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Garlic is widely accepted as a functional food and an excellent source of pharmacologically active ingredients. Diallyl disulfide
(DADS), a major bioactive component of garlic, has several beneficial biological functions, including anti-inflammatory, an-
tioxidant, antimicrobial, cardiovascular protective, neuroprotective, and anticancer activities./is review systematically evaluated
the biological functions of DADS and discussed the underlying molecular mechanisms of these functions. We hope that this
review provides guidance and insight into the current literature and enables future research and the development of DADS for
intervention and treatment of multiple diseases.

1. Introduction

Plants are excellent sources of pharmacologically active
ingredients. Garlic has been commonly accepted as a
functional food and traditional herb for the prevention and
treatment of several diseases, especially cancer and infec-
tious diseases [1–4]. It is believed that organic sulfur
compounds are responsible for most of the biological ac-
tivities of garlic [5]. Diallyl disulfide (DADS; structure: two
sulfur atoms with two allyl groups; see Figure 1) is a major
organosulfur compound of garlic [6, 7]. Studies have shown
that DADS has many biological functions, including anti-
inflammatory, antioxidant, anticancer, and detoxifying
effects, which may be determined by its chemical structure
[4, 7–9]. Previous reviews have discussed the promising
value of DADS in the prevention and treatment of a wide
range of diseases [6]. In this work, we performed a sys-
tematic review of the biological functions of DADS based
on the cellular and molecular mechanisms, hoping to
provide an updated scientific basis and insight for future
experiments.

2. Methodologies

We made a search in PubMed, Web of Science, and
GeenMedical up to June 2021 for the existing literature on
DADS. We also searched the International Clinical Trials
Registry Platform and ClinicalTrials.gov for potentially
relevant clinical trials. References of included papers and
reviews were manually searched to make a supplement.

3. Biological Functions of DADS

3.1. Anti-Inflammatory Activity. Inflammation is an adap-
tive response of the host to adverse stimuli such as trauma,
toxicity, and microbial infection. A proper inflammatory
response can eliminate harmful stimuli and promote tissue
healing [10]. However, uncontrolled inflammation leads to
sustained damage of the tissues and organs often resulting in
pathological changes to these systems [11]. Researchers have
reported that DADS can inhibit inflammation in several
diseases, such as enteritis, arthritis, and pancreatitis [12–14].
Fasolino et al. [15] demonstrated that edema of the mucosa
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and submucosa was significantly reduced in the colon of rats
treated with DADS. Furthermore, a low dose of DADS
(between 0.3 and 10mg/kg) was observed to suppress in-
creases in the colon weight/colon length ratios that represent
dinitrobenzene sulfonate-induced intestinal inflammation/
damage. In a recent animal study, the anti-inflammatory and
antioxidant effects of DADS were further confirmed using a
carrageenan injection-induced acute inflammatory response
mouse paw model [9].

DADS plays an essential role in inflammatory response
by modulating immune cells. Hashizume et al. [16] reported
that DADS could modulate the circulating number of
total lymphocytes, leukocytes, and monocytes in both dose-
and time-dependent manners. Immune cells usually activate
intracellular signaling pathways to respond appropriately to
adverse stimuli. One of the most important pathways is the
nuclear factor kappa B (NF-κB) signaling pathway. A study
showed that DADS attenuated the development of cerulein-
induced pancreatitis and its associated lung injury inmice by
suppressing the transcriptional activity of NF-κB p65 and
the degradation of IκB [14], which were consistent with
other study findings [17, 18]. Further research revealed that
DADS inhibited glycogen synthase kinase (GSK)-3β, which
suppressed the NF-κB pathway and further prevented
prolonged inflammation, cellular transformation, and tissue
damage [19]. DADS affected the expression of signal
transducer and activator of transcription 1 (STAT 1), which
could inhibit the enhancement of NF-κB signaling by
binding to the target of tumor necrosis factor (TNF)-α [20].
In addition, DADS was shown to suppress the receptor
activator of NF-κB ligand-induced inflammatory osteolysis
by inhibiting STAT3 and NF-κB signaling both in vitro and
in vivo [21].

One of the most prominent features of the inflammatory
response is the release of inflammatorymediators. One study
provided strong evidence that DADS could inhibit the li-
popolysaccharide (LPS)-induced production of inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2)
in RAW 264.7 cells [22], which thus led to the reduction in
NO and prostaglandin E2 (PGE2) in activated cells [23–25].
Another study on LPS-stimulated neurogenic innate im-
mune cells, BV2 microglia, also found that treatment with
DADS significantly inhibited several proinflammatory cy-
tokines and chemokines, including interleukin (IL)-1β, IL-6,
TNF-α, and monocyte chemoattractant protein-1 [26].
Recent studies have further confirmed this physiological
effect in animal models of neuroinflammation [27].

3.2. Antioxidant Activity. Antioxidants are substances that
prevent, reduce, or repair tissue damage caused by reactive
oxygen species (ROS). Over the past two decades, several
studies have shown that DADS has a range of antioxidant

properties [9, 28–30]. /is includes a direct effect on ROS
production, which was identified in an in vitro study
demonstrating that DADS reduced deoxycholic acid-in-
duced ROS levels in Barrett’s epithelial cells when intro-
duced within an effective concentration range [31]. Another
study showed that treatment with DADS significantly re-
duced ROS levels in IL-1β-treated bone marrow mesen-
chymal stem cells [17]. However, Filomeni et al. [32] found
that DADS induced oxidative stress in neuroblastoma SH-
SY5Y cells, which was consistent with the findings of a study
on human lung carcinoma cells [33]. /is finding aligned
with that of other sulfur-containing compounds from garlic,
such as diallyl trisulfide (DATS), which induced the apo-
ptosis of human breast cancer cells through ROS accumu-
lation and inhibited it in high glucose-induced
cardiomyocytes by reducing ROS production [34, 35]. /e
discrepancies in these studies may be attributed to the
specificity of the tumor cells and differences in the thera-
peutic dosage of DADS employed in each study. A study on
PC12 neuronal cells found that treatment with 20 μMDADS
did not exert any evident effect on cell activity. However, the
levels of free radicals and membrane lipid peroxidation
increased significantly when these cells were treated with
concentrations above 50 μM. In addition, there was an in-
creased risk for cytotoxicity when 100 μM of DADS was
administered to these cells [36]./e results of this study were
similar to those observed in the neuron cell line, N18D3 [37].

Treatment with DADS can activate antioxidant enzymes,
such as glutathione S-transferase (GST), catalase, heme
oxygenase-1 (HO-1), and superoxide dismutase, which can
convert peroxides into less toxic or harmless substances via
oxidation reduction, thereby protecting a wide range of cells
and tissues from ROS [30, 38, 39]. Treatment with DADS
significantly increased nuclear factor-erythroid-2-related
factor 2 (Nrf2) and HO-1 levels in acute ethanol-intoxicated
mice, ethanol-induced human normal liver cells [40], and
LPS-stimulated RAW264.7 cells [41]. Lee et al. [18] dem-
onstrated that DADS promoted the transcription of anti-
oxidant enzymes by dose-dependently enhancing the
stability and nuclear translocation of Nrf2 in the cytoplasm.
/e effects of DADS on Nrf2 also exerted anti-inflammatory
effects by deactivating the redox-sensitive proinflammatory
NF-κB pathway [42]. In addition, DADS could restore the
reduced catalase activity associated with hydrogen peroxide
treatment in intestinal porcine epithelial cells [43].

3.3. Antimicrobial Activity

3.3.1. Antibacterial Activity. In recent years, antibiotic re-
sistance has become a major health problem. Garlic is be-
lieved to be an alternative or complementary medicine for
antibiotics owing to its extensive antibacterial properties
[44, 45]. Studies have demonstrated that garlic extracts could
weaken the formation of Pseudomonas aeruginosa biofilms
and sensitize them to tobramycin and phagocytosis by
polymorphonuclear leukocytes [46]. According to further
research, DADS reduced the production of virulence factors,
such as elastase, pyocyanin, and swarming motility, in
Pseudomonas aeruginosa by blocking the inactivation of
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Figure 1: Chemical structure of DADS.
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quorum-sensing (QS) genes [47–49]. /e anti-QS effect of
DADS was also found to inhibit Hafnia alvei H4 by
downregulating the expression of luxI and luxR genes [50].
However, the mechanisms by which QS regulates these
functions remain unclear. DADS was reported to prevent
methicillin-resistant Staphylococcus aureus infection in di-
abetic mice [51], inhibit the growth of Escherichia coli as an
adjunct of gentamicin [52, 53], suppress the activity of
Helicobacter pylori both in vitro and in vivo [54, 55], and
reduce the pathogenicity of common microorganisms iso-
lated from ear infections [56]. In addition, several recent
studies have demonstrated that DADS could modulate the
gut microbiota. H2S gas released after treatment with DADS
prevented or reversed the naproxen-induced changes in the
composition of the intestinal microbiota [57]. According to
an in vivo study, when a low dose of DADS was added to the
normal diet of mice, the bacterial level of Bacteroides in their
intestinal tract decreased, while that of Firmicutes increased
[58].

3.3.2. Antifungal Activity. To evaluate the antifungal effect
of DADS, Alam et al. [59] administered DADS to mice
infected with Candida albicans. /ey found that the nio-
somal formulation of DADS markedly decreased the se-
cretion of protease and phospholipase from Candida
albicans and increased the survival of the infected animals.
DADS was also reported to inhibit the growth of Aspergillus
versicolor and its toxic metabolites [60].

3.3.3. Antiviral Activity. /e antiviral effect of DADS was
first reported in 1993. In this research, DADS inhibited
the proliferation of HIV-1-infected cells [61]. In addition,
DADS exerted anti-inflammatory and antioxidant effects
in a dengue virus study, reducing the symptoms and
severity of the disease [62]. In recent reports, garlic has
been recommended as a potential medicine for COVID-
19 based on the findings of several preclinical and clinical
studies [63, 64]. In the molecular docking test, garlic
essential oil also showed a good inhibitory effect on SARS-
CoV-2 [65, 66]. However, it is still unclear whether DADS
plays a role in the anti-SARS-CoV-2 effect of garlic, and
further studies are needed.

3.4. Detoxification. Numerous studies have shown that
DADS can protect organs from the harmful effects of several
chemical compounds [4]. For instance, DADS can reduce
the hearing loss caused by aminoglycoside drugs [67], at-
tenuate the side effects of gentamicin and cisplatin [67–69],
positively affect carbon-tetrachloride-induced hepatic
damage [18, 70], relieve haemorrhagic cystitis induced by
cyclophosphamide in rats [71, 72], decrease cyclophos-
phamide-induced developmental toxicity [73], and greatly
alleviate the methotrexate-induced decline in kidney func-
tion and subsequent kidney damage [74].

DADS can promote detoxification of the body, which is
believed to be related to the activation of antioxidant en-
zymes and phase II enzymes via the Nrf2/ARE pathway.

DADS was found to significantly boost the activities of phase
II enzymes, including GST, quinone reductase, microsomal
epoxide hydrolase, and UDP-glucuronosyltransferase in the
liver, intestine, kidney, and lungs [75, 76]. DADS also
upregulated the expression of the pi class of GST through
JNK/AP-1 and ERK/AP-1 signaling pathways. GST is known
to combine with electrophilic compounds in cells to cause
detoxification [77].

It has been reported that DADS primarily suppresses the
carcinogenic effects of chemical compounds via two
mechanisms: the modulation of cytochrome P450 (CYP)-
dependent monooxygenase to inhibit carcinogen activation
and the induction of phase II enzymes to accelerate car-
cinogen degradation. DADS exerted its anticarcinogenic
effect by inhibiting CYP2E1 levels in humans, and CYP2A3
and CYP2A3 levels in rats induced by methyl-n-pentylni-
trosamine [78]. Based on animal studies, the administration
of DADS to rats through gastric intubation reduced the
amount of liver CYP2E1 protein by 25% [79]. Furthermore,
treatment with DADS was found to induce the activation of
phase II enzymes by protecting Nrf2 from proteasomal
degradation of Keap1 and promoting Nrf2 nuclear accu-
mulation, thereby inhibiting the occurrence of chemical-
induced papilloma in mice [80]. A study showed that DADS
inhibited cell proliferation, G2/M arrest, H2O2 formation,
and DNA damage induced by ben-zo[a]pyrene, thereby
inhibiting the occurrence of breast cancer [81]. DADS also
inhibited the expression of serotonin N-acetyltransferase
genes and proteins, leading to the reduction of N-acetyl-2-
aminofluorene-DNA adducts, which could reduce the risk of
cancer associated with exposure to environmental carcin-
ogens [82, 83].

3.5. Cardiovascular Protection. /e intake of garlic can ef-
fectively reduce the risk factors associated with cardiovas-
cular diseases [3, 84, 85]. Based on existing research, DADS
plays a critical role in the cardiovascular protective effect
exhibited by garlic, by acting as an angiogenesis inhibitor.
Exposure to DADS significantly inhibited the angiogenic
differentiation of endothelial cells by reducing the activation
of matrix metalloproteinases (MMPs) and the secretion of
tissue inhibitor of metalloproteinase-1 in endothelial mor-
phogenesis [86, 87]. DADS was also found to effectively
downregulate both the transcription and expression of
vascular endothelial growth factors in HL-60 cells in time-
and dose-dependent manners [88, 89]. Increasing evidence
suggests that both connexins and gap junctions are involved
in cardiovascular diseases [90]. DADS was observed to
improve rat liver epithelial cell gap-junctional intercellular
communication, regulate vascular smooth muscle cell
proliferation, and significantly increase connexin 43 ex-
pression, which is very important for maintaining normal
vascular function [91, 92]. Furthermore, DADS is an ef-
fective agent against atherosclerosis as it can protect low-
density lipoprotein (LDL) from oxidation and glycation
[93, 94]. DADS also protected endothelial cells from oxi-
dized LDL (ox-LDL) damage by reversing the inactivation of
endothelial NOS (eNOS) by ox-LDL [95].
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DADS induces vasodilation by activating perivascular
sensory nerve endings [96]. A recent study found that DADS
strongly inhibited angiotensin-converting enzyme, upre-
gulated the expression of prostacyclin and Cox-2 in SVEC4-
10 cells, and reduced the level of ROS, thereby playing a role
in vasodilation [22]. According to reports, DADS could
downregulate intercellular adhesionmolecule-1 andMMP-9
and block the inactivation of eNOS [95, 97], which has been
demonstrated to relieve pulmonary hypertension [98]. Of
note, impaired endogenous H2S production may be one of
the mechanisms underlying hypertension. As DADS is an
H2S-releasing agent, it could be considered a promising drug
for the treatment of cardiovascular disease [99].

Various studies have suggested that DADS protects the
heart, and treatment with DADS was found to improve
cardiac dysfunction by inhibiting death receptor-dependent
and mitochondrial-dependent apoptotic pathways and en-
hancing the PI3K/Akt pathway in diabetic rats [100]. Fur-
thermore, DADS ameliorated myocardial hypertrophy by
enhancing the biogenesis and biological function of mito-
chondria in the rat heart [101]. /e mitochondrial lipid
peroxidation product, tans-crotonaldehyde, is known to
cause myocardial ischemia by damaging mitochondrial
genes [102]. However, DADS eliminated the toxic effect of
trans-crotonaldehyde by interaction with its –C�C–C– and
–CH�O groups [103].

3.6. Neuroprotection. Garlic and garlic extracts are believed
to provide therapeutic benefits in neurological disorders
owing to their antioxidant, anti-inflammatory, and neuro-
protective effects [3, 104]. A recent study found that DADS
(40 or 80mg/kg) effectively improved LPS-induced de-
pression-like behaviours in mice, with treatment effects
comparable to those of imipramine (10mg/kg), a clinical
antidepressant [105]. However, in young mice, especially
during the neural growth stages, high doses of DADS may
adversely affect hippocampal neurogenesis, the proliferation
of neural progenitor cells, and neurocognitive functions by
regulating ERK and brain-derived neurotrophic factor
(BDNF)/cAMP response element-binding protein (CREB)
signaling, resulting in significant memory deficits [106].
Besides, another recent animal study has shown that DADS
played a role in the inhibition of neuropathic pain via the
H2S/BDNF/Nrf2 pathway [107].

Several previous studies have suggested that DADS may
be an effective drug for the treatment of neurodegenerative
disorders, such as Alzheimer’s disease (AD). Animal studies
have shown that DADS could ameliorate the learning and
memory of AD mouse models by increasing the number of
hippocampal dendritic spines and synapses [108]. DADS
derivatives, 7k and 7l, inhibited Aβ-induced neuronal cell
death and reverse scopolamine-induced cognitive impair-
ment in rats via their antioxidative and metal-chelating
effects [109, 110]. Moreover, DADS exerted anti-
amyloidogenic and anti-inflammatory effects and inhibited
conformational alteration in tau protein induced by phos-
phorylation via the GSK-3β pathway [111]. A clinical trial
found that the severity of some neurodegenerative diseases,

such as AD, was associated with H2S levels. /erefore, as
DADS is an H2S donor; it may play a role in the treatment of
AD [112].

3.7. Anticancer Activity

3.7.1. Inhibition of Invasion and Migration. /e inhibitory
effect of DADS on cancer cell movement and invasiveness is
identified to be linked to the enhancement of tight junctions
and the decrease in MMPs activity [113, 114]. Increases in
transepithelial electrical resistance confirmed that DADS
enhances the tight junctions of human prostate cancer cells
[113]. DADS was found to block the migration and invasion
of human colon cancer 205 cells by inhibiting the expression
of MMP-9, MMP-2, and MMP-7 [115]. Additional evalu-
ations revealed that the effect of DADS on MMPs was
regulated through the NF-κB and PI3K/Akt pathways [116].
Previous studies had shown that DADS could reduce TNF-
α-induced C–C motif chemokine ligand 2 release, thereby
blocking monocyte recruitment and inhibiting malignant
tumor invasion [117, 118].

/e prevention of epithelial-mesenchymal transition
(EMT) is a new hotspot in tumor metastasis research.
Inhibiting Ras-related C3 botulinum toxin substrate (Rac)-1
and β-catenin expression can inhibit EMT in tumor cells
[119]. According to studies by Su et al. [120], DADS sup-
pressed the activities of Rac1, β-catenin, p21 activated ki-
nase-1, and Rho kinase-1, leading to the inhibition of gastric
tumor cell growth, invasion, and metastasis. Furthermore,
DADS regulated MMP-9 expression and reversed EMT by
inhibiting the β-catenin pathway to reduce breast cancer cell
metastasis [121]. Inhibition of the LIMK1-cofilin1 pathway
by DADS also inhibited EMT, migration, and invasion of
gastric cancer cells, which are closely associated with the
formation of invasive pseudopods [122]. Notably, these
findings were also confirmed using colon cancer cells
[123, 124]. Fibronectin, an extracellular matrix component,
also causes EMT in tumors. However, treatment with DADS
has been reported to reverse the EMTinduced by fibronectin
in tumors [125]. /e deglycase-1 (DJ-1) protein is another
promising target for cancer therapy owing to its roles in
invasion, migration, and chemoresistance, and several re-
ports have suggested that inhibition of Src phosphorylation
by DADS could downregulate DJ-1 expression, thereby
inhibiting leukemic cell migration and invasion [126].

3.7.2. Regulation of Cell-Cycle Arrest. DADS was found to
inhibit the proliferation of tumor cells partly because of its
ability to reduce the cell ratio in the G1 phase and increase
the cell ratio in the G2/M phase [127]. During treatment with
DADS, the proportion of G2/M cells increased with in-
creasing concentration and exposure time. Further molec-
ular analysis indicated that the reduced level of cyclin B1, cell
division cycle (cdc) 25C, cdc2, and phosphorylated-cdc2
proteins may have contributed to the blockage of the G2/M
phase in DADS-treated esophageal squamous cell carcinoma
cells [128]. Studies have shown that DADS increased the
mRNA and protein levels of p21 and p53 in carcinoma cells
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and activated the p53/p21 signaling pathway, thereby in-
ducing cell-cycle arrest and cell apoptosis [128, 129]. A
previous study indicated that the ability of DADS to block
the cell cycle was also associated with histone acetylation
[130]. Further research demonstrated that DADS induced an
increase in histone H3 and H4 acetylation in the CDKN1A
promoter, ultimately leading to an increase in CDKN1A
gene expression and p21WAF1 protein levels [131]. Moreover,
DADS resisted the activation of the G2/M gene damage
checkpoints by relying on Mec1 (ATR) and Tel1 (ATM) to
inhibit DNA repair, which could improve the efficacy of
DNA damage-based cancer therapies [132].

Some garlic extracts, including DADS, exert antimitotic
effects by impairing microtubules and hindering the as-
sembly of mitotic spindles. Aquilano et al. [133] reported the
obvious loss of the microtubule network, with an irregular
accumulation of soluble β-tubulin and reduction of the
cytoskeletal counterpart in neuroblastoma SH-SY5Y treated
with DADS. In addition, DADS-derived superoxide was
observed to actively participate in the oxidation of actin and
tubulin, which eventually led to the breaking of the mi-
crofilaments and microtubules.

3.7.3. Induction of Apoptosis and Autophagy. Inducing
apoptosis in cancer cells is the main anticancer mechanism
employed by most chemotherapeutic drugs [134]. DADS-
induced apoptosis was observed to be accompanied by an
increase in Ca2+ levels and a decrease in mitochondrial
membrane potential. Increased Ca2+ led to the activation of
caspase-3 and the release of cytochrome C from the mito-
chondria, resulting in proteolysis and apoptosis [135]. In
addition to caspase-3, caspase-9 and caspase-10 were also
activated by DADS [136]. Exposure to DADS increased the
expression of p53, p38, and p21; decreased the level of
antiapoptotic protein, Bcl-2; and upregulated the levels of
the proapoptotic proteins, Bax and Bad [127, 137–139].
Moreover, inhibition of histone deacetylation and the ERK
pathway and activation of the SAPK/JNK pathway were also
found to influence the proapoptotic effect of DADS in
human breast cancer [140]. Several studies have also revealed
that treatment with DADS could lead to an increase in ROS
levels, resulting in the apoptosis of human leukemia HL-60
cells [141, 142]. However, cells with an ROS buffer system,
such as adenocarcinoma gastric cells (rich in glutathione
peroxidase) or copper-overexpressing neuroblastoma cells,
were shown to be resistant to DADS treatment [143, 144]. One
animal experiment showed that pretreatment with 10μM
DADS resulted in an increase in the radiation sensitivity of
HeLa cells and significantly promoted radiation-induced ap-
optosis. Such findings indicated that DADS is a potential ra-
diosensitive agent for human cervical cancer [145].

In addition to inducing apoptosis, some chemothera-
peutic drugs induce autophagy, which is another cell death
pathway. Studies have reported that exposure to DADS
significantly increased the autophagic flux of RAW264.7
cells, and the effects of DADS on autophagy were likely the
result of inhibition of the phosphorylation of mTOR and
P70S6k/S6K1 [146]. DADS-induced autophagy increases the

death of tumor cells, including leukemia and osteosarcoma
cells, by inhibiting the PI3K/Akt/mTOR signaling
[147–149]. It has been suggested that histone deacetylase
(HDAC) inhibitors also play an antitumor role through
autophagy [150]; thus, the inhibitory effect of DADS on
HDAC activity may partially induce autophagy. However,
there is a paucity of research in the field of DADS-induced
autophagy, and more investigations are warranted.

3.7.4. Induction of Cell Differentiation. DADS-induced
differentiation of human leukemia HL-60 cells was found to
be related to the decrease in DJ-1 and calreticulin (CRT)
contents [151]. DJ-1 has been reported to play a role in cell
differentiation by acting as a cofactor-binding protein or
transcription factor [152]. DADS significantly decreased the
expression of cluster of differentiation 33 (CD33) and in-
creased the expression of CD11b by downregulating CRT,
ultimately inducing the differentiation of human leukemia
HL-60 cells [153]. Furthermore, the DADS-induced re-
duction of CRT could upregulate the mRNA expression of
CCAAT enhancer-binding protein-α, thereby affecting cell
differentiation [154]. Moreover, treatment with DADS was
found to increase the acetylation level of core nucleosome
histones (H3 and H4) and accelerate the differentiation of
human leukemia cells [155, 156] and liver cancer cells [157].

3.7.5. Effect on Epigenetics. /e blocking of normal histone
acetylation or abnormal histone acetylation is believed to be
the root cause of several cancers. DADS was found to en-
hance the acetylation of histones H3 andH4 in normal colon
cells both in vitro and in vivo [158]. Druesne et al. [159]
reported that treatment with DADS alone increased the
transient acetylation of histone H3K14 in human colon
tumor cells. However, unlike in normal colon cells, DADS
had no effect on histone H4 acetylation in colon tumor cells,
regardless of the cell culture conditions. Furthermore,
DADS induced an increase in histone acetylation of the
CDKN1A promoter, which in turn led to an increased level
of the p21WAF1 protein; this process is known to inhibit
tumor proliferation and induce G2/M phase arrest and
apoptosis [160]. Notably, these effects of DADS were only
observed at high concentrations. Further research is thus
needed to confirm whether the HDAC inhibitory effect of
DADS can result in primary anticancer effects when normal
human diet doses are administered.

3.8. Regulation of Metabolism

3.8.1. Regulation of Glycose Metabolism. Several in vivo
studies have shown a dose-dependent increase in blood
glucose concentration and free fatty acid levels in rats treated
with DADS. Such findings suggest that DADS affects glucose
metabolism [161]. However, another study reported that
garlic oil, rather than DADS, had beneficial effects on gly-
cemic control in streptozotocin-induced diabetic rats [162].
As a result, the specific effects of DADS on glucose meta-
bolism, under both healthy and diabetic conditions, need to
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be further elucidated. In addition, DADS was observed to
suppress glucose metabolism of breast cancer stem cells by
inhibiting the CD44/pyruvate kinaseM2/AMPKpathway [163].

3.8.2. Regulation of Lipid Metabolism. According to reports,
DADS may regulate lipid metabolism by: (a) regulating sterol
regulatory element-binding protein-1c, apolipoprotein A1,

CREB-H, and fibroblast growth factor 21; (b) preventing lip-
otoxicity by increasing peroxisome proliferator-activated re-
ceptor-α and inhibiting stearyl coenzyme A desaturase
enzyme-1; and (c) significantly inhibiting lipid peroxidation by
regulating malondialdehyde and superoxide dismutase
[164–166]. Additional studies have reported that the lipid
metabolism-regulating activity of DADS may have significant
hepatoprotective effects [3]. Additionally, DADS could inhibit
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the accumulation or activation of mesenteric adipose tissue
macrophages and the release of monocyte chemoattractant
protein-1, suppressing the inflammatory response induced by
obesity [167].

3.9. Other Effects. Oral administration of DADS increased
the activity of the natural antibody in broiler serum [168].
Moreover, DADS induced chromosome aberration and
sister chromatid exchange in the Chinese hamster ovary
[169]. DADS could also change iron homeostasis by regu-
lating the expression of ferritin and transferrin receptor
genes in hepatocytes in vitro and in vivo [170] (see Figure 2).

4. Conclusions and Prospects

DADS, a natural organic sulfur compound, is commonly
used as a food additive. Current research suggests that
DADS is a promising drug agent for the prevention and
treatment of several diseases. /is review sought to sys-
tematically identify the biological functions of DADS and
summarize the underlying molecular mechanisms employed
by this compound. /e biological functions of DADS can be
divided into two categories: the protective effects on normal
tissues and the inhibitory effect on disease status. /e anti-
inflammatory and antioxidant effects of DADS are the basis
for maintaining tissue homeostasis (such as neurovascular
protection and metabolic regulation) and fighting infections
(antibiosis). /ere are interlinks between the anti-inflam-
matory and antioxidant effects, with NF-κB and ROS sig-
naling playing key roles. DADS alters the biological
properties of cancer cells via specific intracellular and in-
tercellular mechanisms. As a result, DADS exerts significant
anticancer effects, such as inducing apoptosis, autophagy,
and differentiation. In addition, DADS can also improve
efficacy and reduce the negative effects of chemotherapy
drugs.

Anti-inflammatory and antioxidant signaling mediators,
such as NF-κB, TNF-α, ROS, Nrf2, AP-1, JNK, and STAT,
play important roles in the biological functions of DADS.
Apoptosis and autophagy-associated pathways, such as
PI3K, Akt, mTOR, MAPKs, Bcl-2, and Bax, also contribute
to the anticancer action of DADS. Notably, the signaling
pathways affected by DADS are similar between normal
tissue cells and cancer cells. However, different dosages and
methods of administration may produce different effects,
which requires more experiments to fully verify (see
Figure 3).

/ere are some clinical trials focusing on garlic and its
biological effects, including anticancer, anti-inflammatory,
antioxidant, and antiviral activities [64, 171–173]. /ese
clinical studies have shown that garlic can be used as an
adjunct in the management of several diseases, but with
limited effects. Further clinical trials on solitary compounds
are necessary to identify the specific active ingredients and
thus enhance their medicinal value. Although animal and in
vitro experiments have shown that DADS has comparable
biological activity with garlic, clinical trials of DADS have
not yet been conducted. /erefore, it is still unclear whether

DADS is an active ingredient in the use of garlic in humans
and how it exerts its effect. It should be noted that there are
some non-negligible issues that need to be solved before
conducting clinical trials of DADS. /e first is that DADS is
rapidly metabolized after being taken into the body and has
low bioavailability [6]./e second is the technical difficulties
of processing DADS, such as characterization, optimization,
and the production of suitable delivery systems [174, 175].
/e most important issue is the pharmacokinetic studies of
DADS, and its metabolites should be refined. Currently,
countries are probing different strategies to prevent and treat
COVID-19, which has had a negative impact on global
public health and economies. Readily available natural plant
products could be a promising starting point for the dis-
covery of new therapeutic drugs. Research on the biological
function of DADS may bring us new hope.
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[53] P. D. Maldonado, M. E. Chánez-Cárdenas, and J. Pedraza-
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