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By 2050, the aging population is predicted to expand by over 100%. Considering this
rapid growth, and the additional strain it will place on healthcare resources because of
age-related impairments, it is vital that researchers gain a deeper understanding of the
cellular interactions that occur with normal aging. A variety of mammalian cell types
have been shown to become compromised with age, each with a unique potential
to contribute to disease formation in the aging body. Astrocytes represent the largest
group of glial cells and are responsible for a variety of essential functions in the healthy
central nervous system (CNS). Like other cell types, aging can cause a loss of normal
function in astrocytes which reduces their ability to properly maintain a healthy CNS
environment, negatively alters their interactions with neighboring cells, and contribute to
the heightened inflammatory state characteristic of aging. The goal of this review article
is to consolidate the knowledge and research to date regarding the role of astrocytes in
aging. In specific, this review article will focus on the morphology and molecular profile
of aged astrocytes, the consequence of astrocyte dysfunction on homeostatic functions
during aging, and the role of astrocytes in age-related neurodegenerative diseases.
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INTRODUCTION

Aging is yet to be pinpointed to one specific factor or cell, but the current consensus is that aging
is a multitude of factors (genetic, biological, environmental) that interplay together amongst the
various cell types to contribute to physiological and cognitive changes characteristic of the aging
process. Aging of the human brain is mainly observed as structural and physiological alterations
that are most notably accompanied by cognitive decline. In terms of structure, imaging studies
have shown that the aged brain displays a loss of dendritic spines (Pannese, 2011), decreases in
oligodendrocyte (OL) number (Pelvig et al., 2008; Fabricius et al., 2013), stem cell loss in the
hypothalamus (Zhang et al., 2017), and decreased brain volume across multiple neural regions (Ge
et al., 2002; Resnick et al., 2003; Scahill et al., 2003; Raz et al., 2005; Freeman et al., 2008; Driscoll
et al., 2009; Fjell et al., 2009; Li et al., 2013; Mu et al., 2017). The decrease in brain volume has been
found to vary by sex, with males having more brain atrophy than females (Xu et al., 2000). Further,
the reduced brain volume was hypothesized to be due to a loss of neurons (Brody, 1955; Coleman
and Flood, 1987; Sturrock, 1989). However, a number of studies have shown that neuronal count
does not change with age (Cragg, 1975; Terry et al., 1987; Freeman et al., 2008) and as such, the
search for what was responsible (e.g., glia) for the structural changes became an active area of
research.

With respect to physiological changes that occur with aging in the central nervous
system (CNS), researchers observed an overall increase in gene expression in the brain
(Berchtold et al., 2008; Boisvert et al., 2018). Although these genetic changes varied across
brain regions and were sex dependent, with males showing more gene changes than females
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(Berchtold et al., 2008), there were some consistent changes.
For example, across all brain regions, microglia and endothelial
cells increased their gene expression levels, whereas astrocytes
and OLs, but not neurons, shifted their expression pattern
(Boisvert et al., 2018). Of note, these changes in gene expression
in microglia, endothelial cells and astrocytes were of an
inflammatory profile, which was intriguing given the well-known
development of a mild inflammatory state with age (Howcroft
et al., 2013; Morrisette-Thomas et al., 2014; Rea et al., 2018).
Further, because the shift in gene expression pattern occurred
in glial cells but not neurons, it implied that neurons are not a
good indicator of age; instead, it has been proposed that glial
specific genes may be a better predictor of age (Soreq et al., 2017).
This review article will focus on what is known thus far about
changes that occur to astrocytes during aging, the consequence
of astrocyte dysfunction during aging on other resident CNS
cells, and the role of astrocytes in age-related neurodegenerative
diseases.

ASTROCYTES

Astrocytes were first observed in the brain by Camillo Golgi in
1871. They are the largest cell population in the CNS with a
ratio of astrocytes to neurons in the human cortex averaging
1.4:1 (Nedergaard et al., 2003). Astrocytes also represent the
most heterogeneous group of glial cells and tile the entire
CNS in a non-overlapping manner (Sofroniew and Vinters,
2010). Once considered to be no more than ‘‘brain glue’’
that provides structural support through extracellular matrix
formation, astrocytes have now become known for key roles
in a variety of complex and essential functions. A few of
these functions include synapse development, neurotransmitter
homeostasis, glycogen storage and blood brain barrier (BBB)
maintenance (Sofroniew and Vinters, 2010). Due to their multi-
faceted roles, it is not surprising that astrocytes are involved in
aging.

Phenotype and Molecular Profile of Aged
Astrocytes
Astrocytes represent the most heterogeneous group of glial cells
in terms of molecular, structural and physiological profiles and
their classification relies on both morphological and molecular
criteria. These glia are morphologically diverse, but are typically
stellate-shaped cells with radial processes (Oberheim et al., 2009).
With age in humans, there is an alteration in astrocyte phenotype
from long and slender processes in young subjects to short and
stubby processes in older individuals (Kanaan et al., 2010; Cerbai
et al., 2012; Jyothi et al., 2015). This age-related morphological
change has also been shown to occur in aged rodents (Castiglioni
et al., 1991; Amenta et al., 1998) and primates (Kanaan et al.,
2010; Robillard et al., 2016). With respect to numbers, there
appears to be region-dependent differences in their density where
reductions were noted in the retina of aged rodents (Mansour
et al., 2008), while no changes were observed in the hippocampus
(Lindsey et al., 1979; Jinno, 2011), and an increase seen in the
human cortex (Hansen et al., 1987) and hypothalamus (Wang
et al., 2006).

With respect to molecular criteria, glial fibrillary acidic
protein (GFAP) has been used as a classical marker for astrocyte
identification; although it is important to note that GFAP is
not detectable in all astrocytes (Sofroniew and Vinters, 2010).
Reports on aging astrocytes have shown that GFAP expression
increases (Nichols et al., 1993; Kohama et al., 1995; Yoshida
et al., 1996; Rozovsky et al., 1998; Wu et al., 2005; Clarke et al.,
2018) and since an increase in GFAP expression is a common
feature of reactive/activated astrocytes (Zamanian et al., 2012;
Sofroniew, 2014; Liddelow et al., 2017), these findings suggest
that astrocytes become reactive with age. More evidence in
support of this notion was provided when it was found that
astrocyte reactivity involves the differential expression of over
1,000 genes, some of which have been collectively attributed
to ‘‘A1’’ reactive astrocytes—astrocytes of a more inflammatory
state (Zamanian et al., 2012). Some of these ‘‘A1’’ reactive genes
(Zamanian et al., 2012), such as complement system factors,
antigen presentation molecules, secretory factors, peptidase
inhibition and cholesterol synthesis, were recently identified as
additional molecular profiles of aged astrocytes (Boisvert et al.,
2018; Clarke et al., 2018). In addition, there is evidence that
aged astrocytes undergo epigenetic changes and may alter BBB
function and circadian rhythm.

Aging Astrocytes and the Complement
System
The complement system is part of the innate immune system,
and aids in regulating inflammation as well as resistance to
infection (Markiewski and Lambris, 2007). The system consists
of approximately 30 soluble factors that are widely expressed
in neurons and glia in the postnatal brain (Stevens et al., 2007;
Hammad et al., 2018). C1q and C3 are major complement
proteins that allow for cells to be tagged and targeted
for phagocytosis (Stevens et al., 2007). During development,
postnatal neurons express C1q at synapses which appears to
target unwanted synapses for elimination (Stevens et al., 2007). In
the mature brain, the complement system is dampened, however
studies have shown that during CNS disease the system becomes
enhanced by various cells, including astrocytes, and can lead to
pathology via synapse, dendritic spine and neuronal loss, as well
as changes in neuronal morphology (Stevens et al., 2007; Stephan
et al., 2012; Zamanian et al., 2012; Lian et al., 2015, 2016). An
increase in the genes belonging to components C3 and C4B is
seen in astrocytes during aging (Boisvert et al., 2018; Clarke et al.,
2018). C4B is a protein involved in both the classical and lectin
pathway of the complement system. It is also a substrate that
allows C3 convertase to cleave C3 into C3a and C3b, which direct
both of these pathways toward opsonization and cell lysis. C3 is
required for both these pathways, however it can also function
on its own through the alternative pathway where it is involved
in inflammation, cell migration, activation and cell lysis. This
suggests that astrocytes are able to functionally partake in all
three pathways of the complement system.

The activation of complement by aged astrocytes may
contribute to cognitive decline. More specifically, because overall
neuronal loss was not seen in aging humans, it has been suggested
that changes in neuronal structure may instead be the culprit
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responsible for age-associated cognitive impairment (Berchtold
et al., 2008). Since the current consensus is that memories are
formed when neurons fire to one another, and recollection
of that memory strengthens the associated synapses (Mayford
et al., 2012), it is feasible that loss of a strengthened connection
(synapse) between two neurons via complement targeting by
reactive aged astrocytes could contribute to the memory deficits
characteristic of elderly people (Choi et al., 2018).

Antigen Presentation and Aging Astrocytes
The aging astrocyte also shows an upregulation in genes
comprising major histocompatibility complex I (MHC I; Orre
et al., 2014; Boisvert et al., 2018; Clarke et al., 2018), which is in
agreement with other literature showing that there is an overall
age-related increase in brain MHC I (Mangold et al., 2017).
Interestingly, H2-K1 and H2-D1, both of which are upregulated
in aging astrocytes and form part of MHC I, are associated
with increased expression of pro-inflammatory genes (Mangold
et al., 2017), implying that astrocytes could contribute to the low
level inflammatory state that is characteristic of aging. That is,
although contentious as to whether astrocytes present antigens
in vivo, an increase in MHC I in astrocytes would suggest that
these glia have an increased propensity to present antigens. More
specifically, even though these glia are not professional antigen
presenting cells (APCs) by definition, and they present antigens
weaker than professional APCs, if only a subset of astrocytes
presented antigens, the amount of overall antigen presentation
would be large based on the sheer number of this glial cell in
the CNS. Further support for the antigen presenting ability of
aged astrocytes in vivo is their significant expression of various
factors involved in phagocytic pathways, including Pros1, Mfge8,
Megf10, Lrp1 (Clarke et al., 2018); Mertk expression was not
significantly increased, but was still expressed by aged astrocytes
(Clarke et al., 2018). These results suggest that astrocytes possess
the tools needed to tag (Mfge8, Pros1, C3b), phagocytose (Mertk,
MegF10, Lrp1) and present (H2-K1, H2-D1) antigens. However,
Megf10, Mertk and Lrp1 expression does not necessarily signify
negative consequences such as inflammation, because astrocytes
may utilize these receptors for debris clearance. That is, astrocytes
were found to possess lipid inclusions which contained myelin
in the aging human optic nerve suggesting that astrocytes
may be trying to clear myelin debris during aging (Nag and
Wadhwa, 2012). Furthermore, apart from its immunological
role, MHC I has been shown to be increased significantly
with age in cognitively-intact individuals, but decreased in
cognitively impaired individuals (Lazarczyk et al., 2016). This
suggests that MHC I expression may have a positive role in
brain aging by trying to preserve cognitive function. Thus, the
antigen presentation capability of astrocytes with age may be
both advantageous and detrimental depending upon the context.
Further work needs to be done to elucidate exactly how these
phagocytic factors in aged astrocytes are contributing to aging
and whether they are detrimental, protective, or both.

Aged Astrocytes and Secretory Molecules
Another characteristic feature of aged astrocytes is an increase
in production of cytokines such as CXCL10/inducible protein-10

(IP-10; Clarke et al., 2018). CXCL10 serves as a chemoattractant
for peripheral immune cells, and aids in T cell adhesion
to endothelial cells (Sorensen et al., 2018). Interestingly, the
receptor for CXCL10 is CXCR3, a microglia marker, suggesting
that astrocytes and microglia may be communicating with each
other during aging. This is entirely plausible as recent literature
shows that microglia are able to induce reactivity in astrocytes
(Liddelow et al., 2017; Rothhammer et al., 2018).

CXCL5 is another cytokine whose expression is augmented
in aged cerebellar astrocytes (Boisvert et al., 2018). Like
CXCL10, CXCL5 has chemotactic capabilities and has been
shown to be involved in neutrophil recruitment1, and like
astrocytes, neutrophils display aging deficits including an
increase in their inflammatory properties (Adrover et al.,
2016). Astrocytes have been shown to have both a direct
(cell to cell) and indirect effect on polymorphonuclear
neutrophils (Xie et al., 2010). That is, astrocytes are able to
attenuate pro-inflammatory cytokine expression in neutrophils
through direct contact, while an indirect interaction has
been attributed to enhanced neutrophil necrosis (Xie et al.,
2010). Therefore, it is plausible that aged astrocytes and
aged neutrophils could synergistically elicit a heightened
inflammatory response.

In addition to chemotactic and survival effects on immune
cells via cytokine release, aged cortical astrocytes may negatively
impact CNS health because of a decline in production of certain
metabolic and trophic factors such as ATP and neurotrophins.
For instance, a decline in ATP release may contribute to
cognitive decline and impaired synaptic plasticity because ATP
is involved in regulating neuronal activity through synaptic
and tonic inhibition (Lalo et al., 2014). In addition, neuronal
survival and neurogenesis may be decreased due to a reduction in
the secretion of neurotrophins like vascular endothelial growth
factor (VEGF), fibroblast growth factor 2 (FGF2; Bernal and
Peterson, 2011) and brain derived neurotrophic factor (BDNF)
in aged astrocytes (Bellaver et al., 2017).

Oxidative Stress and Aging Astrocytes
Oxidative stress is a key component to aging and age-related
diseases, including neurodegenerative diseases. The
accumulation of oxidative damage, specifically to lipids,
DNA, and proteins (Dizdaroglu et al., 2002; Cooke et al., 2003;
Evans et al., 2004; Swain and Subba Rao, 2011), is proposed to
result in age-associated functional losses in a process referred to
as the free radical theory of aging or oxidative stress theory of
aging (Beckman and Ames, 1998; Liguori et al., 2018). Indeed,
increased reactive oxygen species (ROS) which cause damage to
lipids, proteins, and DNA is frequently observed in aged tissue
(Kudin et al., 2008; Brawek et al., 2010; Lukiw et al., 2012).

Middle-aged astrocytes have been shown to accumulate ROS
and display an overload in Ca2+ (Ishii et al., 2017). Moreover,
the over-abundance of Ca2+ was associated with an increase in
JNK/SAPK activation, which is a member of the stress-activated
MAPK signaling pathway, and which has been linked to cell
death signaling (Ishii et al., 2017). Of further note, astrocytes

1https://www.ncbi.nlm.nih.gov/gene/6374
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that have been exposed to oxidative stress factors during aging
begin to undergo oxidative stress themselves (Lei et al., 2008;
Lu et al., 2008; Bellaver et al., 2017), and in age-associated
neurodegenerative diseases such as multiple sclerosis (MS),
astrocytes in active lesions have been shown to increase their
accumulation of oxidized lipids and proteins in their cytoplasm
(van Horssen et al., 2008) and oxidized DNA in their nuclei
(Haider et al., 2011). Accumulation of oxidative stress suggests
that these glia can no longer support neurons (Lin et al., 2007)
which could lead to decreased neuronal function and damage as
seen in the disease. However, whether this damaging mechanism
really does occur in MS is unknown because astrocytes in
active MS white matter (WM) lesions also augment expression
of mitochondrial antioxidants (Nijland et al., 2014; Licht-
Mayer et al., 2015; Lassmann and van Horssen, 2016). More
specifically, enhanced expression of peroxisome proliferator-
activated receptor-gamma coactivator 1-alpha (PGC-1α) was
observed in reactive astrocytes, and astrocytes that over-express
PGC-1α not only secrete less pro-inflammatory cytokines and
chemokines, but they protect neuronal cells against oxidative
attack greater than those co-cultured with control astrocytes
(Nijland et al., 2014). Further, Nuclear factor erythroid 2-related
factor 2 and its stabilizer and positive regulator, DJ1, is
another antioxidant that is increased in reactive astrocytes
in both active and chronic active MS lesions (van Horssen
et al., 2010), and found to be protective against ROS in
co-cultured neurons (Shih et al., 2003; Kraft et al., 2004; Calkins
et al., 2005). Altogether, these findings imply that astrocytes
are actively trying to combat oxidative damage both within
themselves and neighboring cells, but their protective measures
are insufficient to combat the overwhelming oxidative damage
occurring with age and during age-associated neurodegenerative
diseases.

Aged Astrocytes and Peptidase Inhibition
Serine proteases control many key elements of the immune
system including granzymes which activate apoptotic pathways,
complement system proteins that mediate inflammation and
phagocytosis, and production of cytokines and chemokines
(Safavi and Rostami, 2012). These proteases have been linked
to aging. For example, an increase in serine protease HTRA1 in
mouse retinal pigment epithelium may contribute to age-related
macular degeneration due to degeneration of the epithelium
(Jones et al., 2011). Further, a significant increase in the serine
proteases plasmin, trypsin and elastase was found in the blood
of aged rats and appear to be involved in extracellular matrix
degradation (Paczek et al., 2009). In aged astrocytes, serine
protease inhibitor called Serpina3n is significantly upregulated
(Boisvert et al., 2018; Clarke et al., 2018) which may be an
attempt by aged astrocytes to combat the aging effects of serine
proteases.

Cholesterol Synthesis
Due to the BBB, the CNS does not uptake cholesterol
from the blood stream, and instead has to locally synthesize
the majority of cholesterol that it needs. Astrocytes are
believed to play a major role in brain cholesterol synthesis

because of their expression of sterol regulatory element-binding
protein 2 (SREBP2; Ferris et al., 2017). SREBP2 activates
the transcription of enzymes, including HMG-CoA reductase
(Hmgcr), that are needed for cholesterol synthesis and cholesterol
uptake receptors, including the LDL receptor (Madison, 2016).
SREBP2 presence in astrocytes is critical for CNS function
since its knockout in astrocytes in mice results in impaired
brain development and function and reduced neurite outgrowth
(Ferris et al., 2017). In the aged murine brain, the rate
limiting cholesterol synthesis enzyme Hmgcr is downregulated,
while the receptors for cholesterol transport are increased in
astrocytes (Boisvert et al., 2018). This suggests that there is
an overall dysregulation of the cholesterol synthesis pathway
in astrocytes, and since many cells, including neurons, rely
on cholesterol from astrocytes (Zhang et al., 2016), this
dysregulation may lead to metabolic disruption in these nerve
cells.

Epigenetics of Aging Astrocytes
Studies that have looked at overall methylation changes during
aging have shown that both hyper- and hypo-methylation occur
with age at comparable rates (Maegawa et al., 2010; Issa, 2014).
In addition, histone modification has also been shown to occur
in aging cells (Wood et al., 2010; Liu et al., 2013). DNA
methylation is an important process in the development of
astrocytes since demethylation of astrocyte-specific genes such as
GFAP, S100β and Aqp4 in neural stem cells (NSCs) promotes
the switch from neurogenesis to astrogenesis (Namihira et al.,
2004, 2009; Hatada et al., 2008; Takouda et al., 2017). In
mature astrocytes, global DNA methylation patterns have
been shown to occur in psychiatric disorders (Nagy et al.,
2015) and alcohol use (Miguel-Hidalgo, 2018), however our
understanding of epigenetic changes in astrocytes during aging
is limited. Chrisholm and colleagues noted that H3K4 specific
methyltransferase activity was lower in astrocytes from middle
aged vs. young female rats following ischemia (Chisholm et al.,
2015). As such, they proposed that future therapies may be able
to target epigenetic modifications to provide neuroprotection
against aging in astrocytes (Chisholm et al., 2015). Indeed,
it has been suggested that inhibitors of histone deacetylases
(HDACs) may be neuroprotective via effects on glial cells
(Staszewski and Prinz, 2014). Some evidence in support of
this presumption was seen in astrocyte cultures where it was
shown that HDAC inhibition increased neurotrophic cytokines
(Chen et al., 2006) and mitigated changes in Parkinson’s and
Alzheimer’s disease (PD andAD;Nuutinen et al., 2010), although
no changes were seen in reducing astrocyte activation (Xuan
et al., 2012).

Environmental factors can also induce epigenetic changes.
In a recent study that assessed how environment impacted
young vs. old astrocytes, it was reported that aged mice from a
standard environment could not distinguish between stationary
and displaced objects (Diniz et al., 2016). Upon further
examination of the astrocytes in these animals, the authors
found two distinct morphological phenotypes and speculated
that aging and environment reduce the complexity of astrocytes
(Diniz et al., 2016). This agrees with previous literature showing
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morphological changes between young and old astrocytes
(Kanaan et al., 2010; Cerbai et al., 2012; Jyothi et al., 2015).
Furthermore, disturbances in astrocyte mitochondrial function
have been shown to occur with age and these changes can
also be seen when astrocytes are exposed to environmental
neurotoxicants such as 3-chloropropanediol (Cavanagh et al.,
1993), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP;
Sundar Boyalla et al., 2011) and manganese (Zheng et al.,
1998).

Blood Brain Barrier (BBB) and Aged
Astrocytes
The BBB consists of endothelial cells, astrocytic endfeet
processes, pericytes, smooth muscle cells, neurons and
perivascular microglia (Abbott and Friedman, 2012; Banks, 2016;
Osipova et al., 2018). Considering that the BBB is comprised of
such a variety of cell types, it is evident that disturbances in any
one of these cells could result in changes to BBB integrity. The
BBB is a compact complex held together by tight junctions which
limits the diffusion of molecules and migration of cells from
freely entering and exiting the brain. Transport of substances
and cells that are required for CNS homeostasis occurs mainly by
transcellular routes and acquisition of small molecules requires
expression of specific transporters in order to pass across the
BBB (Goodall et al., 2018).

As mentioned, astrocytes are an integral part of the BBB
as they are involved in its development, maintenance and
regulation. For example, astrocytes secrete Sonic Hedgehog
(Shh) while BBB-endothelial cells bear the receptor for Shh
(Alvarez et al., 2011). Blocking the Hedgehog pathway in
astrocytes was found to increase barrier permeability while a
lack of Shh led to compromisation of the barrier phenotype
(Alvarez et al., 2011). Astrocytes also secrete a variety of
factors that influence the function and permeability of the
BBB. For instance, inflammatory factors such as nitric oxide,
IL-6, TNF-α and matrix metalloproteinases, which astrocytes
are known to secrete when they acquire an inflammatory
state, have been shown to impair vasculature control and
function (Zhang, 2008). A common pathway that is involved
in the production of these inflammatory factors includes the
NF-κB pathway, which has been shown to have a direct effect
on the tight junction proteins occludin, ZO-1 and claudin-5
(Lamberti et al., 2001; Stamatovic et al., 2008; Aveleira et al.,
2010). It is also important to note however, that astrocytes
can also be protective in BBB function. This includes the
NF-κB pathway, which has been shown to promote barrier
function by inducing the expression of Shh (Kasperczyk et al.,
2009).

BBB changes have been documented in neurodegenerative
diseases, which are typically associated with age progression
(Kirk et al., 2003; Zlokovic, 2008). However, changes in BBB
permeability with age are conflicting as some groups have shown
an increase in permeability with age (Mooradian and McCuskey,
1992; Hosokawa and Ueno, 1999; Kirk et al., 2003; Hafezi-
Moghadam et al., 2007; Farrall andWardlaw, 2009; Popescu et al.,
2009; Goodall et al., 2018) while others have shown no alteration
(Wadhwani et al., 1991; Vorbrodt and Dobrogowska, 1994;

Banks et al., 2000; Mackic et al., 2002). Due to this dichotomy,
further research needs to be done to clarify the changes that
are occurring with age, and specifically how the aged astrocyte
contributes to these changes. Based on the changes that we
know occur in aging astrocytes we can speculate that if there is
age-dependent BBB alterations, aged astrocytes could contribute
to any phenotype and permeability impairment because of their
inflammatory secretions.

Chronodisruption and Aged Astrocytes
An interesting observation about aged astrocytes is their
association with chronodisruption. Circadian rhythm generates
a time clock to a 24 h cycle that influences our behavior
and physiology and adapts us to light/dark cycles of the earth
(Kondratova and Kondratov, 2012; Hood and Amir, 2017). Our
circadian rhythm is generated in the suprachiasmatic nucleus
(SCN) of the hypothalamus via a transcriptional/translational
feedback loop (Golombek and Rosenstein, 2010; Duhart et al.,
2013). Briefly, the loop begins when transcription factors,
CLOCK and BMAL1 heterodimerize and initiate transcription
of Per and Cry genes. PER and CRY proteins form a complex in
the cytoplasm and block transcription of CLOCK/BMAL1, which
in turn inhibits transcription of Per and Cry. PER/CRY complex
is also targeted for degradation via the proteasomal pathway,
which initiates the transcription of CLOCK/BMAL1 again. This
feedback loop forms the core oscillator mechanism (Lowrey and
Takahashi, 2011; Duhart et al., 2013). The SCN is composed of
a variety of classes of neurons and astrocytes (Abrahamson and
Moore, 2001). Recent work has demonstrated that SCN neurons
are metabolically active during daytime while SCN astrocytes are
active during night and that these astrocytes are able to suppress
the activity of SCN neurons through extracellular glutamate
(Brancaccio et al., 2017).

Disruption of circadian rhythm has been suggested to be
carcinogenic to humans (Straif et al., 2007) and has been well
documented to be altered during aging and neurodegenerative
diseases of aging (Kondratova and Kondratov, 2012; Mattis
and Sehgal, 2016). Oxidative stress has not only been proposed
as a mechanism of aging, and is indeed a common feature
amongst aging neurodegenerative diseases, but it is speculated to
contribute to changes in circadian rhythmwith age (Grimm et al.,
2011; Kondratova and Kondratov, 2012; Krishnan et al., 2012).
As discussed above, oxidative stress negatively impacts astrocytes
by reducing their ability to support neurons. Because the neuron-
astrocyte relationship is integral in the SCN, disruption of
proteins in the SCN could perturb this collaboration. Indeed and
for example, BMAL1 deletion in SCN neurons can cause partial
astrocyte activation, while BMAL1 deletion in SCN astrocytes
induced astrogliosis and astrocyte dysfunction (Lananna et al.,
2018). In addition, circadian disruption can induce GFAP
expression (Lananna et al., 2018), while aging (Wyse andCoogan,
2010) and inflammation (Curtis et al., 2015) have been shown
to suppress BMAL1 levels, thus potentially influencing astrocyte
activation state as well (Lananna et al., 2018). However, loss of
BMAL1 in astrocytes does not disrupt circadian rhythm (Tso
et al., 2017). Instead, it was found that deletion of CK1ε, an
enzyme that controls phosphorylation of PER/CRY in SCN
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FIGURE 1 | Schematic representation that summarize the phenotype change
of astrocytes as they age (A) and the molecular profile of aged astrocytes (B).

astrocytes, resulted in an increase in behavioral period in mice
(Tso et al., 2017). These results suggest a feedback loop involving
astrocytes and neurons in circadian rhythm impairment. That is,
the reciprocal relationship between astrocyte and neurons in the
SCN suggests that a disruption in astrocytes would in turn affect
neurons resulting in disruption of the feedback loop.

Summary
The majority of changes in aged astrocytes may be fueling
the pro-inflammatory processes that occur with aging—albeit
there are instances (e.g., serine protease inhibition) where
aged astrocytes are trying to combat detrimental mechanisms

(Figure 1). Since the majority of these alterations are of the
pro-inflammatory nature, it appears that the anti-inflammatory
processes within astrocytes and other CNS cells are inadequate
to quell the inflammatory properties, thus contributing to a
heightened inflammatory state as we age. It is likely also that
the enhanced expression of pro-inflammatory changes in aged
astrocytes has effects beyond these glia by influencing the
function of other CNS cells, the subject of the next section.

AGED ASTROCYTES AND OTHER CNS
CELLS

Microglia
It was a long-held dogma that glial cells only provided support
to neurons, however recent research suggests a much more
complex and active interplay between glial cells themselves and
their relationship with neurons. While more work is needed to
definitively elucidate the relationship between different glial cells
during aging, there are some insights into what is occurring
amongst these cells during senescence. In a model of aging
neuroinflammation in the hippocampus, astrocyte branches
were found to be actively bisecting the cell body of neurons
while microglia contained neuronal debris (Cerbai et al., 2012),
suggesting that astrocytes and microglia may both be involved
in eliminating neurons during aging. Whether these are joint
efforts or each cell performing their function autonomously is
however unclear. Recent work from the Barres lab demonstrated
that activated microglia are able to influence astrocyte activation
through their secretory profile (e.g., C1q, TNF-α and IL-1α;
Liddelow et al., 2017) implying that microglia could influence
astrocyte activation during inflammation. In the context of aging,
microglia have been shown to increase their reactivity (Hickman
et al., 2013; Norden and Godbout, 2013; Grabert et al., 2016),
which would suggest that they would augment their secretory
profile. There is some support for this idea since it has been
shown that the increase in reactive astrocyte genes associated
with aging was significantly reduced in mice lacking C1q, TNF-
α and IL-1α (Clarke et al., 2018). Of no surprise, this feedback
loop between microglia and astrocytes is also present when
trying to resolve inflammation, of which becomes disrupted in
the aging brain. More specifically, activated microglia secrete
the anti-inflammatory cytokine IL-10. Astrocytes express the
IL-10 receptor (IL-10R) and upon activation of this receptor,
secrete TGF-β, which in turn decreases microglial activation
(Norden et al., 2014). However, aged astrocytes do not increase
their expression of IL-10R or secretion of TGF-β, which would
release the brakes needed to suppress astrocyte and microglial
activation during aging (Norden et al., 2014). Therefore,
astrocytes and microglia function both autonomously and
non-autonomously in aging and age-related neurodegenerative
disorders to contribute to neuronal loss and inflammaging of the
brain (Franceschi et al., 2007).

Neurons
Astrocytes support neuronal function in many ways including
ion homeostasis, metabolic support and transmitter homeostasis
(Sofroniew and Vinters, 2010). As mentioned previously,
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neuronal numbers do not change with age (Cragg, 1975;
Terry et al., 1987; Freeman et al., 2008), but their function
and morphology change with age (Pannese, 2011). This led
researchers to explore whether age-related changes in astrocytes
could impact neuronal function. Indeed, astrocytes gain an ‘‘A1’’
phenotype with age, and previous work with this phenotype
found that ‘‘A1’’ astrocytes secrete a neurotoxin that kills
neurons (Liddelow et al., 2017). In addition, aging astrocytes
increase expression of Sparc (Boisvert et al., 2018), which blocks
synapse formation and decreases α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptors (Nobuta et al., 2012; Allen,
2014) thereby potentially inhibiting synapse function of neurons.
As mentioned previously also, upregulation of the complement
system factors, C3 and C4B in aged astrocytes, suggests that
these glia have the potential to eliminate neuronal synapses
(Boisvert et al., 2018; Clarke et al., 2018). Finally, disruption
in lipid metabolism (see ‘‘Cholesterol Synthesis’’ section) could
lead to impaired synapse formation and function of neurons
(van Deijk et al., 2017). However, it should be noted that the
majority of astrocyte homeostatic functions involved in neuronal
support are unaltered with age, including genes involved in ion,
glutamate and lactate regulation (Boisvert et al., 2018). This
suggests that astrocytes are still capable of supporting certain
neuronal functions with age and thus the balance between the
various beneficial and detrimental effects will determine the
health of a neuron. For instance, although the majority of
astrocyte support of neuronal cells is not altered, the changes that
occur in every aged cell (neuron, microglia, OL) that influence
neuronal function may eventually add up and tip the balance
towards an impaired neuron.

Oligodendrocytes
In regard to OLs, there is some evidence that astrocyte
dysfunction with age could negatively impact the function of
these cells. OLs synthesize myelin and wrap axons that are seen as
WM in the brain and spinal cord. Aging results in a 30% decrease
in WM and a 45% decrease in myelinated fiber length from the
age of 20–80 years old (Bartzokis et al., 2001; Marner et al., 2003).
While myelin production still occurs as we age, aging results in
thinner myelin sheaths and shorter internodes (Marner et al.,
2003) that can be traced back to OL dysfunction. The hypothesis
is that due to oxidative stress, OLs suffer from DNA damage
that accumulates during aging to result in WM changes (Tse
and Herrup, 2017). In addition to OLs, precursors for these glia
may also contribute to the WM changes with age. In the mature
CNS, a pool of progenitor cells known as OL progenitor cells
(OPCs) reside to serve as replacements for OLs. While the OPC
pool remains constant throughout age (Boda et al., 2015) there is
an inherent defect in their differentiation with senescence. Their
differentiation time is doubled (Zhu et al., 2011) and there is an
impairment in their recruitment to replace OLs (Doucette et al.,
2010).

Astrocytes are known to support OL function including
proliferation, differentiation and myelination. While OLs
synthesize cholesterol to produce myelin they also rely on
cholesterol synthesis from astrocytes for their myelin production;
however, as discussed above, cholesterol synthesis is impaired

in aging astrocytes. As a consequence, OLs may not receive the
necessary amount of cholesterol during aging, thus resulting
in reduced myelin production characteristic of the aging brain.
Another process of OLs that aged astrocytes may disrupt
is differentiation. Before OLs can produce myelin they need
to undergo differentiation from their OPC state. FGF2, an
important factor in OPC differentiation (Bögler et al., 1990),
is decreased in aged astrocytes (Bernal and Peterson, 2011),
suggesting that astrocytes may hinder the differentiation process.

In contrast to the detrimental effects aging astrocytes
may have on OLs and OPCs, they may also be potentially
beneficial. Astrocytes increase their expression of CXCL10,
which is involved in the migration of OPCs (Omari et al.,
2005), and an increase in the inflammatory state of aging
astrocytes coincides with an increase in STAT3 (Monteiro de
Castro et al., 2015), that may be in involved in crosstalk with
microglia and OPCs to prevent impairment of OPC maturation
(Nobuta et al., 2012). It is possible however, while these
mechanisms are integral in recruiting OPCs to sites that need
OL repopulation and differentiation, the astrocyte-contributing
defects in differentiation and reduced myelin production may
overcome these beneficial properties of aged astrocytes on OL
functions.

Summary
The interactions of aged astrocytes with other CNS cell
populations suggest that they can propagate inflammation and
directly affect the health and function of these other cells

FIGURE 2 | Schematic representation of the relationship between aged
astrocytes and other CNS cells during senescence.
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(Figure 2). Since all of these cells communicate with each other,
a direct effect of astrocyte interactions with any one of these
cell populations can create a feedback loop that results in the
dysfunction of multiple cell types and ultimately functional
impairment as seen in age-related diseases.

AGED ASTROCYTES AND
NEURODEGENERATIVE DISEASES

In 2015, the aged population (aged 65 and over) represented
8.5% (or 617.1 million) of the total population (He et al.,
2016). By 2050, it is predicted that the aging population will
rise to over 16.7% or 1.6 billion (He et al., 2016). That
is a 150% expansion of the aged population (He et al.,
2016). With age comes an increased risk for age-related
diseases, which includes neurodegenerative diseases. Aging and
neurodegeneration share many features including gliosis, loss
of myelination, cognitive decline, loss of working memory
and astrocyte dysfunction. AD, PD and amyotrophic lateral
sclerosis (ALS) are three common age-related diseases known to
have astrocyte involvement. There are many in-depth reviews
on AD, PD and ALS and thus we will limit our discussion
to what is known about the role of astrocytes in these
diseases.

AD and Astrocytes
AD affects more than 35 million people worldwide and is
the most frequent form of dementia in the aged population,
accounting for 50%–56% of cases (Querfurth and LaFerla, 2010).
Aging does not mean individuals will progress to AD, however,
AD and aging share many common features including oxidative
stress, mitochondrial dysfunction, inflammation, proteotoxicity
and altered gene expression (Chakrabarti and Mohanakumar,
2016). These common features can also be found in AD
astrocytes. For example, neurons in AD have been shown
to increase insulin-like growth factor 1 (IGF-1) via astrocyte
interactions, which can lead to increased beta-amyloid formation
by neurons (Costantini et al., 2010). Beta-amyloid, in turn,
is capable of stimulating astrocytes and causing activation of
NF-κB pathways (considered an important mediating agent in
neuroinflammation in AD; Akama and Van Eldik, 2000; Wang
et al., 2013; Shi et al., 2016) and consequently production
of pro-inflammatory cytokines such as IL-1β, IL-6, iNOS and
TNF-α (Bales et al., 1998; Akama and Van Eldik, 2000; Hou
et al., 2011). Other evidence of astrocyte involvement in AD
pathogenesis is a decline in antioxidant defense, which could
result in the accumulation of oxidative damage in astrocytes
leading to neurodegeneration (Hung et al., 2010). For example,
oxidative stress can result in activation of astrocytes (Andersen,
2004) and activation of NADPH oxidase in astrocytes, which
has been shown to lead to beta-amyloid-induced neuronal
death through mitochondrial dysfunction (Abramov et al.,
2004).

Astrocytes and PD
PD is the second most common age-related disease after
AD (Reeve et al., 2014). Age is the strongest risk factor

for PD, with prevalence of the disease increasing more than
400 times as one ages (Rodriguez et al., 2015). Although
volume reduction can be seen throughout the aging brain,
the substantia nigra dopaminergic neurons are particularly
affected in PD displaying neuronal loss at a rate of 4.7%
to 9.8% per decade (Fearnley and Lees, 1991; Ma et al.,
1999; Rudow et al., 2008). It is incompletely known why
dopaminergic neurons are targeted, but it has been suggested
that astrocytes may be involved. Astrocytes and neurons share
a very close relationship due to the fact that astrocytes
are part of the tripartite synapse, provide structural and
metabolic support, buffer neurotransmitters, and help regulate
synaptic transmission (Sofroniew and Vinters, 2010). Because
these functions become compromised in the aged astrocyte,
it is likely that neuronal health would be directly impacted.
Furthermore, genes that have been identified as part of
astrocyte biology are also causative in the development of
PD; these include PARK7, SNCA, PLA2G6, ATP13A2, LRRK2,
GBA, PINK1 and PARK2 (Zhang et al., 2016; Booth et al.,
2017). These genes are involved in a variety of functions
in astrocytes including inflammatory responses, cholesterol
synthesis, and mitochondrial dysfunction which are also known
to be dysfunctional in PD.

ALS and Astrocytes
ALS is a degenerative disease of motor neurons in the brain,
brain stem and spinal cord, that leads to paralysis and death
(Rowland and Shneider, 2001). Although ALS is not considered
a prototypical aging disease, the median age of onset occurs at
70.8 years of age in European populations (Marin et al., 2014)
and has an incidence curve similar to that of PD (Logroscino
et al., 2015). In addition, recent genetic advances have revealed
that pathways involved in the development of the disease
are also modulated during the aging process. These include
autophagy, inflammation and cellular maintenance (Niccoli
et al., 2017). The precise mechanisms that target motor neurons
in ALS remain elusive. However, it has been proposed that
during aging in rodents a loss of astrocytic support to motor
neurons may result in loss of both motor neurons and their
function (Das and Svendsen, 2015; Das et al., 2016). This loss
of support is further accelerated in a rodent model of ALS
(Das and Svendsen, 2015). Furthermore, astrocytes generated
from post-mortem brain tissue from both familial and sporadic
ALS are toxic to motor neurons and a knockdown of the
superoxide dismutase 1 gene in astrocytes, a known genetic
risk factor in ALS, attenuates this toxicity (Haidet-Phillips
et al., 2011). In addition, treatment of motor neuron/astrocyte
co-cultures with an inhibitor for necrotic cell death prevented
loss of motor neurons (Re et al., 2014). It appears that the
NF-κB signaling pathway in astrocytes may be participating
in the astrocyte-motor neuron death (Haidet-Phillips et al.,
2011).

Summary
The general inflammatory state of astrocytes gives us a good
prediction of different processes that may become dysfunctional
during disease. By exploring how this inflammatory state is
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manipulated or altered in various age-related neurodegenerative
disorders, we can gain better insight into potential disease
mechanisms and pathology.

CONCLUSION

In conclusion, a growing number of studies have shown that
astrocytes play a more central role than previously appreciated
in aging and age-related diseases. These glia become more
pro-inflammatory and contribute to the general low-grade
inflammation that is characteristic of the aging brain. Further,
because of their active interactions and secretory products,
aged astrocytes could negatively afflict other CNS cells. Further
work is needed to unravel how these glia interact with other

CNS cells at the cellular and molecular level since this will
have implications when developing therapeutics for age-related
diseases.
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