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Artificial neural networks (ANNs) are showing increasing promise as decision support
tools in medicine and particularly in neuroscience and neuroimaging. Recently, there has
been increasing work on using neural networks to classify individuals with concussion
using electroencephalography (EEG) data. However, to date the need for research grade
equipment has limited the applications to clinical environments. We recently developed
a deep learning long short-term memory (LSTM) based recurrent neural network to
classify concussion using raw, resting state data using 64 EEG channels and achieved
high accuracy in classifying concussion. Here, we report on our efforts to develop a
clinically practical system using a minimal subset of EEG sensors. EEG data from 23
athletes who had suffered a sport-related concussion and 35 non-concussed, control
athletes were used for this study. We tested and ranked each of the original 64 channels
based on its contribution toward the concussion classification performed by the original
LSTM network. The top scoring channels were used to train and test a network with
the same architecture as the previously trained network. We found that with only six of
the top scoring channels the classifier identified concussions with an accuracy of 94%.
These results show that it is possible to classify concussion using raw, resting state
data from a small number of EEG sensors, constituting a first step toward developing
portable, easy to use EEG systems that can be used in a clinical setting.

Keywords: concussion, mild traumatic brain injury, resting state EEG, adolescents, machine learning, deep
learning, LSTM, concussion classification
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INTRODUCTION

One of the most significant challenges in the diagnosis of
concussion (mild traumatic brain injury) is the lack of objective,
clinically accepted, brain-based approaches for determining
whether an individual has experienced a concussion. Currently,
the diagnosis of concussion relies on subjective reporting of
the signs and symptoms from individual patients. However, it
is becoming increasingly clear that symptoms do not directly
correlate to the underlying changes in brain structure and
function and that changes in the brain persist well beyond
symptomatic recovery (Manning et al., 2017; Churchill et al.,
2019). Importantly, individuals who self-report their first
concussion during childhood have a higher risk of sustaining
additional concussions throughout their lifetime (Schmidt et al.,
2018), and higher risk of medical impairments and altered
social functioning in adulthood (Sariaslan et al., 2016). Given
that the lack of, or delay in, concussion diagnosis is associated
with much slower recovery (Asken et al., 2018), there is an
urgent need for an objective, low cost, brain-based measure of
concussive brain injury.

There is extensive literature documenting changes in brain
functional activity that occur following concussion in both
resting state and task-based electroencephalography (EEG) (see
Conley et al., 2019 for review). Two of the main limitations
of EEG analysis are the time required and the need for
specialized expert knowledge to identify features in the EEG
signal. Recently, machine learning approaches such as support
vector machine (SVM), random forest (e.g., Cao and Slobounov,
2010; Munia et al., 2017; Vergara et al., 2017; Jacquin et al., 2018;
Wickramaratne et al., 2020) as well as deep learning, convolution
neural network (Boshra et al., 2019) have been used to classify
concussion using both resting state and task-based EEG signals
with varying degrees of success. The main issue with these
previous methods is that they all require significant preprocessing
of the time series. Typically, the acquired EEG data are filtered
and cleaned to remove these artifacts (c.f. Munia et al., 2017;
Hristopulos et al., 2019), with cleaning strategies in use ranging
from fully automated algorithms to mixed schemes where some
artifacts are removed via automated algorithms and others are
manually identified and removed.

We have recently developed and reported on ConcNet 2, a
deep learning long short-term memory (LSTM)-based recurrent
neural network that is able to distinguish between non-concussed
and acute post-concussed adolescent athletes using only short
(i.e., 90 s long) samples of raw, resting state data from 64 sensors,
distributed over the scalp as shown in Figure 1, as input. We
refer readers to Thanjavur et al. (2021) for details, including
the reasons for deliberately choosing to work with raw data. In
short, the latter strategy was adopted to circumvent concerns
about pre-processing (including possible signal distortions that
can arise as a result of re-referencing as well as filtering
and cleaning the data) and instead rely on the deep learning
network to discover the relevant aspects of the data while
ignoring redundant and/or immaterial information. By using
raw data, we also avoid having to grapple with the complex
problem of feature selection (Munson and Caruana, 2009;

Krawczuk and Łukaszuk, 2016; Neumann et al., 2016), which in
itself can be a source of bias (Sahiner et al., 2000; Smialowski
et al., 2009; Krawczuk and Łukaszuk, 2016). In addition, we avoid
confounding effects on potential feature values due to the EEG
signals’ strongly non-stationary character in both the temporal
and the spectral domains (Kaplan et al., 2005; Klonowski, 2009;
Cao and Slobounov, 2011). During rigorous testing, the LSTM-
based classifier (henceforth ConcNet 2) consistently identified
concussions with an accuracy of >90% and achieved an ensemble
median Area Under the Receiver Operating Characteristic Curve
(ROC/AUC) equal to 0.971 (Thanjavur et al., 2021). This is the
first instance of a high-performing classifier that relies only on
easy-to-acquire resting state, raw EEG data.

The ConcNet 2 classifier was a key first step toward the
development of an easy-to-use, objective, brain-based, automatic
classification of concussion at an individual level. An important
next step is to reduce the number of required EEG channels
while maintaining or even enhancing the performance of the
classifier to develop an EEG based system that is easier to use in
clinical settings. This is motivated by the fact that certain EEG
channels provide redundant information. Therefore, research
efforts are underway to determine the minimum number of
channels required in both resting state and task-based conditions.
Recently, Moctezuma and Molinas (2020) reported on a proof-of-
concept study showing that using a dataset of 64 channels from
resting state with eyes closed, they were able to obtain a true
acceptance rate of up to 0.997 using discrete wavelet transform
(DWT) based features with only three channels.

The goal of the present study is to describe the process of
selection and the performance of a minimal subset of the original
64 channel dataset (using the same participants as in Thanjavur
et al., 2021) that leads to the same level of accuracy in classifying
acute concussion as the entire 64 channel dataset.

MATERIALS AND METHODS

Participants
Fifty-eight male adolescent athletes volunteered for this study.
Of these, 23 individuals were athletes who had suffered a
sport-related concussion (mean = 13.4, SD = 2.5) and 35 were
non-concussed, control athletes (mean = 14.7, SD = 2.1). All
participants reported normal or corrected to normal vision.
Individuals with focal neurologic deficits, pathology and/or
those on prescription medications for neurological or psychiatric
conditions were excluded from this study. All participants who
had braces or permanent retainers were also excluded. The
study was approved by the University of British Columbia
Clinical Research Ethics Board (Approval number: H17-02973).
All participants provided assent and the adolescents’ parents gave
written informed consent for their children’s participation under
the approval of the Human Ethics Review Board of the University
of British Columbia in accordance with the Helsinki declaration.

Clinical Assessment
All concussed athletes had a clinical assessment by the team
physician or a physician with expertise in concussion within a
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FIGURE 1 | Locations of the EEG electrodes on the scalp. The locations of the six most important channels with respect to classification performance of the neural
network are marked by yellow squares.

week of injury, and they were found to meet the concussion
diagnostic criteria consistent with the Berlin consensus statement
(McCrory et al., 2017). The latter includes: (1) Documentation
of the date and time of the injury by the team coach. Here,
injury refers to either a direct blow to the head, face, or
neck, or a direct blow to the body that leads to an impulsive
force transmitted to the head, resulting in changes in one or
more of the following clinical domains: (a) physiological (e.g.,
neck pain, balance problems, headache, fatigue), (b) cognitive
(e.g., difficulty with attention, feeling in a “fog”), (c) emotional
(e.g., irritability, sadness, depression) and (d) behavioral (i.e.,
sleep/wake disturbances). (2) An assessment at the time of
diagnosis of the injured athlete using either the Child Sports
Concussion Assessment Tool 3 (Child SCAT3), if the injured
athlete was younger than 13 years of age (“Child SCAT3.” 2013),
or using the Sports Concussion Assessment Tool-3 (SCAT-3), if
13 years or older (Chin et al., 2016). Both SCAT-3 and Child
SCAT-3 are standardized concussion and concussion symptom
assessment tools, which combine self-reporting of the number
of symptoms experienced and their severity with cognitive,

behavioral, physiological and emotional assessments based on
a combination of clinically accepted objective diagnostic tools
and self-reporting of symptoms. Finally, the Berlin consensus
statement requires a clinical examination as well as a review of
all the available information, by an experienced physician.

Data Acquisition
Five minutes of resting state EEG data were collected from
each participant under eyes closed condition using a 64-channel
HydroCel Geodesic Sensor Net (EGI, Eugene, OR) connected to a
Net Amps 300 high-impedance amplifier with a 0.1 Hz high-pass
analog (i.e., hardware) filter. The EGI system uses the vertex (Cz)
as physical reference and the signals were recorded at a sampling
rate of 250 Hz. Data acquisition was started only after all the
scalp electrode impedances were confirmed to be below 50k, in
keeping with the recommendations for the EGI Net Amps 300
high-impedance amplifier (Ferree et al., 2001).

EEG data were acquired from the concussed athletes within a
month of injury. We chose the time window of 1 month based on
the 2017 Berlin Consensus Statement’s expected time for clinical
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recovery after injury in children and adolescents (McCrory et al.,
2017). All of the injured participants were re-assessed using
the SCAT3/ChildSCAT3 at the time of data collection, and we
acquired data only from those who were symptomatic. The data
collection for both the control and concussed groups occurred
over a span of 2 years. The recruitment for the study was
ongoing during this time frame and participants were invited
to participate anytime during this period as long as they met
the inclusion/exclusion criteria. EEG data for all participants
were collected in the same room/lab at the University of British
Columbia using the same equipment and set-up.

Electroencephalography Data
Processing
To eliminate any transients at the start and the end of a data
collection session, 1,000 data points were removed from the
beginning and the end of each time series. This corresponds
to removing data with a total duration of 8 s. The data was
neither re-referenced to a different montage nor further filtered
or processed to remove artifacts due to line noise, eye blinks and
motion, and electromyogram (EMG) contamination. The resting
state EEG data were acquired in binary simple (.RAW) format
and converted to Matlab (.mat) format using EEGLab (Delorme
and Makeig, 2004) for further processing and analysis. Eight 90 s
long sets of synchronous segments were extracted from each
of the 64-channel time series comprising each individual’s raw
resting state EEG dataset.

Analysis Pipeline
Having successfully developed a high performing concussion
classifier using time series data from 64 EEG channels, our
present concern is to try to establish whether we can do the
same, i.e., develop a concussion classifier, which uses only a small
subset of channels, with comparable classification performance
as we have achieved with full 64 channels. In general, this is
a combinatorial problem, and such problems can always be
solved by exploring all possible channel combinations. However,
given that we are starting with 64 channels, the associated
computational cost is prohibitively expensive. As a workaround,
we have opted to use, for exploratory purposes, an algorithm
that examines the impact of each channel independently of the
others. Specifically, we started with our 64-channel classifier
(ConcNet 2). We explored the classification efficacy of using
one channel only each time. We built up an accuracy score
for each of the 64 channels taken one-by-one. We then rank
ordered the channels and accepted all channels with accuracy
above a selected threshold. This process identified six top-
scoring channels.

There is an important caveat to the above approach to take
note of. While it is simple, straightforward and intuitive, it
does not guarantee that the optimal solution is achieved since
it does not account for potential interactions between channels.
However, for our purposes it is not necessary to obtain an
“optimal solution.” It suffices to determine a reduced subset of
channels that can give comparable classification performance as
ConcNet 2.

The analysis was conducted in two stages as follows: (i) In
stage 1, each of the 64 channels was tested and ranked based on
its contribution toward the concussion classification performed
by ConcNet 2. (ii) In stage 2, the top scoring channels were used
to train and test a new network, henceforth ConcNet 3, with
the same RNN architecture as ConcNet 2. However, ConcNet 3’s
input layer was modified to accept 6-channel data (instead of 64
channels). Consequently, three operational hyperparameters had
to be re-tuned to cope with the 6-channel data. The performance
of this network was then compared with the performance of
ConcNet 2 using Monte Carlo cross validation (MCCV) tests.

The network design, training, validation and testing
procedures closely follow those used for ConcNet 2. A detailed
description of the steps used for the design, training and
evaluation of ConcNet 2 is found in our previous report
(Thanjavur et al., 2021), which will henceforth be referred to as
Paper I. We have illustrated the procedural steps used in Stage 1
in the flowchart in Figure 2, and those used for the MCCV tests
in the flowchart in Figure 3, with full descriptions of these steps
in the following subsections.

Stage 1: Identification of Channels with Highest Impact on
Classification.

For the concussion classification, our existing neural network,
ConcNet 2 is trained on raw, 64-channel EEG data. Our working
hypothesis is that the information content in all the channels
is not unique, that some EEG channels provide redundant
information. Our aim is to assess and rank the channels by their
impact on the classification performance of the network. The
procedure we follow in order to accomplish this is detailed in a
flowchart shown in Figure 2 and described below.

The acquired data consisted of 300 s long, raw 64-channel EEG
time series data from 23 concussed and 35 control participants.
Four seconds of data were removed from the start and end of each
participant’s 64 EEG time series to remove transient noise signals
as the participant settled down and completed the EEG recording.
The remaining 292 s-long trimmed time series of each participant
was then divided into 8 segments, each 90 s long. Paper I provides
the rationale behind this data augmentation, as well as the details
of the method used to segment the data. Briefly, of the 8 segments,
3 segments were sequential, beginning at 1, 91, and 181 s and each
of length 90 s. The remaining five had random start times but
each had a length of 90 s. Therefore, each participant’s data set
provided 8 segments of data, which could be used for training,
validation and testing the network. We wish to emphasize that all
8 segments from each participant went into either the training or
the validation or the testing dataset. We thus ensured that the data
used to validate or test the network had never been seen during
training, and vice versa.

Next, we split our data into test and training/validation data
sets as follows: All eight data segments from one concussed
participant, and eight data segments from one control participant
were set aside to generate the test set, for a total of 16 segments.
This control-concussed pair was randomly selected from the
subset of participants, who had been consistently correctly
classified during the Monte Carlo cross validation (MCCV)
testing of ConcNet 2 reported in our Paper I (c.f. Figure 4 and
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FIGURE 2 | Flowchart illustrating the steps followed in Stage I for the
identification of the channels which have the highest impact on the
classification performance of ConcNet 2. The flowchart begins with the input
dataset, followed by the trimming and segmentation of each participant’s

(Continued)

FIGURE 2 | data, and then splitting into training, validation and test datasets.
ConcNet 2 was trained and validated using the standard procedure of
mini-batch SGD. For Stage I, two test sets are created in parallel as shown,
one to benchmark ConcNet 2’s performance against earlier results described
in Paper I, and the other for ranking the channels by their impact on
classification, as explained in the text. As indicated by the asterisks on the
outputs of the conditional box for the test prediction, each channel was
awarded a score of 1 if and only if the median prediction score ≥ 0.9, and the
2.5th percentile ≥ 0.85, which demanded a high degree of confidence in
making a correct classification for all 16 test segments in this test. Finally, this
test procedure, and the additional complementary test with three
concussed-control pairs described in the text, were each repeated nine times,
and the channels ranked based on their total score ranging from 0 to 18, as
explained in “Results” section. The six top scoring channels from this overall
ranking were taken to be those with the highest impact on the classification
performance, and therefore were then used for Stage II of our work.

accompanying text for details). The remainder of the data were
split in a 90:10 ratio between the training and validation datasets
as described in the flowchart. All eight data segments from 22
concussed and 34 control participants were used for creating the
data inputs to the network during training and validation for a
total of 448 segments. ConcNet 2 was then trained using these
training and validation datasets.

During this Stage 1 training and validation phase, the
hyperparameters of ConcNet 2 were left unaltered from the values
reported in Paper I. For training, we used the standard, mini-
batch, stochastic gradient descent (SGD) method. For a detailed
description of the procedure, we refer interested readers to Paper
I. Here we provide a brief overview: The available 400 segments of
training data were split into 20 mini-batches each of 20 segments.
For each segment in a mini-batch, the network made a prediction
of the class (either concussed or control) based on the state of
its internal parameters, namely the weights and biases of the
nodes in the various layers of the network. Since the correct
class of each segment in the training set is known, an error
function was computed as the average difference between the
predicted and correct classes for the mini-batch. The gradient
of this error function with respect to each of the network’s
internal parameters was then used to update the value of the
parameter. We used Adam, a well-known optimization scheme
often used in machine learning, to effect this. Once updated,
the network was required to predict the classes of the validation
set, the results of which was used to compute the validation
error that then was used to monitor the progress of the training.
This process was repeated for all 20 mini-batches to complete
an epoch of training, at the end of which the training dataset
was shuffled, split into mini-batches, and the whole sequence
repeated. The training continued for a user-chosen number of
epochs, which was 7 in our case. If at the end of the seven
epochs, both the training and validation errors were below a user-
chosen threshold, 1E-3 in our case, the network was accepted as
being fully trained.

As for the test data pair, we proceeded in two parallel streams,
as illustrated in the flowchart. For Test Data #1, we made a copy
of each of the sixteen segments with the full 64-channel data
from the one concussed-control pair. This test sample provided
a sanity check of the training by ensuring ConcNet 2 predicted
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FIGURE 3 | Flowchart illustrating the procedure followed for the MCCV tests
in Stage II to compare the performance of ConcNet 3 using only 6-channel
data against that of ConcNet 2, which used 64-channel data. As shown, a
new dataset was created which contained data for only the six top scoring
channels identified in Stage I for all the participants (23 concussed and 35
controls). These data were trimmed and segmented into eight segments for
each participant. The dataset was then split in a 80:10:10 ratio into training,

(Continued)

FIGURE 3 | validation and test datasets, taking care to ensure the training
and validation datasets were balanced between the two classes. ConcNet 3
was trained and validated using standard mini-batch SGD, after re-tuning
three of its hyperparameters, the dropout fraction, learning rate and total
number of training epochs to reduce overfitting on the 6-channel data. The
predictions made by the trained ConcNet 3 for the 16 test segments were
compared with the known class labels of each segment to obtain the
accuracy and other performance metrics for each MCCV cycle. By repeating
the cycle 100 times, the median and the quartiles of the accuracy and various
other performance metrics reported in Table 2 were obtained, and compared
with those of ConcNet 2 obtained from the MCCV tests reported in Paper I,
and reproduced in Table 3 for ease of reference.

the same score, p(i) as we had gotten in our previous MCCV
tests. For Test Data #2, we made 64 replicates of each of the
eight data segments for each test participant (i.e., one concussed
and one control). In each replicate, we kept the EEG data in one
of the channels (taken in turn) unchanged and set the signal
in the remaining channels to zero. Each test sample therefore
mimicked raw EEG data from a single sensor. This procedure
of test sample generation was done for all eight data segments
of each participant to yield a total of 2 × 64 × 8 = 1,024 test
samples (i.e., 512 concussed and 512 control test samples). It is
important to emphasize that these test data were kept separate
from the training and validation data for ConcNet 2. This was to
ensure that the network had no prior knowledge of any of these
test data samples.

The relative contribution of each of the 64 channels toward
the classification performance of the ConcNet 2 classifier was
ranked using the generated test dataset. For each of the 1,024
data segments in the Test Dataset #2, ConcNet 2 produced a
classification score, as well as the predicted class, n(i,j). Since the
true class of each data segment, p(i), in the test set is known, it
is possible to assess if using information from a single channel
is adequate to correctly predict the class for both the concussed
and control segments. In order to assess the information content
of the channels with respect to classification, each channel was
assigned a score of one if all sixteen segments (eight from
the control and eight from the concussed participant) were
correctly classified by ConcNet 2 using the specific channel as
input. Correct classification of all sixteen segments was awarded
if and only if the median classification score for the sixteen
tests was ≥ 0.9, and the 25th percentile was >0.85. This is a
particularly stringent criterion since it only assigns a score of
one to channels that accurately predict all sixteen data segments
used in the test.

This procedure of training ConcNet 2 and then testing it on
1,024 test samples was repeated nine times for nine different pairs
of control and concussed participants. Since the testing procedure
was repeated with nine different control-concussed participant
pairs, each channel received a total score between 0 and 9.

We also pursued an additional complementary testing strategy
to explore the behavior of ConcNet 2, if smaller training and
validation sets were used. This scheme involved an identical
methodology outlined in the flowchart in Figure 2, except that
the test set comprised three pairs of control and concussed
participants instead of one pair. The remaining data from 20
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FIGURE 4 | Classification scores of ConcNet 2 for a pair of one control and one concussed participant based on a total of sixteen data segments.

concussed and 32 control participants were used to train and
validate ConcNet 2, and the trained network was then used
to classify the data segments of the three control-concussed
participant pairs. In this test, each channel received a score
of one if ConcNet 2 correctly classified all 16 segments from
one control-concussed participant pair, and this was repeated
for the three pairs (the pairing here was random). Hence,
each channel received a score between 0 and 3 from the three
control-concussed pairs. This entire procedure was repeated
three times, for three different sets of three concussed-control
pairs of participants, so that the overall score for each channel
ranged between 0 and 9.

In order to rank-order the channels based on their impact
on the classification performance of ConcNet 2, we added the
scores from the two tests described above so that each channel’s
final score ranged from 0 to 18. We then rank-ordered the
channels according to this final score and chose the six top
scoring channels for the subsequent tests described under Stage
2. Details of the scoring scheme, and the scores obtained by
the top scoring six channels are presented and described in the
“Results” section.

It should be noted that for all test data sets and both testing
schemes, the ConcNet 2 network correctly predicted the class
labels for both the control and concussed participants when it was
presented with the information in all 64 channels. This test served
as a benchmark to ensure that the classification performance of
ConcNet 2 was maintained.

In addition to testing the performance of ConcNet 2 classifier
with single-channel inputs, we also analyzed the behavior of the
network’s internal parameters (i.e., the weights and biases of the
bilinear LSTM units) as well as the output from each of the
bilinear LSTM units. The objective of this effort was to identify
potential correlations between the values of these parameters and
the performance of the network. However, so far no meaningful
correlations have been identified.

Stage 2: Investigation of Classification Performance based on a
Subset of Top-Ranking Channels.

Having identified the top scoring channels based on their
contributions to the classification performance of ConcNet 2, we
designed a process for evaluating the performance of a network,
using raw data from 6 EEG channels for concussion classification.

We created a new dataset that consisted of only the six top-
scoring channels extracted from the original 64-channel data.
This was done for all 8 data segments for all the 23 concussed
and 35 control participants.

The architecture of the input layer of ConcNet 2 was modified
to accept six-channel data as input, instead of the full 64 channels.
Henceforth, we refer to this modified network as ConcNet 3.
Given the reduced information available to train the network, it
became evident during training and validation that ConcNet 3
was overfitting: During the training phase, the validation error
diverged increasingly from the training error, which is a clear
sign of overfitting in neural networks. This is a common problem
when a sparse dataset is used to train a complex network. In
order to control the fitting behavior of the network, we tuned
three hyperparameters commonly used to prevent overfitting:
We increased dropout fraction to 0.35 from 0.3 for ConcNet 2;
the initial learning rate was increased from 0.0005 to 0.0008;
and the number of training epochs was increased from 7 to 10.
Dropout is a commonly used regularization scheme to prevent
overfitting by discarding a user-chosen fraction, e.g., 0.35 of the
output from the network layer to which it is applied. This has
the effect of reducing the complexity of the network. However,
as a by-product, the training rate slowed down. To compensate
for this, we increased the learning rate. The latter governs the
size of the updates applied to the internal parameters by Adam
during the back propagation in the SGD at the end of each mini-
batch. Additionally, we also increased the number of training
epochs in order to provide more time for the training to converge
to a global minimum in the training error. We refer readers
interested in additional details and information about these
hyperparameters to Paper I.

The flowchart in Figure 3 illustrates the processing steps
comprising our present Stage 2 analysis. Using the 6-channel
dataset as input to the re-tuned ConcNet 3, we performed
Monte Carlo cross validation (MCCV) tests to assess ConcNet
3’s performance. As shown on the flowchart, these data were
trimmed and segmented into 8 segments, each 90 s long. For
the MCCV, we generated an ensemble of 100 clones of ConcNet
3 networks, each trained validated, and tested with different,
randomly selected, training, validation and test datasets, split in
the ratio 80:10:10. It should be emphasized that the test dataset
was kept completely separate and hidden from the network
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during training, and used only during testing. Also, the numbers
of concussed and control participants in the training dataset were
balanced so that the network was not biased against either class.
We also decided to retain a validation dataset to ensure that the
training proceeded properly with the re-tuned hyperparameters,
as explained above.

Each ConcNet 3 network was trained using the mini-batch
SGD method, as described in Stage I of this work. For creating
the test dataset, we selected one random segment from each of the
2 concussed and 14 control participants set aside for testing. For
each of these 16 test segments, the trained ConcNet 3 predicted
a class, n(i,j). Since the correct class of each segment, q(i) was
known, comparing the correct and the predicted classes provided
a measure of the accuracy and other statistical performance
metrics for ConcNet 3 for each MCCV cycle. Full details of
the MCCV methodology used is described in detail in Paper
I. The overall statistical performance measures extracted from
the ensemble of MCCV tests are described in “Results” section.
These statistical measures form the basis for the performance
comparison of ConcNet 3, which uses only 6-channel data, with
ConcNet 2 which uses 64-channel data.

RESULTS

SCAT Results
In Table 1 we present the demographic information about the
participants in this study. All of the concussed participants met
the Berlin criteria and exhibited from 4 to 22 SCAT3 symptoms,
at the time of testing. The symptoms most frequently reported
included irritability, sensitivity to light, dizziness, fatigue, “don’t
feel right,” and difficulty concentrating/remembering.

Stage 1: Identification of Channels with Highest Impact on
Classification.

This section presents our results regarding the relative
importance of each of the 64 channels of the raw EEG signal
in the classification performance of the bilinear LSTM neural
network. Figure 5 shows typical classification scores for one of
the nine control-concussed participant pairs, as described in the
“Materials and Methods” section (Stage 1). In each of these tests
the trained ConcNet 2 network classified all eight data segments
of a pair of concussed and control participants. For each test
sample (corresponding to one of the eight segments from each

TABLE 1 | Demographic information for the participants in the control and
concussed groups.

Demographic information Controls Concussed

Age (Years, SD) 14.7 (2.1) 13.4 (2.6)

Gender 100% male 100% male

Time since concussion Between 1 week and 1 month

SCAT (# of symptoms, SD) 8.5 (6.0)

SCAT (symptom severity, SD) 21.0 (21.1)

CHILD scat (# of symptoms, SD) 13.0 (5.4)

CHILD scat (symptom severity, SD) 23.2 (13.6)

participant), the network outputs a concussed score, PmTBI in the
range 0–1 and the complementary control score, PHlth = 1-PmTBI.
For classification purposes, we use a discrimination threshold
equal to 0.5. Hence, if the predicted score, PmTBI ≥ 0.5, the
sample is classified as concussed. Similarly, a sample is classified
as control if PHlth is greater than 0.5. The top panel of Figure 5
shows the output scores (PmTBI vertical axis) of ConcNet 2
obtained by using each of the 64 channels (marked along the
horizontal axis) for the samples drawn from the concussed
participant. Channel 0 represents the benchmark case which
includes all 64 channels in order to verify the expected correct
classification of ConcNet 2 in this case. Since each concussed
participant contributes eight data segments, we obtained the
median and the 2.5th and 97.5th percentiles of the output scores.
Channels for which the median value exceeded 0.9, and the 2.5th
percentile 0.85, are marked with a green circle in the plot. By
selecting channels with high median values and low scatter (as
indicated by a relatively high value of the lower percentile), we
identify channels with high information content with respect to
classification. On the other hand, if only the median value exceeds
0.5 but the 2.5th percentile does not exceed 0.85, the channel is
shown with a blue marker to indicate that this channel provided
the correct prediction at least half of the times. If, however, the
median fell below the threshold of 0.5, the channel is shown with
a red marker to flag an incorrect prediction at least half of the
time. The bottom panel presents the same information for data
segments drawn from the control participant. Hence, in this case
the output scores on the vertical axis correspond to PHlth.

For the test results represented in Figure 5, 35 of the 64
channels fell in the high scoring category (green points), which
marks their ability to correctly predict the concussed sample with
a high degree of confidence. Similarly, 29 channels fell in the
high scoring category for the control case. When the concussed
and control scores were combined, 20 channels emerged in the
high scoring category. These 20 channels were assigned a score of
one for this test, and the remaining channels were given a score
of 0. Figure 4 shows the combined classification test scores for
the control and the concussed pair, whose individual scores are
shown in Figure 5. Notice that the median and the error bars in
this plot are based on sixteen segments (eight from the control
and eight from the concussed individual); this is the reason that
the error bars are wider than those shown in Figure 5.

The assignment of scores to channels was repeated for all
eighteen test data sets described in “Materials and Methods”
section. Channels which scored 10 or higher were selected as
the top scorers for further investigation in Stage 2. The six top-
scoring channels were those numbered 1, 8, 32, 39, 43, and 54,
with overall scores, 10, 10, 16, 14, 16, and 10, respectively. Data
from these six channels were extracted to form a modified dataset,
which was used for Monte Carlo cross validation studies in Stage
2. The schematic in Figure 1 shows the locations of the six
top-scoring channels (marked by yellow squares).

Stage 2: Investigation of Classification Performance based on a
Subset of Top-Ranking Channels using ConcNet 3.

The MCCV test results for ConcNet 3 based on an ensemble
of 100 cross validation experiments using as input the six top
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scoring channels are shown in Figure 6. Each data point in the
upper panel represents one of the 23 concussed participants in
our dataset, and the data points in the lower panel correspond

to the available 35 control participants. The random training—
validation—test split used in MCCV means that in each cross
validation experiment, any concussed and control participants

FIGURE 5 | Representative example of ConcNet 2 test output scores (circle markers), PHlth and PMtbi, respectively, for one control (bottom) and one concussed (top)
participants. The horizontal axis marks the channel number used as input, and the vertical axes correspond to test output scores in the range [0, 1]. The error bars
are based on the results of eight data segments per participant, and the circle marker corresponds to the median of these values. Green markers represent channels
with medians above 0.9 and 2.5th percentile greater than 0.85. Blue markers correspond to channels with median greater than 0.5 but lower percentiles below 0.85,
while red markers correspond to channels with medians less than 0.5 (i.e., misclassifications).

FIGURE 6 | ConcNet 3 MCCV classification test output scores (circle markers), i.e., PHlth and PmTBI, respectively, for control (bottom) and concussed (top)
participants. The horizontal axis marks the different participants in each group, and the vertical axes correspond to test output scores in the range [0, 1]. The error
bars are based on the classification results of 100 Monte Carlo cross validation experiments. Blue markers correspond to participants who were correctly classified
at least 50% of the time, while red markers correspond to misclassified participants (median classification score less than 0.5).
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FIGURE 7 | ConcNet 2 MCCV classification test output scores (circle markers), i.e., PHlth and PmTBI, respectively, for control (bottom) and concussed (top)
participants. These results are based on information from all 64 EEG channels. The horizontal axis marks the different participants in each group, and the vertical
axes correspond to test output scores in the range [0, 1]. The error bars are based on the classification results of 100 Monte Carlo cross validation experiments. Blue
markers correspond to participants who were correctly classified at least 50% of the time, while red markers correspond to misclassified participants (median
classification score less than 0.5).

may be included in the test set. The concussed or the control
score assigned by the network each time a data segment from
the specific participant is tested is saved. Since each sample
is included in the test set several times during the 100 cross
validation experiments, the medians as well as the 25th and
75th quartiles of the scores can be calculated from the Monte
Carlo ensemble. The blue points in the upper panel of Figure 5
correspond to concussed participants who were correctly
classified (True Positives, TP) at least 50% of the time. The high
median values and small interquartile range of these participants
indicate a high degree of confidence in their classifications
by the ensemble of networks. There is only one participant,
shown by the red circle, which was consistently misclassified
(False Negative, FN), while the score of one participant exhibits
a large scatter. The lower panel shows the ensemble-based
classification scores for the 35 control participants. Two of them
were consistently misclassified (False Positives, FP), leaving 33
participants in the True Negative (TN) category.

For the purpose of benchmark comparison, Figure 7 shows
the performance of ConcNet 2 in a similar MCCV test, with
the network using the same architecture and hyperparameters
as described in Paper I. The input data for ConcNet 2 are the
original 64-channel, raw EEG data. In this case, the upper panel
(representing the concussed participants), shows three FN and
two participants with significant scatter, while the remaining 18
samples fall in the TP category. In the case of control participants,
shown in the lower panel, there are three FP and two samples with
considerable scatter, while the remaining 30 samples are all TN
with small scatter.

Based on the True Positive and Negative rates, as well as the
False Positive and Negative statistics obtained from the MCCV
tests, we computed the standard performance metrics for both
networks (see Paper I for the definitions of these metrics). The
median and the upper and lower quartiles of these performance
metrics are given in Tables 2, 3 for ConcNet 3 and ConcNet 2,
respectively. The accuracy of ConcNet 3 is 94.4% (with upper
and lower quartiles of 88.9 and 97.2%) which are comparable to
those of ConcNet 2. The recall of both networks is high, justifying
that both networks perform equally well in identifying concussed
cases. The presence of the misclassified control participants is
indicated by the lower precision for both networks. The false
positive and negative rates are low for both networks.

Further, Figures 8, 9 compare the performance of ConcNet
3 and ConcNet 2 by means of bar plots, which summarize
the results of the MCCV tests for the control and concussed

TABLE 2 | Performance metrics computed from the results of the MCCV tests in
Stage 2 for the 6-channel data.

Metric Q2 Q1 Q3 Metric Q2 Q1 Q3

Accuracy 0.944 0.889 0.972 Area under
curve (AUC)

0.971 0.964 0.978

Recall (TPR) 1.0 1.0 1.0 Informedness 0.933 0.867 0.967

Precision (PPV) 0.75 0.6 1.0 Markedness 0.938 0.882 0.969

Specificity (TNR) 0.933 0.933 1.0 Miss rate (FNR) 0.0 0.0 0.0

False discovery
rate (FDR)

0.062 0.0 0.118 False positive
rate (FPR)

0.067 0.0 0.067
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TABLE 3 | Comparative performance metrics for ConcNet 2 computed
from the MCCV tests.

Metric Q2 Q1 Q3 Metric Q2 Q1 Q3

Accuracy 0.889 0.833 0.944 Area under
curve (AUC)

0.961 0.952 0.969

Recall (TPR) 1.0 0.667 1.0 Informedness 0.867 0.6 0.933

Precision (PPV) 0.667 0.5 0.75 Markedness 0.882 0.646 0.938

Specificity (TNR) 0.933 0.867 0.933 Miss rate (FNR) 0.0 0.0 0.333

False discovery
rate (FDR)

0.091 0.082 0.187 False positive
rate (FPR)

0.067 0.067 0.133

participants. Again, the performance of the two classifiers is quite
similar, with ConcNet 3 even achieving lower misclassification
rates than ConcNet 2.

A different way of assessing the performance of the two
networks is by means of the Receiver Operating Characteristic
(ROC) curves, shown in Figure 10 (ConcNet 3) and Figure 11
(ConcNet 2). In ROC curves the true positive rate (TPR) of a
binary classifier is plotted against the False Positive Rate (FPR)
for different values of the threshold that discriminates between
concussed and control samples. Thus, ROC curves portray the
classification ability of binary classifiers for different thresholds.
A perfect classifier corresponds to the point with TPR = 1
and FPR = 0 (in the upper left corner of the ROC plot),
while a random classifier would lie along the diagonal line of

no-discrimination defined by the equation TPR = FPR. The
comparison of the ROC curves in Figures 10, 11 show that both
networks perform well.

ConcNet 2 and ConcNet 3 perform significantly better than a
random classifier, as evidenced by the fact that all the ROC curves
(obtained from the MCCV ensemble) concentrate above the no-
discrimination line and cluster around the upper left corner in
ROC space. In fact, the ROC curves obtained by ConcNet 3 rise
more sharply toward the top of the ROC space, indicating better
classification performance. A scalar measure that summarizes
the information of the ROC curve is the Area Under the Curve
(AUC). A classifier with no better accuracy than chance would be
expected to have an AUC of 0.5, while an AUC of 1 corresponds
to a classifier with perfect accuracy. The median AUC score of
ConcNet 3 was 0.971 (with lower and upper quartiles 0.964 and
0.978), while the corresponding values for ConcNet 2 were 0.961,
quartiles 0.952 and 0.969.

DISCUSSION

We have recently shown that a deep learning LSTM-based
recurrent neural network was able to distinguish between non-
concussed and acute post-concussed adolescent athletes using
only 90 s long samples of raw, resting state, EEG data using 64
channel data with an accuracy of >90% (Thanjavur et al., 2021).

FIGURE 8 | A bar plot representation of the Monte Carlo cross validation test results obtained by means of the ConcNet 3 ensemble of networks (using the six
top-scoring channels as input) for the concussed (top) and control (bottom) participants. The blue and red regions in each column illustrate the relative fractions of
times that a participant was properly or wrongly classified by the MCCV ensemble. This figure is complementary to Figure 5 which shows the ConcNet 3 median and
quartile scores per participant. Two control participants and one concussed participant tended to be systematically misclassified by the networks in the ensemble.
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FIGURE 9 | A bar plot representation of the Monte Carlo cross validation test results obtained by means of the ConcNet 2 ensemble of networks (using all 64
channels as input) for the concussed (top) and control (bottom) participants. The blue and red regions in each column illustrate the relative fractions of times that a
participant was properly or wrongly classified by the MCCV ensemble. This figure is complementary to Figure 4 which shows the ConcNet 2 median and quartile
scores per participant. Three control and two concussed participants were systematically misclassified by the networks in the ensemble.

Here, we present novel results showing that a minimal subset of
6 channels (from the original 64 channel dataset) can achieve
similar results for concussion classification to identify post-
concussed individuals within 1 month of injury. This is the first
proof of concept showing that a deep learning network can be
trained to recognize individuals with concussion using only 6
channels associated with the resting state condition.

The key question that we address in this paper is whether
the information from a reduced set of channels is sufficient for
the neural network to correctly classify concussion. The most
thorough way of performing this analysis would be to consider
as input to the neural network subsets of M channels, where M
is an integer between 1 and 64, and to rank the performance of
the network for each input. We would then need to investigate
all the possible combinations involving M channels, i.e., C (N,
M) = N!/M! (N-M)!, for all M = 1, 2, . . ., 64. This implies a
very large number of possible configurations for values of M
that are not close to either 1 or 64. In order to circumvent this
combinatorics dimensionality curse we opted to examine the
impact of each channel independently of the others. Specifically,
we started with our previous 64-channel classifier (ConcNet 2),
and we explored the classification performance based on a single
channel at a time, calculating an accuracy score for each of
the 64 channels taken one-by-one. We then rank-ordered the
channels and retained all channels with accuracy above a selected
threshold. This process identified six top-scoring channels.
As stated in “Materials and Methods” section, this approach

does not account for potential interactions between channels.
However, for our purposes an “optimal solution” is not necessary.
Our objective was simply to determine a reduced subset of
channels that would give comparable classification performance
as ConcNet 2. For a perspective on the computational gains
afforded by the one-channel-at-a-time strategy, consider that
testing all possible combinations of six out of 64 channels would
require testing more than 74 million configurations.

A key finding of this study is that the top channels picked one
at a time, were subsequently used successfully by the network
to distinguish between the two groups and turned out to have
functional significance. The 6 channels (i.e., channel #s: 1, 8,
32, 39, 43, and 54) correspond to three sensors in the right
frontal regions: (R) anterior-frontal, (R) mid-frontal, (R) central-
frontal, and three in the posterior regions: (L) occipital, (R)
occipital, and (R) parieto-occipital. An intriguing question is
why these particular sensors emerged as the top ranked and
what is their significance in relation to known pathophysiology
of concussion. While it is well established that the location of
EEG sensors does not have a 1:1 correspondence with underlying
neuroanatomy (Schoffelen and Gross, 2009), we consider the
relevance of these channels broadly in relation to findings from
the concussion literature.

Diffusion tensor imaging (DTI) shows that the stretching
and tearing of the brain tissue, caused by the acceleration and
deceleration forces acting upon the head during concussive
impact, result in a diffuse disconnection pattern that affects
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FIGURE 10 | Receiver operating characteristic (ROC) curves for the 100 ConcNet 3 networks used in MCCV. The gray curves show the results for each of the 100
networks and the blue curve shows the median. The ensemble median Area Under the Curve (AUC) is 0.971 (the 25% and the 75% percentile are 0.964 and 0.978,
respectively).

the white matter architecture of the brain. Several white matter
tracks are typically reported in studies involving child and youth
concussions including the corona radiata, the genu of the corpus
callosum, the fornix and the cingulum, the corticospinal tract, the
internal capsule, and the superior longitudinal fasciculus (Borich
et al., 2013; Yallampalli et al., 2013; Virji-Babul et al., 2014; Yuan
et al., 2015; Manning et al., 2017; Murdaugh et al., 2018).

Damage to such white matter pathways and traumatic
axonal injuries disrupts information flow across brain areas
(Caeyenberghs et al., 2017) and frontal regions of the brain
are particularly affected in children and youth. Using resting
state EEG, we showed significant increases in the functional
connectivity in areas corresponding to the right inferior frontal
gyrus and the right dorsolateral prefrontal cortex (Virji-Babul
et al., 2014) in adolescents with concussion. Using fMRI we

noted increased functional connectivity primarily concentrated
in the right frontal region within the executive function network
(Borich et al., 2015). Similarly, Newsome et al. (2016) found
that asymptomatic adolescent athletes demonstrated increased
connectivity (relative to a cohort of high school athletes with
orthopedic injuries) between the posterior cingulate cortex and
the ventral lateral prefrontal cortex.

More recently, we studied changes in effective connectivity
(information flow between brain regions) and found that
adolescents with subacute concussion show distinct changes
in the pattern of information flow within the frontal regions
during resting state (Hristopulos et al., 2019). We observed
strong information flow between the fronto-polar midline (FpM)
and the mid-frontal region in the concussed group that were
not present in the controls. In addition, there were strong
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FIGURE 11 | Receiver operating characteristic (ROC) curves for the 100 ConcNet 2 networks used in MCCV. The gray curves show the results for each of the 100
networks and the blue curve shows the median. The ensemble median Area Under the Curve (AUC) is 0.961 (the 25% and the 75% percentile are 0.952 and 0.969,
respectively).

bidirectional connections in information flow between the FpM
and right frontal regions (FR) while the controls showed
lateralized information flow in the left frontal regions of the brain.
These changes suggest a “re-routing” of information flow as a
function of brain injury and highlight that increased connectivity
in the (R) frontal region is a significant neuroplastic response to
injury. Numerous studies have reported a frontal and specifically,
prefrontal vulnerability to brain injury. It is possible that such
changes in the frontal regions of the concussed brain may have
been detected by the neural network.

While the frontal regions have been specifically associated
with adolescent concussion, there are a number of other regions
that show both increased and decreased functional connectivity
and coupling in concussion. For example, Safar et al. (2021)
recently found changes in frontal, temporal and occipital brain
regions in children and adolescents who are in the chronic
stages of mild traumatic brain injury, suggesting that in addition

to the frontal regions, there are at least two other brain
regions of interest.

While it is tempting to make an association between known
regions of the brain that are involved in concussion and selecting
specific EEG sensors, it is premature at this stage to argue that
there is a unique subset of EEG channels or brain regions that are
ideal for classifying concussion. We do not know what features
the deep learning network is focusing on. Additional testing
with a more diverse group of participants will be required to
identify a unique subset of channels that might be useful for
concussion diagnosis.

In addition, two outstanding questions still remain. First, is it
possible to determine the degree of severity following the initial
brain injury using the neural network? Second, how does the
neural network respond to changes in EEG related to recovery?
Identifying the severity of concussion and determining clinical
recovery are two of the most challenging issues for clinicians as
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well as researchers in this field. In principle, one can contemplate
expanding the approach described in the present paper and
leverage unsupervised learning to cluster subjects with similar
degrees of brain changes but a clear understanding of what these
changes mean for brain health remains elusive. This is in part
due to the fact that diagnosis continues to be based primarily
on the patient’s subjective reports of signs and symptoms
and importantly, symptoms do not directly correlate to the
underlying changes in brain structure and function (Manning
et al., 2017; Churchill et al., 2019). In addition, neuroimaging
studies find that the brain’s response to a mild brain injury varies
considerably from participant to participant both in the acute
phase as well as in the brain’s recovery trajectory (Churchill et al.,
2017, 2020). The resolution of both these questions will require
a large sample of data that encompasses the full range of clinical
diversity in signs and symptoms as well as the full range of brain
changes present at the time of injury and over the course of
recovery. Collecting data on a longitudinal, diverse sample of
individuals will provide much needed information to achieve our
goal of designing a portable, easy to use EEG system with a subset
of a small number of sensors to identify both severity and the
range of recovery trajectories.

Limitations
The study described here has two main limitations. The first of
these is that the EEG data set used to train and test the network
is relatively small and the data was acquired only from male
adolescent athletes. As the COVID-19 restrictions are gradually
being lifted, we will actively begin recruiting a more diverse
sample of participants to evaluate the effects of sex, age and
stage of recovery.

The second limitation has been discussed above and is
related to the method used to identify the subset of the
most important channels for classification. In particular, the
identification of each channel’s impact on classification is
performed independently of the other channels. However, we
believe that this methodological choice does not significantly
affect the “optimal” subset of channels. This assessment is
supported by the fact that the top-ranking channels thus
determined admit a neurophysiological interpretation which
agrees with our current understanding of concussion.

SUMMARY

In summary, our study demonstrates for the first time that a
minimal subset of 6 channels (from the original 64 channel
dataset) can achieve similar results for concussion classification
to identify post-concussed individuals within 1 month of

injury. This is the first proof of concept showing that a
deep learning network can be trained to recognize individuals
with concussion using only 6 channels associated with the
resting state condition. While these channels may not be the
optimal subset of channels, they do correspond with current
understanding of the neurophysiological changes in concussion.
Further work is needed to evaluate the algorithm with a diverse
group of individuals.
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Springer).

Murdaugh, D. L., King, T. Z., Sun, B., Jones, R. A., Ono, K. E., Reisner, A., et al.
(2018). Longitudinal changes in resting state connectivity and white matter
integrity in adolescents with sports-related concussion. J. Int. Neuropsychol. Soc.
24, 781–792. doi: 10.1017/S1355617718000413

Neumann, U., Riemenschneider, M., Sowa, J. P., Baars, T., Kälsch, J., Canbay,
A., et al. (2016). Compensation of feature selection biases accompanied with
improved predictive performance for binary classification by using a novel
ensemble feature selection approach. BioData Mining 9:36. doi: 10.1186/
s13040-016-0114-4

Newsome, M. R., Li, X., Lin, X., Wilde, E. A., Ott, S., Biekman, B., et al. (2016).
Functional connectivity is altered in concussed adolescent athletes despite
medical clearance to return to play: a preliminary report. Front. Neurol. 7:116.
doi: 10.3389/fneur.2016.00116

Safar, K., Zhang, J., Emami, Z., Gharehgazlou, A., Ibrahim, G., and Dunkley,
B. T. (2021). Mild traumatic brain injury is associated with dysregulated neural
network functioning in children and adolescents. Brain Commun. 3:fcab044.
doi: 10.1093/braincomms/fcab044

Sahiner, B., Chan, H. P., Petrick, N., Wagner, R. F., and Hadjiiski, L. (2000).
Feature selection and classifier performance in computer-aided diagnosis:
the effect of finite sample size. Med. Phys. 27, 1509–1522. doi: 10.1118/1.59
9017

Sariaslan, A., Sharp, D. J., D’Onofrio, B. M., Larsson, H., and Fazel, S. (2016).
Long-term outcomes associated with traumatic brain injury in childhood and
adolescence: a nationwide Swedish cohort study of a wide range of medical
and social outcomes. PLoS Med. 13:e1002103. doi: 10.1371/journal.pmed.100
2103

Schmidt, J. D., Rizzone, K., Hoffman, N. L., Weber, M. L., Jones, C., Bazarian,
J., et al. (2018). Age at first concussion influences the number of subsequent
concussions. Pediatr. Neurol. 81, 19–24. doi: 10.1016/j.pediatrneurol.2017.
12.017

Schoffelen, J. M., and Gross, J. (2009). Source connectivity analysis with
MEG and EEG. Hum. Brain Mapp. 30, 1857–1865. doi: 10.1002/hbm.
20745

Smialowski, P., Frishman, D., and Kramer, S. (2009). Pitfalls of supervised feature
selection. Bioinformatics. 26, 440–443. doi: 10.1093/bioinformatics/btp621

Thanjavur, K., Babul, A., Foran, B., Bielecki, M., Gilchrist, A., Hristopulos, D. T.,
et al. (2021). Recurrent neural network-based acute concussion classifier using
raw resting state EEG data. Sci. Rep. 11:12353. doi: 10.1038/s41598-021-91
614-4

Vergara, V. M., Mayer, A. R., Damaraju, E., Kiehl, K. A., and Calhoun, V. (2017).
Detection of mild traumatic brain injury by machine learning classification
using resting state functional network connectivity and fractional anisotropy.
J. Neurotrauma 34, 1045–1053. doi: 10.1089/neu.2016.4526

Virji-Babul, N., Hilderman, C. G., Makan, N., Liu, A., Smith-Forrester, J., Franks,
C., et al. (2014). Changes in functional brain networks following sports related
concussion in adolescents. J. Neurotrauma 31, 1914–1919. doi: 10.1089/neu.
2014.3450

Wickramaratne, S. D., Shaad Mahmud, M. D., and Ross, R. S. (2020). “Use of brain
electrical activity to classify people with concussion: a deep learning approach,”
in Proceedings of the IEEE International Conference on Communications 2020-
June (Dublin: IEEE).

Frontiers in Human Neuroscience | www.frontiersin.org 16 November 2021 | Volume 15 | Article 734501

https://doi.org/10.1038/s41598-019-53751-9
https://doi.org/10.1016/j.neuroimage.2016.12.003
https://doi.org/10.1016/j.neuroimage.2016.12.003
https://doi.org/10.1109/TNSRE.2009.2027704
https://doi.org/10.1016/j.clinph.2010.12.042
https://doi.org/10.1177/0363546516648141
https://doi.org/10.1177/0363546516648141
https://doi.org/10.1212/WNL.0000000000008523
https://doi.org/10.1212/WNL.0000000000008523
https://doi.org/10.3389/fneur.2020.00558
https://doi.org/10.1038/s41598-017-07742-3
https://doi.org/10.1089/neu.2018.5761
https://doi.org/10.1089/neu.2018.5761
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/s1388-2457(00)00533-2
https://doi.org/10.3389/fnhum.2019.00419
https://doi.org/10.3389/fnhum.2019.00419
https://doi.org/10.1016/j.compbiomed.2018.09.011
https://doi.org/10.1016/j.compbiomed.2018.09.011
https://doi.org/10.1016/j.sigpro.2005.07.010
https://doi.org/10.1186/1753-4631-3-2
https://doi.org/10.1186/1753-4631-3-2
https://doi.org/10.1016/j.artmed.2015.11.001
https://doi.org/10.1016/j.artmed.2015.11.001
https://doi.org/10.1212/WNL.0000000000004669
https://doi.org/10.1212/WNL.0000000000004669
https://doi.org/10.1136/bjsports-2017-097699
https://doi.org/10.1038/s41598-020-72051-1
https://doi.org/10.1038/s41598-017-17414-x
https://doi.org/10.1038/s41598-017-17414-x
https://doi.org/10.1017/S1355617718000413
https://doi.org/10.1186/s13040-016-0114-4
https://doi.org/10.1186/s13040-016-0114-4
https://doi.org/10.3389/fneur.2016.00116
https://doi.org/10.1093/braincomms/fcab044
https://doi.org/10.1118/1.599017
https://doi.org/10.1118/1.599017
https://doi.org/10.1371/journal.pmed.1002103
https://doi.org/10.1371/journal.pmed.1002103
https://doi.org/10.1016/j.pediatrneurol.2017.12.017
https://doi.org/10.1016/j.pediatrneurol.2017.12.017
https://doi.org/10.1002/hbm.20745
https://doi.org/10.1002/hbm.20745
https://doi.org/10.1093/bioinformatics/btp621
https://doi.org/10.1038/s41598-021-91614-4
https://doi.org/10.1038/s41598-021-91614-4
https://doi.org/10.1089/neu.2016.4526
https://doi.org/10.1089/neu.2014.3450
https://doi.org/10.1089/neu.2014.3450
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-734501 November 18, 2021 Time: 12:34 # 17

Thanjavur et al. RNN for Concussion Classification

Yallampalli, R., Wilde, E. A., Bigler, E. D., McCauley, S. R., Hanten, G.,
Troyanskaya, M., et al. (2013). Acute white matter differences in the
fornix following mild traumatic brain injury using diffusion tensor
imaging. J. Neuroimaging 23, 224–227. doi: 10.1111/j.1552-6569.2010.
00537.x

Yuan, W., Wade, S. L., and Babcock, L. (2015). Structural connectivity
abnormality in children with acute mild traumatic brain injury using graph
theoretical analysis. Hum. Brain Mapp. 36, 779–792. doi: 10.1002/hbm.
22664

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Thanjavur, Hristopulos, Babul, Yi and Virji-Babul. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 17 November 2021 | Volume 15 | Article 734501

https://doi.org/10.1111/j.1552-6569.2010.00537.x
https://doi.org/10.1111/j.1552-6569.2010.00537.x
https://doi.org/10.1002/hbm.22664
https://doi.org/10.1002/hbm.22664
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Deep Learning Recurrent Neural Network for Concussion Classification in Adolescents Using Raw Electroencephalography Signals: Toward a Minimal Number of Sensors
	Introduction
	Materials and Methods
	Participants
	Clinical Assessment
	Data Acquisition
	Electroencephalography Data Processing
	Analysis Pipeline

	Results
	SCAT Results

	Discussion
	Limitations

	Summary
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


