bone structure and pain-related behavior in a mouse model of
OVX-induced osteoporosis to evaluate the effects of CTLA-4Ig.

2. Results

2.1. Measurement of Pain-Related Behavior with Von Frey Filaments

Measurements of the paw withdrawal threshold and the 50% paw withdrawal threshold were
significantly lower in the group of OVX mice treated with vehicle (OVX) than in the group of
sham-operated mice treated with vehicle (SHAM). Treatment with CTLA-4Ig significantly improved
pain behavior induced by OVX in both assays measuring paw withdrawal threshold and 50% paw
withdrawal threshold (Figure 1A,B). Paw withdrawal frequencies following stimulations with 0.4–1.4 g
filaments were significantly higher for the OVX group than for the SHAM group. Paw withdrawal
frequencies in response to stimulations with 0.4–1.4 g filaments were lower in the CTLA-4Ig group
than in the OVX group (Figure 1C).
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metaphyses (Figure 2B) showed less cancellous bone in the OVX group than in the SHAM group. 

Cancellous bone loss was lower in the CTLA‐4Ig group than in the OVX group in the distal femoral 
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Figure 1. Measurement of pain-related behavior with von Frey filaments. (A) Paw withdrawal threshold;
(B) 50% paw withdrawal threshold by the up–down method; (C) withdrawal frequency stimulation.
Data are shown as scatter plots (* p < 0.05, ** p < 0.01, **** p < 0.001; n = 12 in each group). SHAM,
sham-operated mice, OVX, ovariectomy-treated mice, CTLA-4Ig, cytotoxic T lymphocyte-associated
antigen-4 immunoglobulin G.

2.2. Analysis of Three-Dimensional Bone Structure by µCT

Three-dimensional images of the distal femoral metaphyses (Figure 2A) and proximal tibial
metaphyses (Figure 2B) showed less cancellous bone in the OVX group than in the SHAM group.
Cancellous bone loss was lower in the CTLA-4Ig group than in the OVX group in the distal femoral
metaphyses and proximal tibial metaphyses.
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Figure 2. Micro-CT analyses of the distal femoral metaphysis and the proximal tibial metaphysis.
Three-dimensional images of the distal femoral metaphysis (A) and the proximal tibial metaphysis
(B); (C) bone volume/tissue volume (BV/TV, %) (distal femoral metaphysis); (D) BV/TV (%) (proximal
tibial metaphysis); (E) trabecular number (Tb.N, per mm) (distal femoral metaphysis); (F): Tb.N (/mm)
(proximal tibial metaphysis); (G) trabecular separation (Tb.Sp, µm) (distal femoral metaphysis);
(H) Tb.Sp (µm) (proximal tibial metaphysis); (I): trabecular thickness (Tb.Th, µm) (distal femoral
metaphysis); (J) Tb.Th (µm) (proximal tibial metaphysis). Data are shown as scatter plots (* p < 0.05,
** p < 0.01, *** p < 0.005, **** p < 0.001; n = 12 in each group).

Micro-computed tomography (µCT) analysis of the distal femoral metaphyses and proximal
tibial metaphyses showed that bone volume/tissue volume (BV/TV) and trabecular number (Tb.N)
were significantly lower in the OVX group than in the SHAM group, whereas trabecular separation
(Tb.Sp) was significantly higher in the OVX group compared to the SHAM group. Thus, OVX induced
significant osteoporotic changes detected by µCT analysis of the knee. Interestingly, the analysis of
samples from CTLA-4Ig-treated mice showed significant improvements in the parameters BV/TV, Tb.N,
and Tb.Sp in the proximal tibial metaphyses, and CTLA-4Ig administration tended to improve also the
bone structure in the distal femoral metaphyses (Figure 2C–H). There was no significant difference
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in trabecular thickness (Tb.Th) between the distal femur and the proximal tibia among all groups
(Figure 2I,J).

2.3. Histological Analysis

The OVX group showed less cancellous bone in the distal femoral metaphyses and proximal
tibial metaphyses than the SHAM group. The CTLA-4Ig group showed improvement in cancellous
bone loss compared to the OVX group (Figure 3A). The number of tartrate-resistant acid phosphatase
(TRAP)-positive osteoclasts in the distal femoral metaphyses and proximal tibial metaphyses was
significantly higher in the OVX group than in the SHAM group, whereas it was significantly lower in
the CTLA-4Ig group in comparison to the OVX group (Figure 3A–D). Thus, treatment with CTLA-4Ig
suppressed TRAP activity.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW  5 of 12 

 

significant difference in trabecular thickness (Tb.Th) between the distal femur and the proximal tibia 

among all groups (Figure 2I,J). 

2.3. Histological Analysis 

The OVX group showed  less cancellous bone  in  the distal femoral metaphyses and proximal 

tibial metaphyses than the SHAM group. The CTLA‐4Ig group showed improvement in cancellous 

bone loss compared to the OVX group (Figure 3A). The number of tartrate‐resistant acid phosphatase 

(TRAP)‐positive osteoclasts  in  the distal  femoral metaphyses and proximal  tibial metaphyses was 

significantly higher in the OVX group than in the SHAM group, whereas it was significantly lower 

in the CTLA‐4Ig group in comparison to the OVX group (Figure 3A–D). Thus, treatment with CTLA‐

4Ig suppressed TRAP activity. 

 

(A) 

 

(B) 

   

(C)  (D) 

Figure  3. Histological  analysis  of  hindlimb  bone.  (A) Tartrate‐resistant  acid phosphatase  (TRAP) 

staining for the histological examination of the distal femoral metaphysis scale bar is 50 μm); (B) TRAP 
Figure 3. Histological analysis of hindlimb bone. (A) Tartrate-resistant acid phosphatase (TRAP) staining
for the histological examination of the distal femoral metaphysis scale bar is 50 µm); (B) TRAP staining
for the histological examination of the proximal tibial metaphysis; (C) histological analysis of the
number of TRAP-positive osteoclasts in the distal femoral metaphysis; (D) histological analysis of
the number of TRAP-positive osteoclasts in the proximal tibial metaphysis; (* p < 0.05, ** p < 0.01,
*** p < 0.005; n = 12 in each group). N.Oc./B.Pm.: number of osteoclasts/bone perimeter.
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2.4. Effect of Hind Limb Unloading on mRNA Levels of TNF-α, Wnt-10b, and SOST

The messenger RNA (mRNA) levels of TNF-α and sclerostin (SOST) in the hind limb bone were
upregulated by OVX (relative expression vs. control) compared with the mRNA levels in SHAM
group; however, this difference was not statistically significant. The mRNA levels of TNF-α and
SOST tended to decrease with CTLA-4Ig treatment compared to those without any treatment; relative
expression in the OVX group vs. that in the SHAM group was: TNF-α, 4.226; SOST, 1.944; relative
expression in the CTLA-4Ig group vs. the SHAM group was: TNF-α, 1.686; SOST, 0.395 (Figures S1 and
S2). The mRNA levels of Wnt-10b were downregulated by OVX compared to SHAM and CTLA-4Ig
treatments (relative expression of Wnt-10b, in the OVX group vs. the SHAM group was 0.269; relative
expression of Wnt-10b, in the CTLA-4Ig group vs. the SHAM group was 1.176) (Figure S3).

3. Discussion

Osteoporosis is a common disorder of the skeleton characterized by impairment of the fine balance
between osteoclast bone resorption and osteoblast bone formation, conditions that predispose to bone
loss [10]. Osteoporosis, even without fractures, has been associated with severe discomfort and/or
disability and affects different aspects of personal life, with a variety of undesirable consequences, such as
chronic pain, reduced physical ability, reduced social activity, and depressed mood [11]. Bone pain
is one of the most common complications in cancer patients with bone metastases. Previous studies
of bone pain in a metastatic cancer model have shown that the acidic microenvironment created by
bone-resorbing osteoclasts activates transient receptor potential channels of the vanilloid subfamily
member 1 (TRPV1) [12]. Our previous studies using an animal model of OVX-induced osteoporotic
pain suggest that treatment of osteoporosis is useful for osteoporotic pain associated with osteoclast
activity and TRPV1 stimulation [13,14].

The immune system has powerful effects on bone turnover. Physiologically, B cells secrete
osteoprotegerin, a potent anti-osteoclastogenic factor that preserves bone mass [10]. Estrogen (E2)
deficiency leads to bone loss through a complex cascade of interacting pathways involving the
immunoskeletal interface. Estrogen is known to mediate potent anti-inflammatory effects in the body,
and loss of estrogen has been shown to cause significant expansion of lymphocytes, both T cells [15] and
B cells [16]. These studies suggested a model in which estrogen depletion results in the expansion of T
cells that secrete TNF-α, and this TNF-α amplifies receptor activator of nuclear factor-kappa B ligand
(RANKL)-induced osteoclastic bone resorption causing bone loss [17]. In our study, OVX increased the
mRNA level of TNF-α, as well as the number of TRAP-positive osteoclasts in the hindlimb bone.

Interestingly, in estrogen deficiency, activated T cells secrete RANKL, TNF-α, and interleukin
(IL)-17A, which amplify bone resorption and contribute to postmenopausal osteoporosis [10].
IL-17A and TNF-α also promote bone loss in inflammatory states such as RA [10]. Several studies attest
to the critical role inflammation plays in the development of systemic osteoporosis in RA. For example,
cytokines such as TNF-α, IL-6, IL-1β, and immune cell-derived RANKL have a detrimental effect on
osteoblastogenesis and a positive effect on osteoclastogenesis [18]. The study by Laan et al. was the
first to show with dual-energy X-ray absorptiometry (DXA) that RA patients have lower BMD values
compared to matched controls [19]. Gough et al. demonstrated an accelerated BMD loss in early RA
patients in comparison to controls at the spine and trochanter [20].

The introduction of bDMARDs for the treatment of RA allowed not only a reduction in cartilage
damage but also a decrease in both localized and generalized bone loss. Several studies in RA have
reported beneficial effects on bone mass after treatment with bDMARDs [5]. In a clinical one-year
prospective open-label study, patients with active RA receiving tocilizumab, an anti-IL-6 receptor
antibody, had no change in BMD and presented an increase in a bone formation marker [21]. However,
only RA patients with osteopenia at baseline had significantly increased BMD values of the lumbar
spine and femoral neck.
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Our recent study reported that an anti-IL-6 receptor antibody treatment prevented ovariectomy-induced
or unloaded-induced mechanical hyperalgesia in the hindlimbs, but the treatment had no effect on the
induced bone loss [22,23].

In the present study, CTLA-4Ig treatment decreased mechanical hyperalgesia in an ovariectomized
osteoporotic murine model with the prevention of bone loss and the tendency to inhibit the release of
inflammatory cytokines. Clinically, ABT increases BMD at the femoral neck and maintains it at the
lumbar spine, offering comparable efficacy to other bDMARDs [9].

Bone formation is promoted when Wnt-10b binds to the Wnt receptors low-density lipoprotein
receptor-related protein 5 (LRP-5) and LRP-6 on osteoblasts. Wnt-10b expression is upregulated in
anergic T cells [24]. Similarly, our results showed that the mRNA level of Wnt-10b was decreased,
and the mRNA level of SOST was increased in OVX mice compared to non-OVX mice. The CD28
receptor on T cells associates with CD80/CD86 ligands on antigen-presenting cells and mediates key
costimulatory signals necessary for T cell activation, downstream of the T cell receptor engagement of
antigens on antigen-presenting cells [25]. CTLA-4, which has a strong affinity for CD80/CD86, binds to
CD80/CD86 and suppresses T cells [24]. CTLA-4Ig prevents bone loss in OVX mice [26]. In addition,
ABT, a soluble fusion protein formed by the extracellular domain of human CTLA4 linked to a human
IgG1 Fc portion, improved in our study the mRNA levels of Wnt-10b and SOST in OVX mice. However,
in our data, the change in Wnt10b expression was not statistically significant. In support of our findings,
CTLA-4 promoted Wnt-10b production and bone formation under physiological conditions in mice
also in a previous study [24]. CTLA-4 has recently been reported to inhibit osteoclast differentiation by
inducing the indoleamine 2,3-dioxygenase/tryptophan pathway [27]. Thus, ABT may be effective not
only for suppressing bone resorption but also for improving bone formation.

Maggi et al. reported that ABT reduces the proliferative response to recall antigens and the
production of proinflammatory cytokines such as interferon (IFN)-γ and TNF-α in healthy donors
in vitro. [28]. In an in vivo study, CTLA-4Ig suppressed the generation of large amounts of TNF-α and
IFN-γ by splenocytes from DBA/1 mice with glucose-6-phosphate isomerase-induced arthritis [29].
These research reports support our result that CTLA-4Ig in vivo treatment suppresses the expression
of TNF-α mRNA in vivo.

The present study has several limitations. First, we did not evaluate biomarkers related to
pain, such as calcitonin gene-related peptide and TRPV1. Second, the dose- and time-dependent
effects of CTLA-4Ig were not examined. Third, whether CTLA-4Ig administration prior to disease
onset prevents osteoporosis is yet to be investigated. Fourth, although we observed changes in gene
expression of TNFα, SOST, and Wnt10b with CTLA-4Ig, none of the data were statistically significant.
This indicates weak support for an altered cytokine profile in the OVX group following CTLA-4Ig
treatment. Future studies should address the timing effects of CTLA-4Ig treatment in OVX-induced
bone loss. Furthermore, studies should examine inflammatory cytokines (IFN-γ, TNF-α, etc.) at the
systemic and local levels. Using enzyme-linked immunosorbent assays, these studies should examine
how CTLA-4Ig treatment alters systemically the serum cytokine profile, and the immunohistochemical
expression of several inflammatory cytokines in the hind limb should be evaluated as a local marker at
4 weeks after treatment.

4. Materials and Methods

4.1. Reagents

The reagent used was CTLA-4Ig (Orencia® for intravenous infusion; Bristol-Myers Squibb,
Tokyo, Japan).

4.2. Animals

The experiment was approved by the Mie University Animal Care Committee (approval number:
2721, approval date 4 January 2016) and was undertaken in accordance with the ethical guidelines of
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the National Institutes of Health. A randomized, prospective, controlled animal model design was
used. All efforts were made to minimize animal suffering and the number of animals used. Sample size
was determined using a power analysis for an alpha of 0.05 and a power of 0.80 using G*POWER3 [30].

Seven-week-old female ddY mice were purchased from Japan SLC (Hamamatsu, Shizuoka, Japan)
and acclimated for 1 week before the start of the experiments. Two mice were housed per cage in a
temperature-controlled room (23 ± 1 ◦C) with a 12 h light/dark cycle (lights on from 7:00 to 19:00) and
were given free access to food and water.

4.3. Experimental Protocol

At 8 weeks of age, the mice were randomly assigned to three groups (n = 6/group): sham-operated mice
treated with vehicle (SHAM), OVX mice treated with vehicle (OVX), and OVX mice treated with
CTLA-4Ig (CTLA-4Ig). The mice were either ovariectomized bilaterally under anesthesia with
pentobarbital sodium (Sankyo, Tokyo, Japan) administration intraperitoneally or sham-operated
(ovaries exteriorized but not removed). Starting immediately after surgery, vehicle or 25 mg/kg
CTLA-4Ig was injected intraperitoneally three times a week for 4 weeks [25]. At the end of the
4-week treatment period, the mechanical sensitivity of the hind limbs was tested using von Frey
filaments. Following the test, mice were sacrificed with an intraperitoneal injection of pentobarbital
sodium (0.5 mg/kg). The bilateral hind limbs were removed for µCT, immunohistochemical analysis,
and mRNA expression analysis.

4.4. Measurement of Pain-Related Behavior with Von Frey Filaments

Mechanical hyperalgesia around knee osteoporosis was assessed with the von Frey filaments.
The von Frey test was conducted after drug or vehicle administration for 4 weeks, as described
previously [14,22,23]. The frequency of the withdrawal response was evaluated that five von Frey
filaments with forces of 0.4 g, 0.6 g, 1.0 g, 1.4 g, and 2.0 g were applied five times each in ascending
order of force. The results were expressed as the percent response frequency of paw withdrawals.
The withdrawal threshold was evaluated that each von Frey filament was applied once, starting at
0.008 g, with increasing force until a withdrawal response was reached, which was considered a
positive response. The lowest force producing a response was considered the withdrawal threshold.
The 50% withdrawal threshold was evaluated that a series of nine von Frey filaments, calibrated to
produce incremental forces of 0.02 g, 0.04 g, 0.07 g, 0.16 g, 0.4 g, 0.6 g, 1.0 g, 1.4 g, and 2.0 g, were applied.
Testing was initiated with a 0.6 g filament. Testing was initiated with a 0.6 g filament. In the absence
of a clear paw withdrawal response, increasingly stronger filaments were presented consecutively
until one of them was found to elicit a positive response. If the 0.6 g filament elicited a response,
filaments with decreasing strength were presented until the identification of the first filament that
failed to cause paw withdrawal. Data were collected using the up–down method [31] to calculate the
50% mechanical paw withdrawal threshold.

4.5. Analysis of Three-Dimensional Bone Structure by µCT

To determine the three-dimensional bone structure, isolated femurs and tibias were imaged using
a µCT scanner (R_mCT; Rigaku Corporation, Tokyo, Japan), as described previously [13,14,22,23].
The scanned region contained both cortical and trabecular bone in the distal femoral metaphysis and the
proximal tibial metaphysis located approximately 200 µm from the growth plate. Three-dimensional
images were reconstructed and analyzed using a three-dimensional image analysis software
(TRI/3D-BONE; RATOC System Engineering, Tokyo, Japan). The bone structure was evaluated
based on the parameters bone volume fraction (BV/TV, %), Tb.N (/mm), Tb.Th (µm), and Tb.Sp (µm).

4.6. Histological Analysis of the Hind Limb Bone

Isolated hind limb bones and immunostained sections were prepared as described previously
[13,14,22,23]. Right hind limb bones were fixed in 4% paraformaldehyde for 1 day. Tibias were decalcified in
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10% EDTA for 2 weeks. After embedding in paraffin, sections were stained with hematoxylin and eosin for
histological analysis of the bone structure. To identify osteoclasts in the hind limb bone, the TRAP method
was used. In the proximal tibia, the number of TRAP-positive osteoclasts was determined within an area
of 0.5 × 2 mm (length ×width), apart from the most distal part of the growth plate. The immunostained
sections were reviewed by different observers who were blinded to the experimental group.

4.7. RNA Isolation

Total cellular RNA was extracted from the left hind limb bone of the mice using Isogen
(Nippon Gene, Toyama, Japan), according to the manufacturer’s instructions. Total RNA was
reverse-transcribed using the Transcriptor First Strand cDNA Synthesis kit (Roche Applied Science,
Penzberg, Germany) with a DNA thermal cycler (Veriti; Applied Biosystems, Foster City, CA, USA),
according to the manufacturer’s protocol.

4.8. Quantitative Real-Time Polymerase Chain Reaction

The resultant complementary DNA (in triplicate) was amplified for the genes coding for the
following molecules: TNF-α, Wnt-10b, and SOST. Inventoried (ready-made) primers corresponding
to the target genes were used in this study (Table 1; TaqMan Gene Expression Assays; Applied
Biosystems). Real-time PCR was performed using the ABI PRISM 7000 Sequence Detection System
(Applied Biosystems). PCRs were carried out in duplicate with 1 cycle at 50 ◦C for 2 min, 1 cycle at
95 ◦C for 10 min, and 40 cycles at 95 ◦C for 15 s and 60 ◦C for 1 min. The assay was calibrated using
glyceraldehyde 3-phosphate dehydrogenase as an internal control.

Table 1. Primers for real-time polymerase chain reaction (PCR).

Genes Assay ID a Size (bp)

TNF-α Mm00443258_m1 81
SOST Mm00470479_m1 55

Wnt-10b Mm00442104_m1 57
GAPDH Mm99999915_g1 109

a TNF-α Tumor Necrosis Factor-α, SOST screlostin, GAPDH Glyceraldehyde-3-phosphate dehydrogenase.
TaqMan Gene Expression Assays (Applied Biosystems).

4.9. Statistical Analysis

Correlations among the SHAM, OVX, and CTLA-4Ig groups were tested using one-way ANOVA
followed by the Bonferroni multiple comparison test if data were normally distributed. If data
were not distributed normally, they were analyzed using the Kruskal–Wallis test; p < 0.05 was
considered significant. All statistical analyses were performed using IBM SPSS Statistics 26 (IBM Japan,
Tokyo, Japan).

5. Conclusions

In summary, CTLA-4Ig partially prevented bone loss and improved mechanical hyperalgesia in
the hind limbs of OVX mice. The preventive mechanism may involve the improvement of TNF-α,
Wnt-10b, and SOST expression, as well as osteoclast functions. The results of this study enhance
our understanding of osteoporotic pain and suggest that CTLA-4Ig might preserve bone health and
decrease osteoporotic pain.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/24/
9479/s1.
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