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Radiotherapy is one of the main therapeutic methods for treating cancer. The digestive
system consists of the gastrointestinal tract and the accessory organs of digestion (the
tongue, salivary glands, pancreas, liver and gallbladder). The digestive system is easily
impaired during radiotherapy, especially in thoracic and abdominal radiotherapy. In this
review, we introduce the physical classification, basic pathogenesis, clinical
characteristics, predictive/diagnostic factors, and possible treatment targets of
radiotherapy-induced digestive injury. Radiotherapy-induced digestive injury complies
with the dose-volume effect and has a radiation-based organ correlation. Computed
tomography (CT), MRI (magnetic resonance imaging), ultrasound (US) and endoscopy
can help diagnose and evaluate the radiation-induced lesion level. The latest treatment
approaches include improvement in radiotherapy (such as shielding, hydrogel spacers
and dose distribution), stem cell transplantation and drug administration. Gut microbiota
modulation may become a novel approach to relieving radiogenic gastrointestinal
syndrome. Finally, we summarized the possible mechanisms involved in treatment, but
they remain varied. Radionuclide-labeled targeting molecules (RLTMs) are promising for
more precise radiotherapy. These advances contribute to our understanding of the
assessment and treatment of radiation-induced digestive injury.

Keywords: ionizing radiation, radiation-induced digestive injury, gut microbiota, gland transfer, apoptosis,
ferroptosis, natural herb, radionuclide-labeled targeting molecule
1 INTRODUCTION

Cancer is one of the greatest health problems in the 21st century. Approximately 29.8% of
premature deaths (4.5 billion out of 15.2 billion) are attributed to cancer, ranking first or second
in 134 of 183 countries (1). Radiotherapy, along with chemotherapy and surgery, is one of the three
core methods of treating cancer. Nearly 50% of cancer patients receive radiotherapy (2). Compared
with surgery, radiotherapy kills target tumor cells with less injury and is preferred when the target
tumor tissue/organ cannot be removed. Compared with chemotherapy, radiotherapy limits the
involved area and reduces lesions when the tumor is localized. However, radiotherapy is a double-
edged sword. That is, even though radiotherapy deals with tumor cells as planned, it may inevitably
harm healthy cells.
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The digestive system consists of the gastrointestinal tract and
the accessory organs of digestion (the tongue, salivary glands,
pancreas, liver and gallbladder). During eating, food is chewed by
the oral cavity into small pieces and mixed with saliva, forming a
bolus that passes through the esophagus into the stomach. Then,
the stomach functions to store the food by receptive relaxation.
In the stomach, gastric acid and pepsin are secreted, which, aided
by the grinding of the stomach wall, turn food into chyme,
helping in primary digestion until gastric emptying. Gastric
emptying is regulated mainly by inhibitory feedback signals
from the duodenum, including both enterogastric inhibitory
nervous feedback reflexes and hormonal feedback by
cholecystokinin, as well as partly by stomach factors (such as
the degree of filling in the stomach and the excitatory effect of
gastrin on stomach peristalsis). After the chyme passes into the
small intestine, the pancreas secretes various digestive enzymes
through the pancreatic bile tract, while the gallbladder releases
bile secreted by the liver that breaks down nutrients into
molecules to be absorbed in the small intestine. The length of
the small intestine, as long as 10 to 16 feet, is helpful for fully
absorbing carbohydrates, protein, fat and other nutrients. Then,
indigestible food residue passes through the ileocecal valve into
the large intestine and forms feces after dehydration. Defecation
occurs as a result of reflex contraction of the rectum and
relaxation of the anal sphincters (3).

Radiation-induced digestive injury is defined as acute or
chronic lesions caused by ionizing radiation in the digestive
organs, including the oral cavity, salivary glands, esophagus,
stomach, intestines and anus. Radiotherapy, as one of the main
methods of cancer treatment, accounts for almost all digestive
injuries (4). The digestive system, as one of the most sensitive
physiological organs to radiation therapy, usually suffers the
most severe side effects from radiotherapy (4).
2 PHYSICAL CLASSIFICATION OF
IONIZING RADIATION IN RADIOTHERAPY

Not all radiation can be applied to radiotherapy. Ionizing
radiation refers to radiation carrying enough energy to ionize
atoms and molecules and break chemical bonds. In a broad
sense, ionizing radiation varies among different subjects.
However, in biology, ionizing radiation is normally defined by
the ionization energy of water, the main component of
organisms. Nonionizing radiation refers to longer wavelength
light including ultraviolet light, visible light, infrared light,
microwaves and radiowaves, that cannot break bonds but can
cause vibrations characterized as the heat effect. The specific
numerical value of ionizing radiation’s energy level is undefined
but is usually approximately 12.4 eVs (corresponding wavelength
of approximately 100 nm). Ionizing radiation can directly break
bonds in DNA and protein. The shorter the wavelengths are, the
higher the energy and corresponding radiation-induced damage.
This is also true for energetic particles and magnetic waves
(X-rays and g-rays). Energetic particles can be produced by
unstable nuclei or by particle accelerators, usually including
Frontiers in Oncology | www.frontiersin.org 2
a-rays (helium), b-rays (electrons), proton rays, neuron rays
and heavy ions (Figure 1). These energetic particles have strong
ionizing effects due to their relatively higher volume and/
or charge.
3 PATHOLOGICAL BASIS FOR
RADIATION-INDUCED DIGESTIVE INJURY

DNA, proteins and lipids are the basis of cell survival. Their
function relies on fine-tuned structure, meaning that there is a
high risk of inactivation. Radiation may damage organisms as a
result of direct effects, indirect effects and bystander effects. The
direct effects refer to the collision of ionizing radiation causing
destruction of DNA and/or protein structure, disturbing their
functions (5). For indirect effects, both ionizing and nonionizing
radiation produce free radicals and reactive oxygen species
(ROS). However, compared with ionizing radiation,
nonionizing radiation produces much less ROS via the heat
effect. These highly active products subsequently react with DNA
and proteins. The corresponding DNA damage includes single
strand breaks, base damage, abasic sites, double strand breaks,
non-double strand break clustered lesions, and complex double
strand break, some of which are induced by DNA related protein
(such as histone) damage (6). Radiation-induced RNA damage
manifests as interference in transcription and accelerating in
degradation. Both direct and indirect effects finally induce altered
gene expression, protein modification, cell death/senescence, and
genomic instability (7) (Figure 1). The bystander effect is defined
from a different perspective. Regarding bystander effects,
nonirradiated cells manifest biological changes resulting from
transmitted signals from irradiated bystander cells, causing toxic
radiation effects on adjacent nonirradiated tissues, usually
genomic instability and chromosomal rearrangement (8).
Originally, the effects of irradiated bystander cells are derived
from direct effects and indirect effects. Both direct effects and
indirect effects can function simultaneously, along with
bystander effects, working together to induce radiation injury.

Radiotherapy utilizes various types of radiation rays. Each
type of radiation ray has advantages and limitations. Compared
with traditional photon radiotherapy, including X-rays and
g-rays, protons and heavy ions have much longer wavelengths.
As a result, the corresponding diffraction distances are on the
same order of magnitude as the tissue size. Radiation diffraction
converges on a peak named the Bragg peak (9). By refined
calculation, the release of charged particle energy can be
limited to the Bragg peak targeting tumor tissue, dramatically
reducing the diffusion of radiation (10). Heavy ion therapy has
an even narrower Bragg peak than proton therapy, making it
more effective against cancer (11). Additionally, heavy ion-
radiated tissue manifests as clustered DNA double-strand
breaks, enhancing therapeutic efficacy (12). However, protons
and heavy ions have larger borders due to their longer
wavelengths , making them difficult to locate (13) .
Comparatively, proton therapy and heavy ion therapy are
superior to photon radiotherapy. Unfortunately, proton
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Radiotherapy-Induced Digestive Injury
therapy and heavy ion therapy are severely limited due to their
high cost (14). Future improvements in radiation methods for
heavy ion therapy may further impel clinical application (15).
4 DIAGNOSIS OF RADIATION-INDUCED
DIGESTIVE INJURIES

4.1 Overall Evaluation
4.1.1 Clinical Features
The clinical characteristics of radiation-induced digestive injury
are summarized in Figure 2. Salivary gland injury after radiation
directly triggers hyposalivation. Subsequently, a lack of saliva
induces xerostomia, mucositis, nutritional deficiencies, oral
infections, and functional changes (such as difficulties with
mastication, dysphagia and loss of taste) (16, 17). In other
digestive tract regions, including the esophagus, stomach,
intestine and anus, radiation injury starts with mucous
inflammation and is followed by diarrhea, constipation, and
hemorrhage (4).

4.1.2 Assessment: Localized Radiation-Induced
Digestive Injury

a) Organ Correlation

Due to the need for precision medicine as well as reduced side
effects, radiotherapy requires that the radiation be confined to
the target area. Many studies have proven the efficacy of
Frontiers in Oncology | www.frontiersin.org 3
restricted radiation areas on reduced gastrointestinal side
effects as well as enhanced dose tolerance in radiotherapy (18).
Usually, radiation injury-related digestive system organs
correlate with the surrounding radiotherapy. For example, anal
radiotherapy and pancreas radiotherapy correlate with
gastrointestinal side effects (19, 20). Radiation of head and
neck cancer induces dysphagia (21). Cervical cancer induces
sigmoid stricture (22). Generally, periradiotherapy organs can
help us locate the possible involved organs. Dose evaluation may
help further reduce radiation-induced injury risks.

b) Dose-Volume Effect

Radiation-induced digestive injury manifests as a dose-
volume effect, meaning that the extent of the lesion highly
depends on the radiation dose and radiated volume (23). This
theory has been verified in many studies in different organs,
including the esophagus (21, 24), stomach (25, 26), small bowel
(26, 27), rectum (28–31), and anus. On the basis of the dose-
volume effect, radiotherapy-induced injury can be assessed by
radiation dose and/or volume calculations. In this way, rectal
toxicity (30, 31), acute gastrointestinal toxicity (32, 33), anal
toxicity, and salivary gland injury were reported (34–43) and
precisely predicted (44). Conversely, Kim et al. found that a
higher dose was not associated with cervical esophageal cancer
radiotherapy-induced stenosis (45). This conclusion contradicts
another study in nasopharyngeal carcinoma patients (46),
probably because of the different tumor origins. Which
symptoms correlate with dose and/or volume remains
FIGURE 1 | Classification of radiation and mechanisms of radiation-induced injury. Radiation comprises of energetic particles and electromagnetic waves. Energetic
particles and short wavelength electromagnetic waves (X rays and g rays) are classified as ionizing radiation. Longer wavelength electromagnetic waves (>100 nm)
are categorized as nonionizing radiation. Ionizing radiation has enough energy to directly break DNA and protein. In addition, ionizing radiation can produce ROS
(mainly by ionizing H2O), indirectly inducing DNA and protein damage. Nonionizing radiation may also produce little ROS. Impaired DNA and protein finally lead to cell
mutation or death.
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unknown. Clinical application lacks a detailed dose-volume
standard assessing the radiation-induced risk of each
complication. Systematic clinical evidence is necessary for
evaluation guidance.
5 IMAGING DIAGNOSIS

5.1 Computerized Tomography (CT)
CT provides a unique form of cross-sectional imaging. Three-
dimensional structures of “slices” of human tissue can be
visualized, making CT an effective approach to predict
radiation-induced injury. CT textural features could be used in
combination with volume to characterize structural
modifications of the parotid glands and to predict parotid
shrinkage at the end of radiotherapy (47). By nonenhanced
CT, a reduction in the volume of the parotid and
submandibular glands and an increase in attenuation of the
parotid gland can help grade radiation-induced salivary
dysfunction (48). Parotid gland CT volume and density during
head and neck cancer can also predict acute xerostomia (49). In
summary, CT images of radiation-induced salivary injury are
characterized by an increased mean gray value or density in the
early stage, followed by shrinkage of the glands; texture analysis
of CT is another indicator for assessing radiation-induced acute
xerostomia (50) (Figure 3). Moreover, 18F-FDG PET image
biomarkers have considerably improved the prediction of late
radiation-induced xerostomia (51), which is a promising
method. Liver injury usually appears as CT imaging changes,
and cases of CT assessing radiation-induced liver injury have
been reported (52), suggesting that CT may help in the
evaluation of radiation-induced liver injury. Although changes
in CT images can be observed during radiotherapy, the variation
Frontiers in Oncology | www.frontiersin.org 4
in the liver is too small to diagnose, limiting CT to only prepared
assessments that are started before radiation (53). Additional
technologies may improve the CT diagnostic rate. For instance,
single-photon emission CT imaging of mice precisely diagnosed
radiation-induced liver disease (54). The diagnosis of other
digestive organs by CT has rarely been reported.

5.2 Ultrasonic Histogram
Ultrasonic elastography, as a new ultrasound diagnostic
technique, calculates the strain distribution by echo signals
before and after compression and deformation of the tissue to
obtain elastic (hardness) characteristic information for efficient
clinical diagnosis. However, elastic noise usually interferes with
imaging quality. Histogram matching algorithms can help
suppress noise signals, accelerating the application of
ultrasound histograms in many diseases. The efficacy of
ultrasonic histogram analyses has been validated in salivary
gland injury. Yang et al. used sonographic features as imaging
signatures to assess radiation-induced parotid injury (55). They
then summarized a family of sonographic features derived from
echo histograms, including the peak intensity value, 23 dB
intensity width, high intensity width and area of high intensity
(56) (Figure 3). In addition, they further concluded that
ultrasound histogram features (especially receiver operating
characteristic curves) can be used to measure acute and late
toxicity of the parotid glands after head and neck cancer
radiotherapy, which may be developed into a low-cost imaging
method for xerostomia monitoring and assessment (57). Salivary
gland dysfunction, which relies on the blood supply, is easy to
diagnose by ultrasound histogram. Other digestive organs, which
have little external vascular variation compared with their
surroundings, plus their deeper location, appear to have no
distinguishable ultrasonic and CT distinctions.
FIGURE 2 | General symptoms of radiation-induced digestive injury. Salivary gland injury is initiated from hyposalivation, and is followed by xerostomia, mucositis, nutritional
deficiencies, oral infections, and functional changes. Digestive tract injury starts with mucous inflammation, and then exhibits diarrhea, constipation, and hemorrhage.
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5.3 Magnetic Resonance Imaging (MRI)
MRI, as a radiation-free medical imaging technique, is gradually
replacing CT scans in clinical applications. MRI works by
polarization of hydrogen atoms and has proven to be effective
in diagnosing radiation-induced salivary gland injury,
esophageal injury, liver injury, and rectal injury (58–61). MRI
images of radiation injury generally manifest as high signal
intensity in T2, pathologically based on tissue edema. For acute
radiation injury, an obvious shift in the T2 weighted imaging
(T2WI) signal can be observed in the radiated area; for delayed
radiation injury, the involved tissue may only exhibit a slight
change on T2WI (62) (Figure 3).

5.4 Endoscopy
Early endoscopic findings deemed the Vienna rectoscopy score
useful for predicting the possibility of late clinical radiation
proctitis (63). Specific standards include congested mucosa,
telangiectasia, ulceration, stricture, and necrosis (Figure 3).
Radiation-induced enteritidis can be diagnosed by wireless
capsule endoscopy (64, 65). Nevertheless, when it develops into
obvious endoscopic manifestations, radiation injury is usually
accompanied by other diagnostic clinical symptoms. Despite its
low sensitivity in diagnosis, endoscopy may help in the prognosis
as well as in essential treatment such as hemorrhage. The
American Society for Gastrointestinal Endoscopy issued
guidelines on the role of endoscopy for bleeding in chronic
radiation proctopathy in 2019. These guidelines focused on
Frontiers in Oncology | www.frontiersin.org 5
currently available endoscopic therapies for managing patients
with chronic radiation proctopathy, which include argon plasma
coagulation, bipolar electrocoagulation, heater probe,
radiofrequency ablation, and cryoablation (66). Further studies
improving endoscopic standards to diagnose radiation
proctopathy may lead to further refinement of these guidelines.
6 NONIMAGING DIAGNOSIS

6.1 Gut Microbiota
The gut microbiota has become a new focus of various diseases,
including chronic liver disease (67), type 2 diabetes mellitus (68),
inflammatory bowel diseases (69), cardiovascular disease (70),
sarcopenia (71) and cancer (72). Its correlation with radiation
sensitivity has also been reported (73). A study in mice indicated
that conventional intestinal microbiota composition may predict
radiation injury (74). The control of bacterial translocation
affects gastrointestinal acute radiation syndrome in mice (75).
The prediction mechanism may involve pyrimidine and
tryptophan pathways (76). Furthermore, a series of metabolic
profile data of gut microbiota in cervical cancer patients
summarized that radiation-induced acute intestinal symptoms
are characterized by increased fecal concentrations of a-
ketobutyrate, valine, uracil, tyrosine, trimethylamine N-oxide,
phenylalanine, lysine, isoleucine, glutamine, creatinine, creatine,
bile acids, aminohippurate, and alanine, accompanied by
FIGURE 3 | Imaging based diagnosis of radiation-induced digestive injury. For radiation-induced digestive injury, MRI images manifest as high T2 signal intensity; CT
images present increased mean grey value and texture change; ultrasound histogram images exhibit shift in peak intensity value, 23 dB intensity width and high
intensity width/area; endoscopy discovers congested mucosa, telangiectasia, ulceration, stricture, and necrosis.
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reduced concentrations of a-glucose, n-butyrate, methylamine,
and ethanol (77). This study lays a solid foundation for the
diagnosis and prediction of intestinal radioinjury. Analysis of the
gut microbiota along with metabolic products is a promising
method evaluating the severity of radiation-induced
intestinal injury.

6.2 Other Predictive Factors
Moreover, some other factors should not be ignored. Substantial
gland loss in the anterior rectal walls can predict radiation-
induced late clinical proctitis (78). Single nucleotide
polymorphisms and copy number variations were also
reported to predict radiation rectal toxicity (79). Other
metabolic-related nutrients, such as vitamin D (80) and
citrulline (81), may serve as markers for radiation injuries.
Besides, oral flora may also help diagnose radiation-induced
injury, usually characterized by overgrowth of specific fungi such
as Candida albicans (82, 83).
7 PRECAUTION AND TREATMENT FOR
RADIATION-INDUCED DIGESTIVE INJURY

7.1 Precaution
7.1.1 Gland Transfer
Salivary glands have relatively separate structures and can be
isolated for transplantation to avoid radiation injury. This theory
has been proven by various studies, especially for head and neck
cancer radiotherapy and nasopharyngeal carcinoma-induced
xerostomia (84, 85). Moreover, although fails to relieve
dysphagia (86), gland transfer does not affect long-term
treatment efficacy (85). A phase II study found that the
technique of submandibular salivary gland transfer is
reproducible in a multicenter setting (87). Further phase III
randomized studies proved that submandibular salivary gland
transfer is effective in curing radiation-induced xerostomia (88).
Similar conclusions were reproduced in a meta-analysis (89).
More phase III clinical studies may be required to evaluate the
efficacy of gland transfer to promote the clinical application of
gland transfer in radiation-induced salivary lesions.

7.1.2 Improvement in Radiotherapy

a) Shielding

Shielding of the sensitive part of the target area is a traditional
way to avoid radiation-induced injury. For example, partial
shielding of the oral cavity in rhesus macaques may prevent
oral mucositis (90). However, it is difficult to shield the visceral
organs. Hydrogels precisely solve this problem. Hydrogels are
three-dimensional cross-linked polymer networks that can
absorb and retain large amounts of water, meaning that they
are not poisonous to humans. This feature allows hydrogels to
easily absorb radiation, similar to normal tissue. Implantation of
hydrogel between the target tissue area and radiosensitive
normal structure can effectively reduce the radiation volume of
the normal structure. As proof, a simulation in cadaveric models
Frontiers in Oncology | www.frontiersin.org 6
of oropharynx cancer treated with intensity-modulated radiation
therapy (IMRT) found that the hydrogel reduces the salivary
gland radiation dose (91). Reductions in the radiated dose were
verified in patients (92). In the clinic, rectum spacer hydrogel
implantation prevents rectal injury in prostate cancer
radiotherapy (93). Hydrogel spacers decreased duodenum
radiation in pancreatic cancer radiotherapy (94). In addition,
improvement in gastrointestinal syndrome was reported after
prostate radiotherapy (95, 96). Hydrogels have been widely used
in clinical practice. Traditional hydrogels are preshaped and are
usually implanted via operation. Compared with traditional
hydrogels, injectable hydrogels have the advantages of
eliminating operation limitations and drug administration but
have accompanying high risks of inflammation and dislocation
(97). Improvement in hydrogels, such as adding anti-
inflammatory drug components or using other inflammation-
free hydrogels, may avoid inflammation. For instance, in situ
photo-cross-linking hydrogels can restore the hypoxia-inducible
factor 1-alpha pathway (98). Pectin/polyacrylamide hydrogels
successfully deliver budesonide to the colon (99). Tannic acid
acts as a cross linker and additionally enhances the anti-
inflammatory properties of hydrogels (100). Topical hydrogels
containing Achyrocline satureioides oily extract can reduce
inflammation (101). Dexamethasone-loaded thermosensitive
hydrogels suppress inflammation in rheumatoid arthritis (102).
All of these findings suggest promising application of improved
injectable hydrogels in radiotherapy.

b) Dose Distribution

The dose distribution of radiotherapy influences radiation-
induced injuries. High-dose-rate monotherapy can relieve
radiation toxicity compared with low-dose-rate multitherapy
(103). High-dose-rate boost treatment is associated with fewer
side effects (104). Traditional radiotherapy is limited by dose
administration to avoid radiotoxicity to normal tissues.
Fractioned radiotherapy increases total dose tolerance and
reduces the number of visits and the total cost of treatment
without increasing radiotoxicity (105). In contrast, hypotreated
prostate cancer patients suffered from significantly increased late
genitourinary toxicity (106). In contrast, in the latest studies
comparing hyperfractionated radiotherapy, conventionally
fractionated radiotherapy, and hypofractionated radiotherapy,
although relatively lower-fractionated radiotherapy may increase
acute toxicity, there appears to be no significant difference in the
long-term effects or late toxicity (105, 107–112). More systematic
studies are required to determine whether fractionated
radiotherapy is superior to conventional radiotherapy.

7.2 Treatment
7.2.1 Mesenchymal Stem Cells (MSCs)
MSCs are widely defined as a plastic-adherent cell population
that can be directed to differentiate in vitro into osteogenic,
chondrogenic, adipogenic, myogenic, and other lineages. MSC
differentiation potential is widely used in tissue repair. MSCs
have been proven to be able to restore radiation-induced injury
(113, 114). For example, adipose-derived stromal cells have the
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potential to restore salivary gland function after irradiation, as
evidenced by the restoration of blood flow within submandibular
gland tissue (115). Furthermore, human adipose tissue-derived
stem cells alleviate radiation-induced xerostomia (116). Salivary
gland stem cells can also ameliorate radiation-induced
hyposalivation (117). Stem cell transplantation not only
rescues hyposalivation but also restores tissue homeostasis in
the irradiated gland, which is necessary for long-term
maintenance of adult tissue (118). Administration of adipose-
derived stem cells immediately after radiation at a dose of 18 Gy
can protect both the morphology and function of the salivary
glands eight weeks after radiation in mice (119). In summary,
MSCs can ameliorate radiation-induced salivary injury,
including xerostomia (120, 121).

Compared with radiation-induced salivary injury, the efficacy
of MSCs in other digestive organs remains variable. Related
research is summarized as follows: in a rat model of radiation-
induced esophageal injury, dental pulp stem cell transplantation
exhibited a therapeutic effect (122). For the colorectum, one
study showed that MSCs may reverse radiation injury (123).
Autologous bone marrow-derived mesenchymal stem cells may
improve radiation-induced proctitis (124). Adipose-derived stem
cells may facilitate the repair of defects in maxillofacial soft tissue
(125). These cases alone hardly prove the viewpoint.
Nonetheless, these results suggest that MSCs may have
therapeutic potential for radiotherapy-induced tissue damage
(126). Unfortunately, the specific mechanisms of MSC-based
treatment have rarely been investigated among the studies,
except that platelet-rich plasma improves the therapeutic
efficacy of MSCs (127).

Chang et al. investigated the therapeutic mechanisms of
MSCs and found that human adipose-derived mesenchymal
stem cells (hAd-MSCs) had postradiation healing effects,
including anti-inflammation, neovascularization and
maintenance of epithelium homeostasis, as indicated by the
elevated serum IL-10, upregulation of vascular endothelial
growth factor, basic fibroblast growth factor and epidermal
growth factor in irradiated intestine, mobilization of CD31-
positive hematopoietic stem cells or hematopoietic progenitor
cells, and the prolonged presence of Bmi1-positive cells within
crypts. The authors found that irradiated rats survived longer
than nontreated animals (128). More related research is
warranted in further studies.

7.2.2 Bone Marrow Transplantation
Bone marrow, similar to digestive system organs, is often involved
in radiation-induced injury. Transplantation of bone marrow is a
traditional way to cure bone marrow lesions. Improvement in
bone marrow transplantation not only restores hematopoietic
function but also alleviates other digestive symptoms (129, 130).
Bone marrow-derived cells can also reduce radiogenic oral
mucositis (131). To further determine how bone marrow
restores digestive symptoms, Tran et al. injected bone marrow
soluble extract (“soup”) into mice and found that bone
marrow soup restored salivary flow rates to normal levels;
protected salivary acinar, ductal, myoepithelial, and progenitor
cells; increased cell proliferation and blood vessels; and
Frontiers in Oncology | www.frontiersin.org 7
upregulated the expression of tissue remodeling/repair/
regenerative genes. Bone marrow soup can be advantageously
used to repair irradiation-damaged salivary glands rather than
transplanting whole live bone marrow cells which carry the risk of
differentiating into unwanted/tumorigenic cell types in the
salivary glands (132). Further study suggests that bone marrow
transplantation recruits host myelomonocytic cells and enhances
intestinal stroma proliferation after radiation by secreting
cytokines that enhance angiogenesis and chemotaxis (133).
Bone marrow transplantation may share common mechanisms
with MSCs in radiation-induced injury restoration. Controlled
studies of MSCs and bone marrow transplantation may reveal
interesting mechanisms.

7.2.3 Gut Microbiota
Since the gut microbiota can predict radiation injury, it is quite
likely that modulation of the gut microbiota could minimize
radiation injury. The gut microbiota plays a major role in the
pathogenesis of radioinjury through the modification of
intestinal barrier function, innate immunity and intestinal
repair mechanisms (134). We determined the correlation
between gut microbiota, metabolites, and radiation injury in
Table 1 (135–139).

Characteristic changes in the structure of the gut microbiota
after radiation (such as Bacteroides) can serve to predict
radiation injury (140). Meanwhile, interference of gut
microbiota may lessen radiation toxicity (141). Measures
regulating gut microbiota include probiotics (142), a
methionine diet (143), hydrogen-water oral gavage (144), and
omega-3 polyunsaturated fatty acids (w–3 PUFAs) (145). Cui
et al. reported the sex related effects for gut microbiota in
relieving radiation injury (146). Notably, a large proportion of
therapeutic drugs for radiation induced injury have effects on
estrogen receptors and downstream effectors. This finding
highlighted the importance of sex related receptors in treating
radiation-induced injury. Nonetheless, these are all animal
model studies with low reliability. Recently, Guo et al.
transferred human and mouse radiation survivors’ gut
microbiota by fecal engraftment and dirty cage sharing and
found improved radiation-induced injury related to
Lachnospiraceae and Enterococcaceae. Two tryptophan
pathway metabolites of these two bacteria, namely, 1H-indole-
3-carboxaldehyde and kynurenic acid, provided long-term
radioprotection. This is the first study proving the efficacy of
gut microbiota modulation in humans, laying a foundation for
clinical intervention of the human gut microbiota against
radiation injury. All these cases prove that the gut microbiota
presents opportunities to predict, prevent, and treat radiation
lesions (147). Future targeting of patient-tailored restoration of
optimal microbial composition could lead to a new era of
radioprotection (148).

7.2.4 Related Therapeutic Drugs and
Possible Mechanisms
The reported radioprotective agents are divided into several
categories: free radical scavengers [such as thiols and amines
(esp. aminothiols and phosphorothioates)], redox stabilizers
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(such as superoxide dismutase), antioxidant nutrients (vitamin
A, B, C, E, and their related metabolites or analogues (such as b-
carotene and folic acids), selenium derivatives, and
phytochemicals (149). The overall effects of these drugs have
been verified. With the development of modern biotechnology,
many new drugs have proved their effectiveness in radiation-
induced injury. We summarize representative mechanisms as
well as updated drugs below.

a) Cell Death in Radiation-Induced Digestive Injury

Radiation-induced digestive injury induces cellular responses.
These responses have mutual effects, and it is difficult to
determine the dominant pathways. Cell autophagy, cell cycle
arrest and even cell death have been reported in response to
radiation (150–188). Here, we focused on cell death related
pathways, especially apoptosis and ferroptosis in radiation-
induced digestive injury.

b) Apoptosis in Radiation-Induced Digestive Injury

Multiple studies have reported the anti-radiation effectiveness
of apoptosis-related drugs such as genistein (161), P-
glycoprotein (163), sphingosine-1-phosphate (162),
ecdysterone combined with paeonol (164), cystine and
theanine mixture (153), apocynin (165), dimethyloxallyl
glycine (166), deferoxamine (167), 3,3’-diindolylmethane (168),
hepatocyte growth factor (169), and walnut oligopeptide (170)
(Figure 4), indicating that regulating apoptosis may alleviate
radiation injury (160). Apoptosis-promoting drugs such as
LY2109761 (TGF-b receptor inhibitor) (171) and pachymic
acid (172) may act as radiotherapy sensitizers, subsequently
allowing for a reduction in the radiation dose and normal
tissue injury.

Among the anti-radiation drugs that act via apoptosis, TP53
(p53) is most frequently involved. TP53 is the most easily
compromised gene target modulating cell behavior (189) and
participates in radiation-induced digestive injury. p53 is involved
in many pathways, including p38/p53/p21 (senescence related)
Frontiers in Oncology | www.frontiersin.org 8
(190), p53/Reprimo (cell cycle arrest at G2/M) (191), Gadd45/
p38/p53 (cell cycle checkpoints, apoptosis, and DNA repair),
p53-FAS (apoptosis receptor in cell membrane) (192), PIDD
(P53-induced protein with a death domain) (193), p53/bcl-2/Bax
(apoptosis pathway) (194), p53-inducible genes (195), p53/
Scotin (cell cycle arrest, apoptosis) (196), and ATF6/p53/
AIFM2 (197).

Caspase 3 also participates in the apoptosis pathway (163).
Caspase 3-related drugs include roscovitine (150), SB203580
(151), filgrastim and a-tocopherol (152), cystine and theanine
mixtures (153), acidic polysaccharides of Panax ginseng (154),
Korean red ginseng (155), P2X7R antagonism (156), ginseng
oligopeptides (157), thymoquinone (158), and N-acetylcysteine
(159) (Figure 4).

Since p53 plays various roles in radiation-induced injury, it is
unclear which effect is dominant. Coincidently, the summarized
related drugs that attenuate radiation injury present clustering of
p53, bcl-2/bcl-x, bax and caspase 3. Among antiapoptotic
changes, including decreasing p53, decreasing caspase 3 and
increasing bcl-2/bcl-x or bax, most drugs induce more than one
effect (Figure 4). This discovery strongly supports the p53/bcl-2/
bax pathway as dominant in radiation-induced digestive injury
(174, 176–179, 181–186, 188) (Figure 4). Other p53-related
drugs that have curative effects in radiation-induced digestive
injury, such as Ex-RAD (®) (173), may share the same pathway.
Nevertheless, knockout of p53 or p21 paradoxically accelerates
gastrointestinal damage and death, indicating that p53 may have
a bidirectional effect in radiation-induced injury (198).

c) Ferroptosis in Radiation-Induced Digestive Injury

Ferroptosis is an iron-dependent type of programmed cell
death initiated by lipid peroxide accumulation and depletion of
plasma membrane polyunsaturated fatty acids (199).
Traditionally, ferroptosis is regulated by amino acid and
glutathione metabolism, lipid metabolism, and iron
metabolism (200). Radiotherapy may also induce ferroptosis
(201, 202). Specific mechanisms involve promotion of lipid
TABLE 1 | Metabolic products and possible sources related to radiation-induced injury.

Subjects Dose Metabolic products Sources Effects Reference

C57BL/6 mice (male &
female)

9.2
Gy

Propionate and
tryptophan

Lachnospiraceae and
Enterococcaceae

Alleviate acute radiation syndrome (133)

C57BL/6 mice (male &
female)

21 Gy Butyrate Butyrate-producing bacteria Reduce cell radiosensitivity (134)

C57BL/6 mice (male &
female)

12 Gy Indole 3-propionic acid Tryptophan related gut microbiota
product

Alleviate acute radiation syndrome (135)

C57BL/6 mice (male) 9 Gy Urolithin A Metabolite of ellagitannin Alleviate ionizing radiation-induced intestinal
damage

(136)

C57BL/6 mice (male) 15 Gy Phosphatidylcholines
(36:0e)

Alistipes Related to radiation enteritis (137)

C57BL/6 mice (male) 15 Gy Diglyceride (18:0/20:4) Bacteroides Related to radiation enteritis (137)
C57BL/6 mice (male) 15 Gy Phosphatidylcholines

(35:2)
Dubosiella Related to radiation enteritis (137)

C57BL/6 mice (male) 15 Gy Phosphatidylcholines
(35:6)

Eggerthellaceae Related to radiation enteritis (137)

C57BL/6 mice (male) 15 Gy Triglyceride (18:2/18:2/
20:4)

Escherichia-Shigella Related to radiation enteritis (137)
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peroxidation, interruption of the scavenging capacity of PUFA-
PL-OOH, and activation of peroxisomes (203). Radiation
induces the expression of ACSL4, a lipid metabolism enzyme
required for ferroptosis, resulting in elevated lipid peroxidation
and ferroptosis (204). The DNA damage response is another
target that explains ferroptosis after radiotherapy, mainly by
affecting the function of GPX4 and FSP1 and their respective
cofactors, GSH and CoQ10 (205).

Many studies unanimously confirmed that inhibition of
ferroptosis alleviates radiation injury (206–209). For example,
evidence shows that AMPK activation may inhibit ferroptosis and
thus may help reduce radiation-induced injury (210). Similarly,
ferroptosis inhibitors decrease ROS and inflammatory cytokine
levels in radiation-induced lung injury (211). Other ferroptosis
inhibitors, such as p53, PEBP1, ENPP2, and phospholipase iPLA
(2) b, may also serve as radiation protectors (212–229).
Ferroptosis inducers have the potential to be effective
radiosensitizers for radiotherapy (230–248) (Figure 4).

d) Inflammation in Radiation-Induced Digestive Injury

Inflammation-related cytokines are another high-frequency
group of anti-radiation drugs for digestive injury. IL-6-related
anti-radiation drugs include ciprofloxacin (249), C-GSF (250),
18-b-glycyrrhetinic acid (251), CD28 mimetic peptide p2TA
(252), delta-tocotrienol (253), and palmitoylethanolamide
Frontiers in Oncology | www.frontiersin.org 9
(254), suggesting that inflammatory inhibitors may also
contribute to radiation injury (Figure 4). Even so, the
American Society for Gastrointestinal Endoscopy (ASGE)
guidelines on the role of endoscopy for bleeding from chronic
radiation proctopathy recommended not using anti-
inflammatory drugs because they lacked clinical evidence (66).
The efficacy and safety of anti-inflammatory drugs and
countermeasures warrant further investigation.

e) Natural Herbs (or Extractions) Against Radiation-Induced
Digestive Injuries

In addition to modern synthetic drugs, traditional herbs play
an indispensable role in curing radiation-induced digestive
injury. Most of these effective herbs have been reported to
regulate cell death (mainly apoptosis), including tea
polyphenols (255), genistein (161), pachymic acid (172),
sesamol (175), baicalein (180), acidic polysaccharide of Panax
ginseng (154), explosively puffed ginseng (187), and resveratrol
(256). Some herbs are involved in inflammation pathways, such
as Vernonia cinerea L (257), fractions of diosmin + hesperidin
(258), podophyllotoxin + rutin (259), Zhuye Shigao decoction
(260), and rheinic acid (261) (Figure 4). Apocynin protects
against radiation-induced injury by reducing apoptosis and
oxidative stress-derived inflammation (165). Similarly,
chamomile extract and walnut oligopeptides are also involved
FIGURE 4 | Cell death- and inflammation-related drugs and countermeasures in radiation-induced digestive injury. Cell death-related drugs and countermeasures are
divided into apoptosis and ferroptosis. In the left part of the table labeled “Apoptosis”, all listed drugs prove to be effective in radiation-induced digestive injury. Grey
part represents apoptosis inhibitors and inducers with no specific targets. The red part represents drugs that decrease p53, and the green part means drugs that
decrease caspase3. Blue is for drugs that increase bcl-2/bcl-x or bax. Overlapping parts for two of the above three kinds of drugs are painted magenta, yellow and
cyan respectively, meaning that drugs regulate both two factors. White stands for drugs with all of three functions. Clustering of drugs regulating p53, bcl-2/bcl-x,
bax and caspase 3 implies that the p53 pathway is activated. The middle square painted red lists inducers and inhibitors of ferroptosis. The right square in blue lists
inhibitors of inflammation that alleviate radiation-induced digestive injury. Natural herbs are selected with red boxes.
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in both apoptotic and inflammatory pathways (170, 262).
Quercetin increases aquaporin 5 expression and calcium
uptake, thus suppressing radiation-induced oxidative stress and
inflammatory responses (263). Glycyrrhizin protects g-irradiated
mice from gut bacteria-associated infectious complications by
improving miR-222-associated Gas5 RNA reduction in
macrophages at the bacterial translocation site (264). There are
several curative herbs without corresponding mechanisms, with
only morphological improvement, including Lagenaria siceraria
extract (265), triphala (266), and resveratrol (267). Natural herbs
are a great source of active compounds for reducing radiation-
induced digestive injury. More research investigating the
underlying mechanisms may reveal new therapeutic targets.
8 FUTURE PERSPECTIVES

Radiation-induced digestive injury remains a dominant problem
since the application of radiotherapy. The current means of
diagnosis and treatment are still far from satisfactory. Specific
clinical guidelines supported by valid data are urgently needed. In
diagnosis, artificial intelligence and deep learning can integrate
comprehensive information including clinical features, imaging
manifestations, and other predictive factors. Based on the
antigen-antibody reaction and affinity interaction, specific
biomarkers can be labeled by radionuclides and specifically
targeted in diagnosis and treatment (268). For example, 89Zr-
labeled anti-gH2AX has successfully shown a radiobiological
response in PET-CT (269). It is expected that radionuclide-
labeled targeting molecules (RLTMs) may be used to precisely
diagnose and evaluate radiation damage. Moreover, according to
the biological effect of targeted biomarkers, aided by tissue-
specific binding sites, RLTMs may act as radiotherapy
sensitizers and radio-protectors. The combined application of
RLTMs can provide an all-around assessment and strategies for
multifunctional treatment. In precaution, novel regenerative
peptide may prevent radiation-induced injury (270). In
treatment, stem cell regeneration as well as gut metabolites
application has shown their promise ameliorating radiotherapy-
induced injury. However, there is still a long way from lab bench
to bedside.
Frontiers in Oncology | www.frontiersin.org 10
9 CONCLUSIONS

In general, radiation-induced digestive injuries during
radiotherapy can be divided into two categories: salivary gland
injury and digestive tract injury. For salivary gland injury,
radiation damage derives from hyposalivation, followed by
xerostomia, mucositis, nutritional deficiencies, oral infections,
and functional changes. The unique anatomical structure of the
salivary gland makes it easier to diagnose injury in these glands
by CT, US, and MRI. Gland transfer is a promising method for
preventing radiation damage. For digestive tract injury, the
involved organ correlates with the radiated area, and the initial
symptom is mucous inflammation, followed by diarrhea,
constipation, and hemorrhage. Microbiota modulation may
become an effective way of reducing radiation-induced
gastrointestinal syndrome. Both salivary gland injury and
digestive tract injury can be relieved by shielding, dose
redistribution, mesenchymal stem cell transplantation and
bone marrow transplantation. Inhibitors of cell death and
inflammation may be an effective approach for reducing
radiation-induced digestive injury. Natural herbs leave plenty
of therapeutic potential to be discovered. We concluded that
RLTMs are a promising technique in radiotherapy.
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