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Dissecting the characteristics of the transcription factor (TF) regulatory subpathway is helpful for understanding the TF underlying
regulatory function in complex biological systems. To gain insight into the influence of TFs on their regulatory subpathways, we
constructed a global TF-subpathways network (TSN) to analyze systematically the regulatory effect of common-motif, common-
family, or common-tissue TFs on subpathways. We performed cluster analysis to show that the common-motif, common-family,
or common-tissue TFs that regulated the same pathway classes tended to cluster together and contribute to the same biological
function that led to disease initiation and progression. We analyzed the Jaccard coefficient to show that the functional consistency
of subpathways regulated by the TF pairs with commonmotif, common family, or common tissue was significantly greater than the
random TF pairs at the subpathway level, pathway level, and pathway class level. For example, HNF4A (hepatocyte nuclear factor
4, alpha) and NR1I3 (nuclear receptor subfamily 1, group I, member 3) were a pair of TFs with common motif, common family,
and common tissue. They were involved in drug metabolism pathways and were liver-specific factors required for physiological
transcription. In short, we inferred that the cofunctional subpathways were regulated by common-motif, common-family, or
common-tissue TFs.

1. Introduction

Themechanism of transcriptional regulation of coding genes
is one of the basic contents in systems biology. Transcriptional
factors (TFs) are proteins that regulate several target genes by
binding DNA motifs at the transcriptional level [1–5]. Some
investigators have reported that TFs take part inmany impor-
tant biological functions and human diseases, such as cell dif-
ferentiation, proliferation, immune response, apoptosis, car-
diac diseases, and tumor development [6–9]. Dissecting the
characteristics of TFs is helpful for understanding their regu-
latory function in complex biological systems. An increasing
number of studies have demonstrated that TFs with similar
motifs often (which were defined as common-motif TFs in
the paper) recognize target genes with similar expression

patterns [10], and in a similar way, TFs with different motifs
may directly show different functions [11]. Several researchers
have revealed that TFs in the common family (were defined as
common-family TFs in the paper) have strong homology and
the TFs are functionally related [12]; TFs in the transcription
factor family are functional redundancies [13]; and TF family
members share a relatively high degree of similarity in
genomic structure and gene arrangement [12–14]. Several
studies have demonstrated that TFs in the common tissue or
cell line (were defined as common-tissue TFs in the paper)
play critical roles in disease progression [15].

Currently, the regulatory functional interpretation of TFs
mainly relies on activating or inhibiting their target genes
[16, 17]. Several studies have revealed the functions of TFs
based on the enrichment analysis of their target genes from
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a number of pathways [18–22]. Subpathways (local regions
within an entire biological pathway) exert certain functions
on practical biological processes, disease development, and
drug treatment [23–27]. Subpathway recognition is crucial
because it is capable of focusing on local variation, increasing
our power to identify the underlying causal genes, and may
give us more detailed explanations of the biological process
and pathogenesis of human disease.

In this study, we dissected the regulatory influence of
common-motif, common-family, or common-tissue TFs on
cofunctional subpathways. Cofunctional subpathways are
defined as subpathways that belong to the same pathway
or pathway class. To gain insight into the relationships
between TFs and their regulatory subpathways, we con-
structed a bipartite network TF-subpathways network (TSN)
to explore the regulatory influence of TFs on subpath-
ways. Through one-way cluster analysis, the common-motif,
common-family, or common-tissue TFs that regulated the
same pathway classes tended to cluster together, and through
Jaccard coefficient analysis, the subpathways regulated by the
TFs with common motif, common family, or common tissue
were functionally consistent at the subpathway, pathway, and
pathway class levels.These findings help us to understand the
mechanisms of the regulatory effects of TFs on subpathways
and provide a more detailed picture of biological processes
and complex human diseases.

2. Materials and Methods

2.1. Preparation of the Data

2.1.1. TF Information. Transfac Professional (licensed on
December 15, 2012) [28] provided details of the relations
between TFs and their target genes, verified by biologists.
We acquired 4598 transcription relations between 492 human
TFs and 1557 target genes. We extracted 1061 human TF
binding motifs. We extracted 80 unique TFs belonging to
29 families. We obtained 343 unique TFs expressed on 122
unique human tissues or cell lines.

2.1.2. Subpathway Data. We used R package of iSubpath-
wayMiner [24] to find the subpathways in public Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (http://www.kegg
.jp/) pathways database [29]. According to the pathway classi-
fication in KEGG, all subpathways were grouped into cellular
processes (CP), environmental information processing (EIP),
human diseases (HD), metabolism (Met), and organismal
systems (OS).

2.2. Identifying the Subpathways Regulated by TFs. Cumu-
lative hypergeometric enrichment analysis was used for
identification of subpathways, in which TF target genes were
significantly enriched. The 𝑝 value can be calculated to
evaluate the enrichment significance for that subpathway as
follows:

𝑝 = 1 −

𝑟−1

∑

𝑥=0

( 𝑡
𝑥
) (𝑚−𝑡
𝑛−𝑥
)

(
𝑚

𝑛
)
. (1)

We supposed that thewhole human genomehad𝑚 genes, and
among those, 𝑡 genes were included in the subpathway. The
number of target genes of one TF is 𝑛, of which 𝑟 are involved
in the same subpathways.

2.3. Evaluating the Consistent Function of Subpathways. We
proposed a hypothesis that one TF pair regulated the con-
sistent functional subpathways if they had common motif,
common family, or common tissue. We applied the Jaccard
coefficient to evaluate the consistent function of subpathways
for TF pairs with a common motif, common family, or
common tissue. The Jaccard coefficient is

𝐽 (𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
. (2)

Assume TF1 and TF2 are a pair of common-motif,
common-family, or common-tissue TFs, where𝑋 represents
the subpathways regulated by TF1 and 𝑌 represents the sub-
pathways regulated by TF2. 𝐽 is the number of intersections
of𝑋 and 𝑌 divided by the number of unions of𝑋 and 𝑌. The
range of Jaccard coefficient, 𝐽, is from 0 to 1. If TF1 and TF2
annotated the same subpathway set, then 𝐽 = 1, and if TF1 and
TF2 annotated entirely different subpathways, then 𝐽 = 0.The
higher Jaccard value means stronger similarity, while lower
valuesmeanweaker similarity, so we can use the Jaccard coef-
ficient to evaluate the consistent functionality of subpathways
regulated by a pair of TFs with common motif, common
family, or common tissue. At the pathways or pathway
classes level, Jaccard coefficient is also used to evaluate the
consistent functionality of subpathways, where 𝑋 represents
the pathways or pathway classes that include the subpathways
regulated by TF1 and 𝑌 represents the pathways or pathway
classes that include the subpathways regulated by TF2.

3. Results

3.1. TF-Subpathway Network (TSN). We constructed a global
TSN based on TFs and subpathway data (Figure 1) and
systematically analyzed the characteristics of TFs that affected
subpathways. We obtained all terms of TF binding sites
(𝑛 = 21 038) information from the authoritative Transfac
database. After filtering, we obtained 4598 specific human
transcriptional regulatory relations between 492 TFs and 1557
target genes, verified by biologists. For each TF, we used
the “𝑘-cliques” subpathway identification method provided
by the iSubpathwayMiner software package to identify sig-
nificantly enriched subpathways based on the TF-regulated
target gene set, when 𝑘 = 3 and 𝑝 < 0.01. 𝑘 = 3 meant
that the distance among the genes in one subpathway was not
greater than 3 to ensure that genes in the subpathways have
highly similar functions. We obtained 1490 significant TF-
subpathway associations between 89 TFs and 468 subpath-
ways (Table S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/780357). We constructed a
bipartite network consisting of TFs and subpathways in
which a TF and a subpathway were connected if the TF
target genes were significantly enriched in the corresponding
subpathways (Figure 2).
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Figure 1: Continued.
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(e) Jaccard coefficient

(f) Jaccard coefficient of HNF4A and NR1I3
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Figure 1: Continued.
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Figure 1: Schematic of the construction of the global TSN based on TF target genes and pathway structure data fromKEGG. (a)We extracted
21038 TFs that were verified through biology experiment from Transfac Professional database and then filtered redundant terms and species
and obtained 4598 pairs of human TF target gene associations. (b)We used the 𝑘-clique subpathwaymethod to identify significantly enriched
subpathways to generate TF-subpathway associations. (c)We combined these TF-subpathway associations to form the TSN. (d)We used one-
way clustering between TFs and subpathways to analyze the regulatory effects of common-motif, common-family, and common-tissue TFs on
cofunctional subpathways. (e) Jaccard coefficient was applied to evaluate the functional consistency of the common-motif, common-family,
and common-tissue TFs at the subpathway, pathway, and pathway class levels. (f) HNF4A and NR1I3 were a pair of TFs with commonmotif,
common family, and common tissue. Jaccard coefficient at subpathways level, pathways level, and pathway classes level. (g) HNF4A regulated
subpathway 00982-10, and NR1I3 regulated subpathway 00982-4, and they have shared genes (CYP3A4, CYP3A5, and CYP2C).

The TSN was composed of 557 nodes (468 subpathways
and 89 TFs) and 1490 edges (Figure 2(a)). We calculated
the size of the giant component of TSN (Figure 2(b)). The
giant component was the largest connected component of
a network and measured local functional clustering when
compared to random networks.The TSN network connected
most TFs and subpathways into a highly interlinked giant
component, with strong local clustering of TFs and subpath-
ways. We constructed 1000 random networks by randomly
shuffling the relations between the 1490 pairs of TFs and
subpathways, while keeping the number of each TF and
subpathway unchanged. We compared the giant component
of the real TSN and 1000 random networks, which showed
that the actual size of the giant component of the TSN (521)
was significantly smaller (experiential𝑝 = 0) than the average
giant component of randomized networks (554.963).

We paid close attention to the TF degree distribution.
As shown in Figure 2(c), a small number of TFs had higher
connectivity, which meant that these TFs regulated many
subpathways. For example, SP1 had the highest degree (186)
(Table S2). This might be because it could activate or inhibit
the expression of a number of essential oncogenes and
tumor suppressors, and SP1 took part in the main biological
processes such as cell growth, apoptosis, differentiation,
immune response, response to DNA damage, and chromatin
remodeling [30, 31]. Tumor suppressor gene TP53 had higher

degree (72) than other TFs, and it is always present in
many types of human cancer. For example, TP53 gene
mutations are more frequent in cervical adenocarcinoma
[32]. In addition, we also calculated the degree distribution
of the subpathways (Figure 2(d)).We evaluatedwhich kind of
subpathway was preferentially regulated by TFs. We grouped
all the subpathways into the categories of Met, OS, CP, HD,
andEIP, according to the pathway classification ofKEGG.The
average degrees of the five subpathway groups were 4.0000,
2.6026, 5.2982, 3.0372, and 1.9250 (𝑝 = 2.77 × 10−11 by
one-way ANOVA test), respectively. Therefore, the cellular
processes subpathways had the greatest opportunity of being
regulated by TFs, such as the cell cycle subpathway (path:
04110 18) and TP53 signaling pathway (path: 04115 1). This
finding was consistent with a previous study that showed that
TF preferred to regulate cellular process genes [33].

3.2. Common-Motif TFs Tend to Regulate Cofunctional Sub-
pathways. The common conserved sequence of the TF bind-
ing sites is called a motif. Some studies have indicated
that motif sequence is associated with TF function. TFs
with similar motifs often recognize target genes with sim-
ilar expression patterns [10], and TFs with different motifs
may directly influence different TF function [11], and TFs
influence pathways initiated by specific DNA-binding motifs
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Figure 2:The TSN is a bipartite network. (a)The circles and rectangles in the network represent TFs and subpathways, respectively. A pair of
TFs and a subpathway were connected by an edge if the set of target genes of TF was significantly enriched in the corresponding subpathway.
Node size was proportional to the degree of the node. Edges were colored according to the enrichment significance (𝑝 < 0.01) of associations
between TF target genes and subpathways. (b) Component size distributions of TFs and subpathways in the TSN and random network. The
actual size of the real network giant component was smaller than that of the 1000 randomly shuffled TFs (521 versus 554.9630, experiential
𝑝 = 0). (c) Bar plot of degree of TF distribution in the TSN. (d) Bar plot of degree of distribution of subpathways in TSN.
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Figure 3: One-way clustering to TFs with common motif of the TSN. (a) One-way clustering between 83 TFs and 436 subpathways. The
corresponding cell was colored orange if there was an edge between the TF and subpathway in the TSN. Subpathway labels were colored
according to the pathway class colors used in Figure 2. (b) Zoom-in plot of part of the orange circled region in (a), showing the TFs with
similar motif and pathway class. (c) Zoom-in plot of part of the subpathway labels in the lower-right region of (a).

[34]. To explore whether the common-motif TFs tended to
regulate cofunctional subpathways, we extracted 1061 human
DNA motifs from the Transfac database. We obtained 15 150
pairs of TFs with similar DNAmotifs (using STAMP software
(http://www.benoslab.pitt.edu/stamp) [35] with 𝑒 value <
0.01), of which 610 pairs (83 unique TFs in the TSN) had
similar DNA motifs. These TFs annotated 436 subpathways,
forming 1402 relations (Table S3).

To examine whether common-motif TFs regulated the
cofunctional subpathways, we applied one-way clustering to
the 83 unique TFs and 436 unique subpathways (Figure 3(a)).
The common-motif TFs that regulated the same pathway
classes tended to group together. For example, IRF7 (the
interferon regulatory factor 7) driven regulatory cascade
in which genetic variation on chromosome 15q25 leads to

type 1 diabetes (pathway: 04940) [36] and XBP1 (X-box
binding protein 1) induce pancreatic beta cell dysfunction
and apoptosis of type 1 diabetes [37] (Figure 3(b)). That is,
common-motif TFs tend to regulate the same pathway classes
and lead to the same disease.

To further investigate the effect of the common motif
TFs on subpathway, we randomly shuffled the 610 pairs of
common-motif TFs 1000 times, while keeping the number
of each TF unchanged. The average Jaccard coefficient of the
real common-motif TF pairs was significantly higher than
the average value for the 1000 times randomly shuffled TF
pairs at the subpathway level. The mean Jaccard coefficient of
the real common-motif TF pairs was 0.0568 compared with
0.0399 for the randomly shuffled TF pairs (experiential 𝑝 =
0.007, Figure 4(a)). The average Jaccard coefficient of the
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Figure 4: Jaccard coefficient. (a) The average Jaccard coefficient of common-motif TF pairs in TSN (0.0568) was significantly greater than
that of 1000 times randomly shuffled TFs (0.0399) at the subpathway level (experiential 𝑝 = 0.007). (b) The average Jaccard coefficient of
real common-motif TF pairs was significantly higher than that of random TF pairs (0.1045 versus 0.0723, experiential 𝑝 = 0) at the pathway
level. (c)The average Jaccard coefficient of real common-motif TF pairs was significantly higher than that of random TF pairs (0.3867 versus
0.3649, experiential, 𝑝 = 0.005) at the pathway class level. The result implied that TFs with similar DNA motifs regulated the cofunctional
subpathway. (d)The average Jaccard coefficient of real common-family TF pairs in TSN (0.1239) was significantly higher than that of random
TF pairs (0.005) at the subpathway level (experiential 𝑝 = 0). (e) The average Jaccard coefficient of real common-family TF pairs in TSN
(0.1478) was significantly higher than that of random TF pairs (0.0402) at the pathway level (experiential 𝑝 = 0). (f) The average Jaccard
coefficient of real common-family TF pairs in TSN (0.4088) was significantly higher than that of random TF pairs (0.2420) at the pathway
class level (experiential 𝑝 = 0). The result implied that common-family TFs regulated the cofunctional subpathway. (g) The average Jaccard
coefficient of real common-family TF pairs in TSN (0.0289) was significantly higher than that of random TF pairs (0.0048) at the subpathway
level (experiential 𝑝 = 0). (h) The average Jaccard coefficient of real common-family TF pairs in TSN (0.0935) was significantly higher than
that of random TF pairs (0.0386) at the pathway level (experiential 𝑝 = 0). (i)The average Jaccard coefficient of real common-family TF pairs
in TSN (0.4779) was significantly higher than that of random TF pairs (0.2413) at the pathway class level (experiential 𝑝 = 0).
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real common-motif TF pairs was significantly higher than
for the randomly shuffled TF pairs (0.1045 versus 0.0723,
experiential 𝑝 = 0, Figure 4(b)) at the pathway level. The
average Jaccard coefficient of the real common-motif TF pairs
was significantly higher than that of the randomly shuffled
TF pairs (0.3867 versus 0.3649, experiential 𝑝 = 0.005,
Figure 4(c)) at the pathway class level. These results revealed
a high degree of consistent functionality of subpathways
regulated by the common-motif TFs. Thus, the TSN can
help us explain the consistent function of the subpathways
regulated by the common-motif TFs. For example, HNF4A
(hepatocyte nuclear factor 4, alpha) and NR1I3 (nuclear
receptor subfamily 1, group I, member 3) have similar DNA-
binding motifs (using STAMP software [35] with 𝑒 value <
0.01) (Figure 5), and the Jaccard coefficient at the subpathway
level was 0.1538 (Figure 5(a)); the Jaccard coefficient at the
pathway level was 0.3333 (Figure 5(b)); the Jaccard coefficient
at the pathway class level was 0.3333 (Figure 5(c)). They,
respectively, regulated subpathways 00982 4 and s 00982-
10, and these subpathways belonged to the same drug
metabolism-cytochrome P450 pathway (pathway: 00982,
Figure 5(d)) [38]. HNF4A and NR1I3 regulate the drug-
metabolizing enzyme cytochrome P450 3A4 (CYP3A4)
expression. HNF4A is critically involved in the NR1I3-
mediated transcriptional activation of CYP3A4. CYP3A4 is
thought to be involved in the metabolism of nearly 50%
of all the drugs currently prescribed, and alteration in the
activity or expression of this enzyme seems to be a key
predictor of drug responsiveness and toxicity [38]. Recent
studies have identified HNF4A sites in the CYP2C8 and
CYP2C9 promoter. Silencing HNF4A reduces the constitu-
tive expression of CYP2C8 and CYP2C9. CYP2C enzymes
are expressed constitutively and comprise about 20% of
the total cytochrome P450 in human liver [39]. Constitu-
tive androstane receptor NR1I3 activates CYP2B6, CYP2C9,
and CYP3A4 expression to increase metabolic capability
[40].

3.3. Common Family TFs Tend to Regulate Cofunctional
Subpathways. TFs in a common family had similar structure.
Some researchers have revealed functional redundancies of
the TF family, and common-family TFs show functional
similarity [12–14]. Whether common-family TFs tend to
regulate the cofunctional subpathways was still unknown.We
extracted 80 unique TFs belonging to 28 families from the
Transfac database, and these TFs regulated 419 unique sub-
pathways from five pathway classes in KEGG. Eighty unique
TFs and 419 unique subpathways formed 1353 relations (Table
S4).

To test the functional consistency of subpathways reg-
ulated by the common-family TFs, we performed one-way
clustering to the 80 TFs and 419 subpathways (Figure 6(a)).
The TFs that regulated the same pathway classes tended to
gather in the same families at the local level. For example,
the steroid hormone receptors family of TFs (NR5A1, NR4A1,
and NR5A2) regulated the steroid hormone biosynthesis
pathway (pathway: 00140, Figure 6(b)). That is, common-
family TFs tended to regulate the cofunctional subpathways.

This local clustering phenomenon may be interpreted by the
small average number of TFs (2.86) in each family.

To further analyze the effects of the common-family
TFs on subpathways, we applied the Jaccard coefficient to
evaluate the consistent functionality of subpathways regu-
lated by pairs of TFs with common family. We randomly
shuffled the family information of TFs 1000 times and kept
the number of each TF (80 unique TFs) and family (28
unique families) unchanged. The average Jaccard coefficient
of real common-family TF pairs was greater than that
of the randomly shuffled TF pairs (0.1239 versus 0.0050,
experiential 𝑝 = 0, Figure 4(d)) at the subpathway level.
The average Jaccard coefficient of real common-family TF
pairs was significantly greater than that of the randomly
shuffled TF pairs (0.1477 versus 0.0402, experiential 𝑝 =
0, Figure 4(e)) at the pathway level. The average Jaccard
coefficient of real common-family TF pairs was significantly
greater than that of randomly shuffledTFpairs (0.4088 versus
0.2420, experiential 𝑝 = 0, Figure 4(f)) at the pathway
class level. These results indicated that common-family TFs
regulate cofunctional subpathways. For example, HNF4A
and NR1I3 appeared in the common steroid hormone recep-
tors TF family, and they, respectively, regulated subpathways
0098-24 and 00982-10, and these subpathways belonged
to the same drug metabolism-cytochrome P450 pathway
(Figure 5).

3.4. Common-Tissue TFs Tend to Regulate Cofunctional Sub-
pathways. TFs are always expressed in specific tissues or cell
lines. Common-tissue TFs have functional consistency [15].
We wanted to explore the consistent function of subpathways
regulated by the common-tissue TFs. We obtained 1464 rela-
tions between 122 unique tissues or cell lines and 343 unique
TFs, of which 47 unique TFs were from 45 unique tissues and
enriched in 385 unique subpathways in the TSN. So, there are
3494 relations between 47 TFs and 385 subpathways (Table
S5). We retained tissues or cell types that included at least
three unique TFs and obtained 44 unique TFs belonging to
21 tissue types, and these TF target genes were located in 378
unique subpathways, forming 2339 relations betweenTFs and
subpathways.

To examine whether common-tissue TFs regulated the
cofunctional subpathways, we applied one-way clustering to
the 44 unique TFs and 378 unique subpathways (Figure 7(a)).
The TFs that regulated the same pathway classes tended to
gather in the same tissues at the local level. For example,
SP1 and TP53 were expressed in MCF7 cells (Figure 7(b)),
increasing binding of SP1 complex to the TP53 promoter
region, which enhanced expression of tumor suppressor
factor TP53 and led to breast cancer cell apoptosis (path-
way: 04210) [41]. This means that cofunctional subpathways
regulated by common-tissue TFs tended to form many
small clusters. This local clustering phenomenon might be
explained by the following reasons: (i) the average amount
of TF (5.35) related to tissues or cell lines was small; (ii) many
TFs belonged to different tissue or cell types; and (iii) some
special tissue TFs had a fundamental biological function and
took part in many basic functions [42].
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To test the effects of common-tissue TFs on subpath-
ways in a general sense, we calculated the Jaccard coeffi-
cient for pairs of common-tissue TFs. We randomly shuf-
fled the tissue information of TFs (47 unique TFs and
45 unique tissues) 1000 times and kept the number of

each TF unchanged. The average Jaccard coefficient of real
common-tissue TF pairs was significantly greater than that
of randomly shuffled TF pairs at the subpathway level
(0.0289 versus 0.0048, experiential 𝑝 = 0, Figure 4(g)). The
average Jaccard coefficient of real common-tissue TF pairs
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Figure 6: One-way clustering to TFs with common family of the TSN. (a) One-way clustering between 80 TFs and 419 subpathways. The
corresponding cell was colored orange if there was an edge between the TF and subpathway in the TSN. Subpathway labels were colored
according to the pathway class colors used in Figure 2. (b) Zoom-in plot of part of the orange circled region in (a), showing the common
family TFs and subpathways.

was significantly greater than that of randomly shuffled TF
pairs at the pathway level (0.0935 versus 0.0386, experien-
tial 𝑝 = 0, Figure 4(h)). The average Jaccard coefficient
of real common-tissue TF pairs was significantly greater
than that of randomly shuffled TF pairs at the pathway
class level (0.4779 versus 0.2413, experiential 𝑝 = 0,
Figure 4(i)). We conclude that common-tissue TFs tend to
regulate the consistent functional subpathway at different
functional levels. For example, HNF4A and NR1I3 were

expressed in the liver (Figure 5), where they, respectively,
regulated subpathways 00982-4 and subpathways 00982-10,
which belonged to the same drug metabolism-cytochrome
P450 pathway. HNF4A and NR1I3 regulated CYP3A4, and
CYP3A4 promoter activity was most pronounced in liver
cells, indicating that CYP3A4 is a liver-specific factor that
is required for physiological transcriptional response [38].
Constitutive androstane receptor NR1I3 is predominantly
expressed in the liver and it activates CYP2B6, CYP2C9,
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Figure 7: One-way clustering to TFs with common tissue of the TSN. (a) One-way clustering between 44 unique TFs and 378 unique
subpathways.The corresponding cell was colored orange if there was an edge between the TF and subpathway in the TSN. Subpathway labels
were colored according to the pathway class colors used in Figure 2. (b) Zoom-in plot of part of the orange circled region in (a), showing the
common tissue TFs and subpathways.

and CYP3A4 expression to increase metabolic capability
[40].

4. Discussion and Conclusion

To gain insight into the influence of TF characteristics on
their regulatory subpathways, we constructed a TSN using
the TF target gene associations and 𝑘-clique subpathway
identification method. We used the 𝑘-clique (𝑘 = 3) method
to divide large pathways into multiple subpathways. This

ensured that the identified TF-regulated subpathways were
located in the TF-related local regions of the pathways and
also increased the tendency for genes in a subpathway to
share similar biological functions and be involved in similar
biological processes. To date, most pathway identification
methods have only identified entire pathwayswithout consid-
ering the scale of these pathways. However, each pathway has
obviously different scales. These differences in scale hinder
the evaluation of TF-related pathways from global networks
and the identification of TF-related subpathways that are
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usually located in the local regions of the pathways. By using
the subpathway identification method, we ensured that each
subpathway was represented on a small scale.

Through our analyses of the TSN, we found that the
cofunctional subpathways were regulated by the common-
motif, common-family, or common-tissue TFs. We per-
formed one-way clustering on the TSN based on common-
motif, common-family, and common-tissue TFs. The results
showed that all of the TFs with three types of characters
that regulated the same pathway classes tended to cluster
together. Furthermore, we applied the Jaccard coefficient
to establish whether common-motif, common-family, and
common-tissue TFs regulate cofunctional subpathways. Our
results provided strong support for cofunctional subpathways
that were regulated by TFs with three types of characters. For
example, HNF4A and NR1I3 were a pair of TFs with a com-
monmotif, common family (steroid hormone receptors), and
common tissue (liver). HNF4A and NR1I3 were expressed
in the liver and, respectively, regulated subpathways 00982-4
and 00982-10, which belonged to the same drug metabolism-
cytochrome P450 pathway. HNF4A and NR1I3 regulated
expression of the drug-metabolizing enzyme cytochrome
P450 3A4 (CYP3A4) expression [28]. HNF4A is critically
involved in the NR1I3-mediated transcriptional activation of
CYP3A4, which is thought to be involved in the metabolism
of nearly 50% of all the drugs currently prescribed. Alteration
in the activity or expression of CYP3A4 seems to be a key
predictor of drug responsiveness and toxicity. CYP3A4 pro-
moter activity was most pronounced in liver cells, indicating
that CYP3A4 is a liver-specific factor that is required for phys-
iological transcriptional response [38]. Recent studies have
identified HNF4A sites in the CYP2C8 and CYP2C9 pro-
moter. Silencing HNF4A reduces constitutive expression of
CYP2C8 and CYP2C9, as shown by quantitative polymerase
chain reaction analysis [39]. Constitutive androstane receptor
NR1I3 activated CYP2B6, CYP2C9, and CYP3A4 expression
to increase metabolic capability [40]. We further discussed
the clinical or cell development study of HNF4A and NR1I3.
We increased the following four aspects of analysis. First, we
downloaded the large-scale liver cancer RNAseq data from
TCGA public database (http://cancergenome.nih.gov/); we
used the MARS method of R package “DEGseq” to analyze
the 423 samples (373 liver cancer samples and 50 normal
samples) and found HNF5A (𝑞 value < 1.0𝑒 − 6) and NR1I3
(𝑞 value < 1.0𝑒 − 6) were significantly differentially expressed
in the liver cancer dataset; thus, they may be used for the
study of liver cancer. Second, we searched PubMed database
and confirmed that HNF4 and NR1I3 were associated with
liver cancer. Previous studies have demonstrated that down-
regulation of HNF4A was associated with hepatocellular
carcinoma (HCC) progression in rodents and humans. In
addition, the study of Huang et al. suggested that NR1I3
was a primary regulator of drug metabolism and detoxi-
fication and NR1I3 activation or transient strictly limited
liver growth [43–45]. Third, we extracted the direct neigh-
bours of this pair of TFs in the protein-protein interaction
network and performed the pathway enrichment analysis
by DAVID (https://david.ncifcrf.gov/). Results suggested that
these genes were significantly enriched in some well-known

clinical or cell development related pathways of KEGG such
as “pathways in cancer” (hsa05200, 𝑝 = 1.33𝑒 − 04) and “cell
cycle pathway” (hsa04110, 𝑝 = 2.88𝑒 − 04). Finally, we tested
the Pearson correlation coefficient of this pair of TFs, and the
result showed that they were significant positive correlation
(𝑟 = 0.4257,𝑝 < 2.2𝑒−16), which indicated that these twoTFs
may collectively regulate their downstream target genes; thus,
they played important role in the initiation and progression of
liver cancer. In summary, the above analysis result indicated
that this pair of TFs (HNF4A and NR1I3) may be potential
clinical biomarkers of liver cancer.

To confirm the validity of our results, we also constructed
the TSN with 𝑘 = 4 (𝑝 < 0.01) (Table S6–S9). First, we
compared the two networks and found that the two networks
were robust. There were 1470 edges between 99 TFs and 343
subpathways in the TSN with 𝑘 = 4, while there were 1490
edges between 89 TFs and 468 subpathways in the TSN with
𝑘 = 3. The overlap of TFs (86 TFs) in the two networks
was statistically significant (hypergeometric test 𝑝 < 1.0𝑒 −
6). In the TSN with 𝑘 = 4, there were 343 subpathways
corresponding to 95 pathways, and the overlap of pathways
(87 pathways) in the two networks was statistically significant
(hypergeometric test 𝑝 < 1.0𝑒 − 6). Thus, these two networks
were robust. We then repeated some of the analyses and
found that the results of the two networks were similar. We
compared one-way clustering results of the two networks
and found that the results of two networks were similar.
The clustering results of TSN with 𝑘 = 4 (Figures S1, S2,
and S3) showed that the subpathways regulated by TFs with
common motif, common family, and common tissue tended
to cluster in the same pathway class. In particular, we verified
the consistent function of subpathways regulated by the TFs
with common motif, common family, and common tissue by
calculating Jaccard coefficient and found the results of two
networks were similar. In the TSN with 𝑘 = 4, the average
Jaccard coefficient of the real common-motif, common-
family, and common-tissue TF pairs was significantly higher
than the random TF pairs by shuffling TSN 1000 times at
the subpathway level, pathway level, and pathway class level
(Table S10). As a control, TSN with 𝑘 = 4 presented the
similarity of results when compared with that of 𝑘 = 3.
These results indicated that our conclusions were robust in
different threshold of subpathway networks. In summary, our
study is significant for understanding the TFs underlying the
regulatory function in complex biological systems.
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