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ABSTRACT: RT-PCR is the primary method to diagnose COVID-19
and is also used to monitor the disease course. This approach, however,
suffers from false negatives due to RNA instability and poses a high risk
to medical practitioners. Here, we investigated the potential of using
serum proteomics to predict viral nucleic acid positivity during COVID-
19. We analyzed the proteome of 275 inactivated serum samples from 54
out of 144 COVID-19 patients and shortlisted 42 regulated proteins in
the severe group and 12 in the non-severe group. Using these regulated
proteins and several key clinical indexes, including days after symptoms
onset, platelet counts, and magnesium, we developed two machine
learning models to predict nucleic acid positivity, with an AUC of 0.94
in severe cases and 0.89 in non-severe cases, respectively. Our data
suggest the potential of using a serum protein-based machine learning
model to monitor COVID-19 progression, thus complementing swab
RT-PCR tests. More efforts are required to promote this approach into clinical practice since mass spectrometry-based protein
measurement is not currently widely accessible in clinic.
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■ INTRODUCTION

Since December 2019, the COVID-19 outbreak, caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2),1 has developed into a worldwide pandemic and shown a high
risk of person-to-person transmission.2,3 The discharge criteria
for COVID-19 patients, as summarized by the COVID-19
Diagnosis and Treatment Protocol (trial version 5),4 includes:
“nucleic acid tests negative twice consecutively on respiratory
tract samples such as sputum and nasopharyngeal swabs
(sampling interval being at least 24 h)”.
The pharyngeal or nasopharyngeal swabs of patients are thus

collected by clinicians for RT-PCR detection, as often as once a
day in many hospitals,5,6 which not only results in unnecessary
consumption of medical resources but also increases the risk of
infection for medical practitioners. The respiratory tract samples
of COVID-19 patients are more likely to have live SARS-CoV-2
viruses than blood and feces samples.7 The direct exposure to
swab samples with a high viral load during sample collection thus
poses a significant risk to the practitioners involved in the
sampling and the sample analysis.4,8 In addition, due to the RNA
instability, false-negative results from RT-PCR are frequent.9,10

The storage and transfer of these samples also require the

highest level of biosafety considerations, further increasing the
burden on medical resources.
Blood tests of multiple biochemical indexes are routinely

performed for COVID-19 patients to offer a potential alternative
for monitoring the disease progression. Recently, we reported a
machine learning model for the classification of the severity of
COVID-19 patients using 11 clinical features, six of which can be
measured from blood samples,11 and achieved an accuracy of
98% in the training set, 86% in a test set, and 80% in an
independent test set. Another study characterized the molecular
changes in heat-inactivated sera between severe and non-severe
COVID-19 patients and built a machine learning model based
on proteomics and metabolomics signatures to distinguish
severe from non-severe COVID-19 patients.12 These data
showed that the heat inactivation of serum samples did not affect
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Figure 1. Summary of the serum sample collection from COVID-19 patients. The days are numbered from the onset of the symptoms. The gray
squares represent the days before admission, the orange ones represent the days on which nucleic acid test was positive, and the green ones represent
the days on which nucleic acid test was negative. A total of 275 serum samples were collected from 54 COVID-19 patients at different time points for
MS analysis as indicated with ∗.

Table 1. Clinical Characteristics of COVID-19 Patients and Controls

COVID-19

variables total (n = 144) non-severe (n = 108) severe (n = 36) non-COVID-19 (n = 24) healthy control (n = 21)

Sex- No. (%)
male 77 (53) 57 (53) 20 (56) 16 (67) 14 (67)
female 67 (47) 51 (47) 16 (44) 8 (33) 7 (33)
Age- Yr.
mean ± SD 47.7 ± 14.5 45.0 ± 14.2 55.7 ± 12.5 49.3 ± 14.3 45.2 ± 8.0
median (IQR) 47.0 (38.0−56.0) 44.5 (37.0−54.0) 55.0 (47.8−65.0) 54.0 (36.5−61.0) 46.0 (38.0−51.5)
range 4.0−86.0 4.0−86.0 33.0−79.0 23.0−67.0 28.0−57.0
Time from Onset to Admission, Days
mean ± SD 7.0 ± 4.1 6.7 ± 3.8 7.9 ± 4.9
median (IQR) 6.0 (4.0−10.0) 6.0 (4.0−9.0) 7.5 (4.0−11.0)
range 1.0−24.0 1.0−18.0 1.0−24.0
Time from Admission to Severe, Days
mean ± SD 2.6 ± 1.5
median (IQR) 2.0 (1.0−3.8)
range 0.0−7.0
Time from Admission to Discharge, Days
mean ± SD 21.6 ± 9.4 20.5 ± 9.7 24.7 ± 7.8
median (IQR) 21.5 (13.0−28.0) 20.0 (13.0−27.0) 23.0 (19.3−31.8)
range 6.0−44.0 6.0−44.0 9.0−40.0
Symptoms- No. (%)
with fever 104 (72.2) 70 (64.8) 34.0 (94.4)
without fever 40 (27.8) 38 (35.2) 2 (5.6)
Comorbidity- No. (%)
with comorbidity 59 (41.0) 41 (37.9) 18 (50.0)
without comorbidity 85 (59.0) 67 (62.1 18 (50.0)
Chest CT- No. (%)
abnormal chest radiographs 141 (97.9) 105 (97.2) 36 (100.0)
total sample- no. 631 380 251 24 21
sample with MS analysis- no. 275 147 128 24 21
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proteome profiling. Together, these studies suggested that
proteomics profiling coupled with machine learning could
effectively facilitate COVID-19 patient stratification.
In addition, dynamic monitoring of some clinical tests, such as

antibody titers, expression of serum inflammatory markers,13 X-
ray,14 and CT scan,15 are empirically used to monitor the
COVID-19 disease progression. This study investigated the
potential of using blood protein measurement and machine
learning to monitor the course of COVID-19.

■ MATERIALS AND METHODS

Patients and Samples

In this study, the patient cohort was from the Taizhou Public
Health Medical Center (TPHMC) of Taizhou Hospital
between January 17 and March 10, 2020. During this period,
144 individuals diagnosed with COVID-19 based on the
Diagnostic and Treatment Criteria (Trial version 5)4 were
involved (Figure 1, Table 1). These 144 COVID-19 patients
were classified in two categories: non-severe (n = 108) and
severe (n = 36) cases.4 Patients were diagnosed as severe cases if
they met any of the following conditions: (i) respiratory distress,
with a respiratory rate ≥ 30/min; (ii) oxygen saturation ≤ 93%
in resting-state; (iii) partial arterial oxygen pressure (PaO2)/
oxygen absorption concentration (FiO2) ≤ 300 mmHg. The
study also included 24 non-COVID-19 patients with flu-like
symptoms and 21 healthy individuals as a control group. This

study was approved by the Ethical/Institutional Review Boards
of both Taizhou Hospital and Westlake University. Informed
contents from patients were waived by the boards.

COVID-19 Disease Stages

In this study, the disease course of 144 COVID-19 patients was
split into five stages based on their clinical phenotypes (Figure
2A). Stage 1 refers to the first 48 h after admission, while stage 3
covers 96 h, the 48 before and the 48 after the virus test turned
from positive to negative. Stage 5 refers to the 48 h before
discharge. Stage 2 refers to the period between stages 1 and 3,
and stage 4 between stages 3 and 5. As shown in Figure 2A,
stages 1 and 2 belong to the nucleic acid positive (NCP) stage
(highlighted in pink), while stages 4 and 5 belong to the nucleic
acid negative (NCN) one (highlighted in green).

Peptide Preparation from Serum Samples

Peptides were extracted from the serum samples as previously
described.12 Briefly, after inactivation and sterilization at 56 °C
for 30 min, the serum samples were lysed using a lysis buffer (8
M urea in 100 mM ammonium bicarbonate, ABB) at 32 °C for
30 min. The serum proteins were then reduced and alkylated
using 10 mM tris (2-carboxyethyl) phosphine (TCEP) and 40
mM iodoacetamide (IAA), respectively. Before the enzymatic
digestion, 200 μL of 100 mM ABB was added to the samples to
dilute the urea. The protein extracts were then digested with a
two-step tryptic digestion, an enzyme-to-substrate ratio of 1:20
(final ratio 1:10), and each step at 32 °C for 60 min. The

Figure 2. Study design. (A) Five stages of the COVID-19 course. Different colors represent different stages. (B)Workflow of the SWATH-MS and the
data analysis. Study population: 36 severe and 108 non-severe COVID-19 patients, 24 non-COVID patients, and 21 healthy individuals. A total of 320
serum samples were analyzed by SWATH-MS. Dysregulated serum proteins were analyzed by ANOVA and Mfuzz in the five stages of the severe and
non-severe COVID-19 cases, respectively. On the basis of the resulting dysregulated proteins, twomachine learning models were built to identify NCP
and NCN.
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digestion was then stopped by adjusting the pH to 2−3 using 1%
trifluoroacetic acid (TFA). Peptides were next cleaned with C18
SOLAu columns (Thermo Fisher Scientific, San Jose, USA)
before MS analysis.

Spectral Library for DIA

The nanoflow DIONEX UltiMate 3000 RSLCnano System
(Thermo Fisher Scientific, San Jose, USA) with an XBridge
Peptide BEH C18 column (300 Å, 5 mm × 4.6 mm × 250 mm)
(Waters, Milford, MA, USA) was used for high-pH fractiona-
tion. A complex peptide sample was fractionated into 90 aliquots
using a 5−35% acetonitrile (ACN) gradient in 10 mM ammonia
(pH = 10.0) at a flow rate of 1 mL/min. The resulting 90
aliquots were next combined into 45 fractions. The peptides
were dried and redissolved in 2%ACN/0.1% FA, and each of the
45 peptides fractions was injected into the Eksigent NanoLC
400 System (Eksigent, Dublin, CA, USA) coupled with
TripleTOF 5600 and 6600 system (SCIEX, CA, USA) for
information-dependent acquisition (IDA) MS analysis. The
online HPLCwas performed at a flow rate of 5 μL/min with a 90
min gradient of 5%−32% buffer B (buffer A: 2% ACN, 0.1%
formic acid; buffer B: 98% ACN, 0.1% formic acid). In the IDA
method, the accumulation time for the MS1 and MS2 scans was
set to 250 and 50 ms, respectively. The MS/MS scans were
performed for the top 40 precursors, resulting in a total cycling
time of 2.3 s. All 45 fractions were acquired in a TripleTOF 6600
MS. Then 36 out of 45 fractions were further combined into 12
and analyzed in a TripleTOF 5600MS. In total, 57 IDA wiff files
were analyzed using Maxquant,16,17 MSFragger,18 pFind,19,20

and merged to a serum spectral library containing 10 001
peptides and 2592 protein groups.21 We next built a subset
library containing 3474 peptides precursors and 536 protein
groups for SWATH-MS data analysis, as previously described.22

SWATH-MS Analysis

The peptides samples were injected into an Eksigent NanoLC
400 System (Eksigent, Dublin, CA, USA), coupled with a
TripleTOF 5600 system (SCIEX, CA, USA) for the SWATH-
MS analysis. For each sample, 500 ng of peptides was separated
along an analytical column (3 μm, ChromXP C18CL, 120 Å,
150 × 0.3 mm) with a 20 min LC gradient of 5−30% buffer B, at
a flow rate of 5 μL/min. A 55 variable Q1 isolation window
scheme was set for the SWATH method used in this study
(Table S1A). The accumulation time was set to 100 ms for the
MS1 scan and 31 ms for the MS/MS scan. The duty time per
cycle was 1.8 s.
The SWATH wiff files were converted into mzXML format

using msConvert23 and analyzed using OpenSWATH (version
2.4)24 against the serum spectral library established above. The
retention time extraction window was set to 120 s, and the m/z
extraction for MS1 andMS2 was performed atm/z tolerances of
20 and 50 ppm, respectively. The retention time was then
calibrated using common internal retention time (CiRT)
standards peptides (Table S1B).25 The m/z extraction for
CiRT peptides was performed at an m/z tolerance of 50 ppm.
The peptides precursors were identified by OpenSWATH and
pyprophet with FDR < 0.01. The C-reactive protein (CRP) data
were manually analyzed with Skyline.26 The retention time was
predicted by the above-mentioned CiRT peptides, and the
isolation time window was set to 2 min. The mass analyzer for
MS1 and MS/MS was set to “TOF”, with a resolution power of
30 000.

Clinical Assays

The serum concentrations of serum amyloid A (SAA) (mg/L)
andCRP (mg/L) were measured with the immunoturbidimetric
method (the kit for SAA protein assay from Ningbo Purebio
Biotechnology co. Ltd., and the kit For CRP Assay from
Beckman Coulter). The serum concentrations of triglyceride
(TRIG) (mmol/L) and low-density lipoprotein (LDL) (mmol/
L) were assayed with the glycerophosphate oxidase peroxidase
(GPO-PAP) and the creatine phosphate substrate method,
respectively. The kits for TRIG and LDL assays were both from
Beijing Leadman Biochemistry Co., Ltd. These assays were
performed on an AU5821 analyzer (Beckman Coulter,
California, USA). The mean platelet volume (MPV) (fL) was
measured using K2 EDTA anticoagulant peripheral blood
samples with the Coulter principle on a 2100D analyzer
(Sysmex, Kobe, Japan).
Statistical Analysis and Machine Learning

The dysregulated serum proteins along with five disease stages
(Figure 2A) were analyzed using ANOVA. The Pearson
correlation coefficient (r) was calculated by the “cor” function
in R (version 3.6.1) with the missing value options set to
“pairwise.complete.obs”. The random forest analysis was
performed with the R package randomForest (version 4.6.14)
as previously described12 with some modifications. The key
random forest parameters, including the cutoff values, were
optimized for the decreasingmean accuracy, the cross-validation
fold, and the number of trees. We selected the input protein
features and the clinical features for machine learning based on
the decreasing mean accuracy cutoff. Six-fold cross-validation
was performed and repeated 50 times to optimize the model. A
total of 600 trees were built. The minimal decreasing mean
accuracy of protein and clinical features for severe models was
set to 3 and for non-severe ones to 0. The mtry for severe and
non-severe models was set to the square root of 8 and 23,
respectively.

■ RESULTS AND DISCUSSION

Study Design

For the classification as nucleic acid positive (NCP) or nucleic
acid negative (NCN) using machine learning models, we used
the clinical data derived from 631 serum samples collected from
the 144 patients across these five stages. We also analyzed the
proteome of 275 samples, based on sample availability, using
SWATH-MS. Additionally, we collected 45 samples from 24 flu-
like non-COVID-19 patients and 21 healthy individuals, as
controls. The detailed information on these patients and
samples is provided in Table 1 and Table S2A. The average
age of the COVID-19 patients was 47.7 ± 14.5 years, with 77
(53.5%) male and 67 (46.5%) female patients. Fever was their
most common symptom (n = 104, 72.2%). The average interval
from the onset of the symptoms to the hospital admission was 6
days (IQR 4−10). The median length of hospitalization was
21.5 days (IQR 13−28). A total of 141 (97.9%) patients had
abnormal chest radiographs, and 59 (41.0%) had coexisting
conditions.
Temporal Proteomics Profiling of 320 Serum Samples by
SWATH-MS

To obtain the temporal proteomics profiling data, we analyzed
320 serum samples using microflow short-gradient single-shot
SWATH-MS.27 These samples included 128 from 20 severe
patients, 147 from 34 non-severe patients, 24 from 24 non-
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COVID-19 patients, and 21 from 21 healthy individuals (Figure
1, Figure 2B, Table S3A). A protein matrix including 337 serum
proteins, with 21.5% missing values, was generated (Table S3B)
using OpenSWATH (version 2.4), with an in-house serum
spectral library containing 3474 peptide precursors and 536
protein groups using the SubLib strategy.22

During the SWATH data acquisition, we included seven
pooled samples injected every 50 samples for the quality control
(QC) of the MS. The Pearson coefficient of these QC samples
was 0.87 (Figure S1). We also included 27 pairs of randomly
selected biological replicates and 22 pairs of randomly selected
technical replicates, once again for quality assessment. The
median Pearson correlation coefficients of these biological and
technical replicates were 0.87 and 0.90 (Figure S2), respectively,
suggesting a relatively high degree of consistency and
reproducibility.
ANOVAwas used to identify the dysregulated proteins during

the five stages of the entire COVID-19 course for the severe and
the non-severe patients. We found that 120 and 31 proteins were
significantly dysregulated in the severe and non-severe groups,
respectively (p-value < 0.05). Mfuzz analysis28 was then used to
cluster the dysregulated proteins derived from the ANOVA
analysis. A total of 42 and 12 proteins exhibited consistent down-
or up-regulation, respectively, during the five disease stages
(Figure 3A, Table S3C). The resulting 48 dysregulated and

unique proteins were then run through the machine learning
analysis described in the next section (Figure 3B, Table S3C).
We also explored the perturbed pathways over the course of
COVID-19 for the 48 dysregulated proteins using Ingenuity
Pathway Analysis (IPA), and nine pathways were enriched
(Figure S3). Among them, four pathways, including LXR/RXR
activation, FXR/RXR activation, IL-12 signaling and production
in macrophages, and production of nitric oxide and reactive
oxygen species in macrophages, were related to host defense,
which might influence the outcome of the disease. We also
observed dysregulation of the complement system, which was
reported to be associated with the severity of COVID-19.12,29,30

Additionally, we analyzed the correlation between the 48
dysregulated proteins (Table S3C) and 54 clinical indexes for
COVID-19 patients. A total of 10 dysregulated proteins highly
correlated with 16 clinical indexes (Table S2B) have been
previously reported to be associated with COVID-19 severity
(Figure S4).11,31−36 This result further corroborates these
proteins as potential biomarkers for the monitoring of the
disease progression.

Classification of COVID-19 Stages with Machine Learning

We next built two machine learning models to investigate the
possibility of distinguishing the NCP and NCN stages of severe
and non-severe COVID-19 patients, respectively (Figure 4A).

Figure 3. Dysregulated serum proteins dynamics in the course of COVID-19. (A) Three clusters of proteins identified with Mfuzz analysis showed
trends of continuous changes in the five stages of severe COVID-19 course. One cluster showed an upward trend for the non-severe COVID-19 course.
(B) Heatmap of 48 dysregulated proteins in the five stages of the COVID-19 course. Proteins with green boxes were selected as input features for the
machine learning models using ANOVA and Mfuzz.
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Toward this goal, we used the dysregulated proteins previously
identified in our proteomics analysis and other relevant clinical
indexes. One patient only had one sample for stage 3 and thus
was excluded from this analysis.
For the severe group, we built a random forest model based on

the serum proteome data (n = 85) and a set of characteristic
features including the 42 dysregulated proteins (Table S3C) and
11 clinical indexes selected in our previous study.37 Specifically,
the 11 clinical indexes were the oxygenation index, the basophil
count (BASO#), aspartate aminotransferase (AST), gender,
magnesium (Mg), gamma-glutamyl transpeptidase (GGT), the
platelet count, the activated partial thromboplastin time
(APTT), the oxygen saturation (SaO2), body temperature,
and the days after the symptoms’ onset. After a 6-fold cross-
validation using the training set and feature selection, we
identified the eight features providing the highest accuracy for
the severe cases (mean decrease accuracy > 0, which represents
the loss of accuracy): interalpha-trypsin inhibitor heavy chain
H1 (ITIH1), alpha-1-microglobulin (AMBP), apolipoprotein E

(APOE), fibronectin (FN1), membrane-bound transcription
factor site-1 protease (MBTPS1), apolipoprotein H (APOH),
zinc-alpha-2-glycoprotein (AZGP1), and the days after the
symptoms’ onset (Figure 4B).
We thus tested this model using 30 independent samples and

achieved an area under the curve (AUC) of 0.94 (Figure 4C). All
samples were correctly classified, except one (CVDSBB629)
belonging to the NCN stage (prediction accuracy = 0.97). This
sample, derived from a 77-year old severe female patient with
hypertension and diabetes, was incorrectly classified by our
machine learning model to belong to the NCP stage (Figure
4D). During her hospitalization, this patient was diagnosed with
renal insufficiency, type 1 respiratory failure, cardiac insuffi-
ciency, hypoproteinemia, and fungal infection. Multiple
pathological alterations were also discovered including aortic
wall calcification, cystic lesions of the pancreas, and small stones
in the left kidney in this patient. These multiorgan dysfunctions
and her treatment history may thus have compromised the
model’s prediction for this patient.

Figure 4.Machine learning models for predicting the stage of the severe and non-severe courses. (A) Workflow of two machine learning models built
with proteomics quantitative data and clinical indexes. (B) Prioritization of 8 important variables in the severe model and 23 important variables in the
non-severe model. (C) ROC plots for the twomachine learningmodels of the severe (left) and the non-severe patients (right). (D) Performance of the
severe and the non-severe models in the two test cohorts of 30 independent samples. The labeled numbers represent the sample ID.
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For the non-severe group, another random forest model was
built based on the serum proteome data (n = 108). This model
also included 12 dysregulated proteins (Table S3C), as
previously described, and 11 clinical indexes37 with high
accuracy (mean decrease accuracy > 0, which represents the
loss of accuracy) (Figure 4B). The model achieved an AUC of
0.89 with the independent test set (Figure 4C), leading to the
correct identification of 25 samples (prediction accuracy = 0.83)
from the non-severe group (Figure 4D). The sample
(CVDSBB611) from a 54 years old non-severe male patient
was placed by our model in the NCP stage, even though it
belonged to the NCN stage according to RT-PCR test. The
nucleic acid test, however, was positive in his stool sample
collected 14 days after discharge and negative in the pharyngeal
swab. The complexity of the COVID-19 viral infection may thus
provide several confounding factors. Another two samples
(CVDSBB276 and CVDSBB278), incorrectly classified into the
NCP stage, were both from a 53-year old non-severe female
patient who underwent hysterectomy and was the only patient
affected by anemia. Her surgery history and anemia status may
thus have acted as confounding factors for our machine learning
prediction. Additionally, one month after discharge, she was
found positive for antinuclear antibodies, which may be another
confounding factor. The relatively lower accuracy in predicting
the disease course of non-severe patients was not a surprise: non-
severe cases are generally less infected by the virus and tend to
recover faster.
The selected features of the severe and the non-severe groups

had only three overlapped proteins (APOH, APOE, and FN1)
and one overlapped clinical index (the days after the symptoms’
onset) between the two groups and thus supported the need to
build two separate models.
We also attempted to build models for the COVID-19

patients using the 11 clinical indexes without proteins expression
data. The prediction accuracy and AUC of the model were 0.80
and 0.85 for the 36 severe cases, respectively, while the accuracy
and AUC of 108 non-severe cases were 0.77 and 0.86,
respectively (Figure S5). We then used this model to classify
those COVID-19 patients from whom specimens had been

characterized by proteomics. The 34 non-severe cases achieved
an accuracy of 0.77 and an AUC of 0.80, while the 19 severe
cases exhibited a prediction accuracy of 0.90 and an AUC of 0.89
(Figure S6). Our models, including proteomics data, thus
provided a higher prediction accuracy and AUC, further
consolidating the value of serum proteins expression in
COVID-19 monitoring.

Eight Significantly Dysregulated Proteins in COVID-19 Sera

On the basis of the dysregulated serum proteins shortlisted by
our machine learning models, we further characterized the
COVID-19 specific proteins by comparing their expression
among three groups: stage 1 of COVID-19 patients, non-
COVID-19 patients, and healthy controls. Comparing the stage
1 of COVID-19 patients with the healthy controls, we identified
eight significantly dysregulated proteins, seven for the non-
severe, and three for the severe subgroups (p-value < 0.05 and |
log 2(fold change)| > log 2(1.2); Figure 5, Table S3D). These
are apolipoprotein A-IV, B, C−II, C−III, H (APOA4, APOB,
APOC2, APOC3, APOH), heparin cofactor 2 (SERPIND1),
FN1, and ITIH1. Among them, compared with non-COVID-19
patients, APOB, APOA4, and APOH were also significantly
dysregulated in the severe group, while APOH was dysregulated
in the non-severe group. APOB and SERPIND1 have been
reported to be associated with COVID-19 severity.38

Compared to the non-COVID-19 and the healthy groups,
these eight proteins were all down-regulated at stage 1 and then
gradually returned to relatively normal levels at stage 5 (Figure
5). APOA4, APOB, APOC2, and APOC3 are all apolipoproteins
and components of the triglyceride-rich lipoproteins (TRLs)
involved in lipid metabolism. Down-regulation of APOA4 in
COVID-19 patients has been documented previously.39 Among
the TRLs, low-density lipoprotein (LDL) significantly decreases
in COVID-19 patients and has been thus considered as a
predictor of poor prognosis.33 As the major component of LDL,
APOB was downregulated at stage 1, possibly modulated by
proinflammatory cytokines. During the infection, induced
proinflammatory cytokines not only regulated the lipids
metabolism but also increased the vascular permeability and

Figure 5. Eight significantly dysregulated proteins in COVID-19 compared to non-COVID-19 patients or healthy controls. Expression level changes of
APOA4, APOB, APOC2, APOC3, APOH, SERPIND1, FN1, and ITIH1 in the five stages of the COVID-19 course as well as in non-COVID-19
patients and healthy controls. Asterisks indicate the statistical significance based on the unpaired two-sidedWelch’s t test p-value: *, < 0.05; **, < 0.01;
***, < 0.001; ****, < 0.0001.
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thus led to the plasma lipid leak.33 The downregulation of these
serum apolipoproteins in COVID-19 patients suggested a
hyperinflammatory response and a damaged vascular perme-
ability. APOH, SERPIND1, and FN1 all contributed to blood
coagulation. APOH was reported to inhibit the aggregation of
platelets and the intrinsic blood coagulation cascade.40,41

SERPIND1, a protease inhibitor of the anticoagulant system,
inhibits thrombin,42 while thrombin is a coagulation factor of the
extrinsic pathway of blood coagulation and could also induce the
aggregation of platelets.43 Plasma FN1 is an extracellular
glycoprotein that participates in the formation of platelet
clumps and stabilizes the aggregation of platelets.44 The
dysregulation of APOH, SERPIND1, and FN1 and their
dynamic expression may thus indicate a dysregulation of the
coagulation system during COVID-19. In addition, FN1, a
major component of the extracellular matrices, could interact
with viral proteins and mediate their entry.45,46

Limitations of This Study

This study analyzed the proteome of 320 serum samples from 54
COVID-19 patients and 45 control individuals. On the basis of
the current situation in China, it is difficult to obtain an
independent validation cohort of COVID-19 patients. More
specimens from independent hospitals should be included in
future studies to further validate our results. The number of
samples in the NCP stage is about twice that in the NCN stage,
which is not ideal for ordinary machine learning. For this
method to be clinically applicable, the protein measurements
should be implemented by targeted assays using SRM/MRM.
Finally, mass spectrometry is currently less accessible than PCR.
To fully implement the strategy described, systematic efforts to
optimize and validate mass spectrometers for clinical environ-
ments will thus be required.

■ CONCLUSION
In this study, we present a new strategy to monitor the
progression of COVID-19 that may complement RT-PCR-
based nucleic acid tests. We show that serum protein biomarkers
coupled with machine learning could be used to monitor the
progression of COVID-19. As far as we know, this study is the
first to apply serum proteomics to complement nucleic acid
monitoring and predict the disease course of COVID-19. As we
lack of an effective way to reduce the false negatives of routine
RT-PCR tests, MS-based proteomics may play a complementary
role in such clinical applications. Compared with ELISA, which
detects proteins (including cytokines) using antibodies, MS-
based methods require relatively small amounts of serum
samples (1 μL), offer quantitative data, and can use high-
temperature inactivated serum samples. Our analysis also
identified 48 significantly dysregulated proteins during five
stages of the COVID-19 progression.
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