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Abstract

Testing for associations in big data faces the problem of multiple comparisons, with true signals 

difficult to detect on the background of all associations queried. This is particularly true in human 

genetic association studies where phenotypic variation is often driven by numerous variants of 

small effect. The current strategy to improve power to identify these weak associations consists of 
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applying standard marginal statistical approaches and increasing study sample sizes. While 

successful, this approach does not leverage the environmental and genetic factors shared between 

the multiple phenotypes collected in contemporary cohorts. Here we develop Covariates for Multi-

phenotype Studies, an approach that improves power when correlated variables have been 

measured on the same samples. Our analyses over real and simulated data provide direct support 

that correlated phenotypes can be leveraged to achieve dramatic increases in power, often 

surpassing the power equivalent of a two-fold increase in sample size.

Introduction

Performing agnostic searches for association between pairs of variables in large-scale data, 

using either common statistical techniques or machine learning algorithms, faces the 

problem of multiple comparisons. This is particularly true for genetic association studies, 

where contemporary cohorts have access to millions of genetic variants as well as a broad 

range of clinical factors and biomarkers for each individual. With billions of candidate 

associations, the identification of a true association of small magnitude is extremely 

challenging. Standard analysis approaches currently consists of looking at the data in one 

dimension (i.e. testing a single outcome with each of the millions of candidate genetic 

predictors) and applying univariate statistical tests – the commonly named GWAS (genome-

wide association study) approach1, 2. To increase power, GWAS rely on increasing sample 

size in order to reach the multiple comparisons adjusted significance level. The largest 

studies to date, including hundreds of thousands of individuals across dozens of cohorts, 

have pushed the limit of detectable effect sizes. For example, researchers are now reporting 

genetic variants explaining less than 0.01% of the total variation of body mass index (BMI)3.

In addition to the substantial financial costs of collecting and genotyping large cohorts, this 

brute force approach has practical limits. More importantly, this approach does not leverage 

the large amount of additional phenotypic and genomic information measured in many 

studies. Joint analyses of multiple phenotypes with each predictor of interest (e.g. Manova, 

MultiPhen)4–6 offer a gain in power, but have three major drawbacks. First, a significant 

result can only be interpreted as an association with any one of the phenotypes. While this is 

useful information for screening purposes, it is insufficient to identify specific genotype-

phenotype associations6. Second, it makes the replication process difficult, since all 

genotype-phenotype pairs must be considered. Third, joint tests have lower power than 

univariate tests when only a small proportion of the phenotypes are associated with the 

tested genetic variant. This is a simple problem of dilution; a small number of true 

associations mixed with many null phenotypes will reduce power.

In this work, we develop CMS (covariates for multi-phenotype studies), a method that 

improves association test power in multi-phenotype studies, while providing the resolution 

of univariate tests. When testing for association between a genotype and a phenotype CMS 
allows the other collected correlated phenotypes to serve as covariates. The core of the 

method is a principled approach to selecting a set of these covariates that are correlated with 

the phenotype, but not with the genotype, thereby reducing phenotypic variance independent 

of the genotype and concomitantly increasing power. We show via application to simulated 
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and real data sets that CMS scales to thousands of phenotypes, produces gains in power 

equivalent to a two- to three-fold increase in sample size, and outperforms other recently 

proposed multi-phenotype approaches with univariate resolution including a Bayesian 

approach (mvBIMBAM7), and dimensionality reduction approaches (PCA8, PEER9).

Results

Covariates as proxy for unmeasured causal factors

The objective of this work is to develop a method that keeps the resolution of univariate 

analysis when testing for association between an outcome Y and candidate predictor X, but 

takes advantage of other available covariates  to increase power. 

Consider the inclusion of covariates correlated with the outcome in a standard regression 

framework. This may increase the signal-to-noise ratio between the outcome and the 

candidate predictor when testing: , where . The selection of which 

covariates  are relevant to a specific association test is usually based on causal 

assumptions10, 11. Epidemiologists and statisticians commonly recommend the inclusion of 

two types of covariates when testing for association between X and Y: those that are 

potential causal factors of the outcome and independent of X, and those that may confound 

the association signal between X and Y, i.e. variables such as principal components (PCs) of 

genotypes or covariates that capture undesired structure in the data that can lead to false 

associations12. All other variables that vary with the outcome because of shared risk factors 

are usually ignored. However, those variables carry information about the outcome, and 

more precisely about the risk factors of the outcome. Because they potentially share 

dependencies with the outcome, they can be used as proxies for unmeasured risk factors. As 

such, they can be incorporated in  to improve the detection of associations between X and 

Y. However, when these variables depend on the predictor X, using them as covariates can 

lead to both false positive and false negative results depending on the underlying causal 

structure of the data.

The presence of interdependent explanatory variables, also known as multicollinearity13, can 

induce bias in the estimation of the predictor’s effect on the outcome. We recently discussed 

this issue in the context of genome-wide association studies that adjusted for heritable 

covariates14. To illustrate this collider bias, consider first the simple case of two independent 

covariates  and  that are true risk factors of Y. When testing for association between X 
and Y, adjusting for  and  can increase power, because the residual variance of Y after 

the adjustment is smaller while the effect of X is unchanged (Fig. 1a), i.e. the ratio of the 

outcome variance explained by X over the residual variance is larger after removing the 

effect of  and . However, in practice, true risk factors of the outcome are rarely known. 

Consider instead the more realistic scenario where  and  are unknown but a covariate C, 

which also depends on those risk factors, has been measured. Because of their shared 

etiology, Y and C display positive correlation, and when X is not associated with C, 

adjusting Y for C increases power to detect ( ) associations (Fig. 1b). Problems arise 

when C is associated with X. In this case adjusting Y for C biases the estimation of the 

effect of X on Y, decreasing power when the effect of X is concordant between C and Y 
(Fig. 1c), and inducing false signal when the effect is discordant (in opposite direction or 
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when X is not associated with Y, Fig. 1d). The same principles apply when including 

multiple covariates correlated with the outcome.

When none of the covariates depend on the predictor (Fig. 1a-b), their inclusion in a 

regression can reduce the variance of the outcome without confounding, leading to increased 

statistical power while maintaining the correct null distribution. This gain in power can be 

easily translated in terms of a sample size increase. The noncentrality parameter (ncp) of the 

standard univariate chi-square test between X and Y is  where 

N,  and are the sample size, the total variance of the outcome Y, and the squared 

correlation between X and Yrespectively. When reducing  by a factor  through covariate 

adjustment, and assuming the effect of X on Y is small, so that ,  can be 

approximated by . For example, when the covariates 

explain 30% of the variance of Y, the power of the adjusted test is equivalent to analyzing 

approximately a 1.4 fold larger sample size (as compared to the unadjusted test). When 

covariates explain 80% of the phenotypic variance –a realistic proportion in some genetic 

datasets examined below– the power gain is equivalent to a five-fold increase in sample size 

(Fig. 2a).

Selecting covariates for each outcome-predictor pair

The central problem that must be solved is how to select a subset of the available covariates 

to optimize power while preventing induction of false positive associations between the 

outcome and the predictor. To do this, all covariates associated with the outcome should be 

included except those also associated with the predictor. A naïve solution would consist of 

filtering out covariates based on a p-value threshold from the association test between each 

covariate and the predictor (e.g. removing predictors with a predictor-covariate association 

p-value < 0.05). However, unless the sample size is infinitely large, type I covariates (i.e. 

covariates associated with the predictor) will be included. Furthermore, such a filtering also 

implies that some type II covariates (i.e. covariates not associated with the predictor) will be 

removed because they incidentally pass the p-value threshold. Interestingly, removing type II 
covariates using this approach not only results in a sub-optimal test, it also induces an 

inflated false positive rate (Supplementary Fig. 1). In brief, when the outcome and the 

covariate are correlated, low predictor-covariate p-value implies low predictor-outcome p-

value. As a result, the p-value distribution from the subset of predictor-outcome unadjusted 

statistics (i.e. those for which the predictor-covariate p-value is below the threshold) is 

enriched for low p-value, resulting in an overall type I error inflation for the approach 

(Supplementary Note and Supplementary Fig. 2).

In this work, we develop a computationally efficient heuristic to improve the selection of 

type II covariates while removing type I covariates that we refer further to as CMS 
(Covariates for Multi-Phenotype Studies). We present an overview of the approach, with 

complete details of the algorithm provided in the online Methods and the Supplementary 

Note.
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Let  and  be the marginal estimated regression coefficients between  and C, and between 

X and  (not adjusted for C) respectively, and let  be the estimated correlation between Y 

and C. Naive p-value based filtering, i.e. unconditional filtering on , assumes that under the 

null ( )  is normally distributed with  and variance , where n is the sample 

size. The central advance of CMS is to additionally use the expected mean and variance of 

conditional on  under a complete null model ( ). We show that this can be 

approximated as:  and  (Supplementary 

Note, and Supplementary Fig. 3).

The bias observed from naïve univariate p-value filtering (Supplementary Fig. 1) is induced 

by the misspecification of the expected mean and variance of the predictor-covariate effect 

estimate when the predictor is associated with neither the outcome, nor the covariates. 

Figure 3a illustrates  inclusion area for a p-value threshold of 5% –i.e. if  is outside the 

inclusion area, the covariate  is filtered out –based on the unconditional distribution. As 

shown in Supplementary Table 1 and Supplementary Figure 4, which describes the simple 

case of a single covariate, using the distribution of  conditional on  to select covariates is 

also poor solution, resulting in a deflated test statistic for  due to an overestimation of the 

standard error of  when adjusting for the selected covariates. The improvement from CMS 
is derived from defining the inclusion area as a combination of the unconditional and 

conditional distributions of  (Figure 3b,c). This solves the inflation observed in 

Supplementary Fig. 1 and leads to a valid test under the complete null model with a variable 

number of available covariates (see Supplementary Fig. 3 and Supplementary Table 1).

Finally, to reduce the risk of false positives, the algorithm scales inclusion areas on the basis 

of total amount of the outcome’s variance explained by  and . To further improve the 

performance of filtering covariates we also consider omnibus association test between 

and Y, which is more effective when multiple covariates have small to moderate effects (see 

Supplementary Note).

Simulated data analysis and method comparisons

We first assessed the performance of the proposed method through a simulation study in 

which we generated series of multi-phenotype datasets over an extensive range of parameter 

settings (see online Methods and Supplementary Note). Each dataset included n individuals 

genotyped at a single nucleotide polymorphism (SNP) with minor allele frequency (MAF) 

drawn uniformly from [0.05, 0.5], a normally distributed phenotype Y, and 

correlated covariates . Under the null, the SNP does not contribute to the 

phenotype and under the alternate the SNP contributes to the phenotype under an additive 

model. In some datasets, the SNP also contributes to a fraction  of the 

covariates. These are the covariates, which we wish to identify and filter out of the 

regression. We considered sample sizes n of 300, 2,000 and 6,000, we varied , the variance 

of Y explained by C, from 25% to 75%. We varied the effect of the predictor on Y and C, 

when relevant, from almost undetectable (i.e. median ) to relatively large (i.e. median 
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). For each choice of parameters, we generated 10,000 replicates and performed four 

association tests: (unadjusted) linear regression (LR), linear regression with covariates 

included based on p-value filtering at an  threshold of 0.1 (FT), CMS, and an oracle 

method that includes only the covariates not associated with the SNP (OPT), this being the 

optimal test regarding our goal. We considered a total of 432 scenarios and as shown in 

Figure 4 and Supplementary Tables 2-4 the type I error rate of CMS is well calibrated across 

parameter ranges. Note that we did not consider strategies which include all 

variables as covariates, MANOVA, or “reverse regression” (i.e. MultiPhen)5, as these 

approaches lead to substantial inflation of type I error rate (see Supplementary Fig. 5).

We compared the performances of CMS against other recently proposed multi-phenotype 

approaches including mvBIMBAM. The CMS approach was more than 100 fold faster than 

mvBIMBAM and the two methods showed similar accuracy when compared using ROC 

curves (Supplementary Fig. 6). We also considered data reduction techniques aimed at 

modelling hidden structure. For each dataset we tested the association between the primary 

outcome and the genotype while adding principal components (PCs) or PEER factors. We 

observed increasing type I error rates when increasing the number of PCs or PEER factors in 

the model (Supplementary Figure 7). Furthermore, at a fixed false positive rate, when we 

applied CMS on top PEER factors, we found that CMS substantially increases power above 

those gains available from PEER (Supplementary Fig. 8 and Supplementary Note).

Real data analysis

We first analyzed a set of 79 metabolites measured in 1192 individuals genotyped at 668 

candidate SNPs. We derived the correlation structure between these metabolites (Fig. 2b and 

Supplementary Fig. 9)3 and estimated the maximum gain in power that can be achieved by 

our approach in these data. The proportion of variance of each metabolite explained by the 

other metabolites varied between 1% and 91% (Fig. 2b). This proportion is higher than 50% 

for two thirds of the metabolites, equivalent to a two-fold increase in sample size. For 10% 

of the metabolites, other variables explain over 80% of the variance, corresponding to a five-

fold increase in sample size. In such cases, predictors explaining less than 1% of 

metabolite’s variation can change from undetectable (power<1%) to fully detectable 

(power>80%).

We performed a systematic screening for association between each SNP and each 

metabolite, using both a standard univariate linear regression adjusting for potential 

confounding factors and using CMS to identify additional covariates. Overall, both tests 

showed correct  (Supplementary Fig. 10a). We focused on associations significant after 

Bonferroni correction (P < 9.5×10−7 corresponding to the 52,772 tests performed). The 

standard unadjusted approach (LR) detected 5 significant associations. In comparison, the 

CMS approach identifies 10 associated SNPs (Table 1), including four of the five 

associations identified by LR. In most cases the p-value of CMS was dramatically lower 

(e.g. 1000 fold smaller for rs780094 – alanine). Comparing these results to four independent 

GWAS metabolite scans of larger sample size (N equal 8,330, 7,824, 2,820, and 2,076 for 

Finnish15, KORA+TwinsUK,16, 17 and FHS,18 respectively), we found that all metabolite/

gene associations only identified by CMS replicated (Supplementary Table 5).
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This analysis confirms the power of CMS, highlighting its ability to identify variants with 

much smaller sample size. Interestingly, the only association identified by the unadjusted 

analysis (lactose and GC, P=6.1×10−7) and not confirmed by CMS (P=6.3×10−6) was also 

the only one that did not replicate in the larger studies. Note that in the analysis presented in 

Table 1, we followed the identical analysis approach of the previous studies and did not 

adjust for either PCs or PEER factors9. However, adjusting did not qualitatively change the 

results. For example, we considered adjusting for 5, 10, and 20 PCs and obtained 11, 15 and 

17 hits for CMS and 9, 11, and 5 hits for LR with PC covariates (Supplementary Table 6). 

The overall replication rate was lower when including PCs, consistent with the higher false 

positive rate we observed in our simulations.

We then considered genome-wide cis-eQTL mapping in RNA-seq data from the gEUVADIS 

study. Gene expression is a particularly compelling benchmark, as the gold standard 

analyses already use an adjustment strategy to account for hidden factors in eQTL 

GWAS9, 19. Here we used the PEER approach9 to derive hidden factors, as this method was 

applied in the original analysis20. After stringent quality control the data included 375 

individuals of European ancestry with expression estimated on 13,484 genes, of which 

11,675 had at least one SNP with a MAF ≥ 5% within 50kb of the start and end sites.

We observed that expressions levels between genes were highly correlated (Fig. 2c), an ideal 

scenario for CMS. We first performed a standard cis-eQTL screening using linear regression 

(LR), testing each SNP within 100kb of each available gene for association with overall 

normalized RNA level while adjusting for 10 PEER factors, for a total of ~1.3 million tests. 

Then, we applied CMS to identify, for each test, which other gene’s RNA levels could be 

used as covariates on top of the PEER factors. As shown in Supplementary Figure 10b, both 

LR and CMS showed large number of highly significant associations. For comparison 

purposes we plotted the most significant SNP per gene obtained with the standard approach 

against those obtained with CMS in Figure 5. As shown in this figure, 2,725 genes had a 

least one SNP significant with both methods, and 56 genes were identified by the standard 

approach only. Conversely 657 genes were found only with CMS, corresponding to a 24% 

increase in detection of cis-eQTL loci. This indicates that by being gene/SNP specific, CMS 
is a priori able to recover substantial additional variance, allowing for increased power 

(Table 2 and Supplementary Table 7).

To assess the validity of our results we performed an in-silico replication analysis using two 

databases of known eQTLs21, 22. We found that 35% of the SNP-gene associations found by 

both LR and CMS replicated. For the subset of association found only by CMS the 

replication rate was 20%, similar to the results from the LR only replication, which was 

22%. The replication rate was 6% for genes without a CMS or LR association. The 

replications were primarily in LCL (Table 2), and the replication rate for our study is within 

the same range as the replication rate from previous LCL studies (Supplementary Table 8), 

confirming that a substantial number of the additional associations identified by CMS 
correspond to real signal (see Supplementary Note). Additional GC correction of the p-

values using inflation factors form a null experiment ( =1.01, and =1.05, 

Supplementary Fig. 11) did not qualitatively change the results.

Aschard et al. Page 7

Nat Genet. Author manuscript; available in PMC 2018 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Growing collections of high-dimensional data across myriad fields, driven in part by the “big 

data revolution” and the Precision Medicine Initiative, offer the potential to gain new 

insights and solve open problems. However, when mining for associations between collected 

variables, identifying signals within the noise remains challenging. While univariate analysis 

offers precision, it fails to leverage the correlation structure between variables. Conversely, 

joint analyses of multiple phenotypes have increased power at the cost of decreased 

precision. We demonstrated in both simulated and real data that the proposed method, CMS, 

maintains the precision of univariate analysis, but can still exploit global data structures to 

increase power. Indeed, in the data sets examined in this study we observed up to a 3-fold 

increase in effective sample size in both the gene expression and metabolites data thanks to 

the inclusion of relevant covariates (Supplementary Figure 12).

CMS can be applied generally, but is particularly well suited to the analysis of genetic data 

for several reasons. First, the genetic architectures of many complex phenotypes are 

consistent with a polygenic model with many genetic variants of small effect size that are 

difficult to detect using standard approaches23. Second, many correlated phenotypes share 

genetic and environmental variance without complete genetic overlap24. Third, the 

underlying structure of the genomic data is relatively well understood with an extensive 

literature on the causal pathway from genotypes to phenotypes through direct and indirect 

effects on RNA, protein and metabolites (Supplementary Fig. 13 and Supplementary Note). 

Finally, when the predictors of interests are genetic variants, there is less concern regarding 

potential confounding factors. The only well-established confounder of genetic data is 

population structure and this can be easily addressed using standard approaches12. For other 

types of data, when the underlying structure of the data is unknown the risk for introducing 

bias is high.

Several other groups have considered the problem of association testing in high-dimensional 

data while maintain precision. In genetics, multivariate linear mixed models (mvLMMs) 

have demonstrated both precision and increases in power when correlated phenotypes are 

tested jointly. However, mvLMMs are only exploiting the genetic similarity of phenotypes 

and are not computationally efficient enough to handle dozens of phenotypes jointly4. CMS 
leverages both genetic and environmental correlations and can be easily adapted to hundreds 

or thousands of phenotypes as we demonstrated here. Instead, we compared CMS to other 

more related approaches, including the Bayesian approach mvBIMBAM, and adjustment for 

hidden factors inferred from either principal component analysis or PEER. We found that 

mvBIMBAM and CMS had very similar accuracy as measured by the AUC, while 

mvBIMBAM was approximately 100 fold slower, and applicable only to a small number of 

phenotypes (i.e. <10). As for strategies that reconstruct hidden variables, we found that they 

can induce false positives25, and are suboptimal compared to CMS. Indeed, the gEUVADIS 

analysis showed a 24% increase in the detection of eQTL when applied on top of PEER 

factor adjustment.

There are several caveats to our approach. First, the proposed heuristic is conservative by 

design to avoid false association signals and so all the available power gain is not achieved. 
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Second, while all simulations we performed show strong robustness, it remains a heuristic as 

are other methods9, 19. Ultimately, we recommend external replication to validate results and 

effect size, as is standard in genetic studies. Third, CMS is more computationally intensive 

than methods such as PCA or PEER. Fourth, CMS assumes that the variables are measured 

and available on all samples. The current implementation includes a naïve missing data 

imputation and simple case-scenario simulations showed this strategy has minimum impact 

on the robustness of CMS (supplementary Fig. 14). However more advanced approaches 

have been developed26. Fifth, while the principles we leveraged are likely applicable to 

categorical and binary outcomes (see27 for logistic regression), our algorithm is currently 

only applicable to continuous outcomes. Sixth, for monogenic disorders, or phenotypes 

without intermediately measured endophenotypes, CMS is unlikely to result in power gains.

We focused on association screening and aimed at optimizing power and robustness. 

However, the selection of covariates performed by CMS might carry information about 

which covariates are operating through specific SNPs. Future work will explore whether 

output from CMS can generate hypotheses on the underlying causal model. There are other 

additional improvements not specific to CMS worth exploring. In particular, when multiple 

phenotypes are considered as outcomes then a multiple test correction penalty must be 

selected to account for all tests across all phenotypes. In this study, we applied a Bonferroni 

correction, not accounting for the correlation between outcomes. This is a conservative 

correction and more powerful approaches are possible28.

Large-scale genomic data have the potential to answer important biological questions and 

improve public health. However, those data come with methodological challenges. Many 

questions, such as improving risk prediction or inferring causal relationships rely on our 

ability to identify associations between variables. In this study, we provide a comprehensive 

overview of how leveraging shared variance between variables can be used to fulfill this 

goal. Building on this principle we developed the CMS algorithm, an innovative approach 

which can dramatically increase statistical power to detect weak associations.

Online Methods

The CMS algorithm

We develop an algorithm to select relevant covariates when testing for association between a 

predictor X and an outcome Y. For a set of candidate covariates , the 

filtering is applied on  and , the estimated marginal effect of the predictor X on  and its 

associated p-value, respectively. It uses four major features: i)  the total amount of 

variance of Y explained by the C ; ii) )the estimated effect of each  on Y and 

their joint effect respectively; iii) , the estimated effect of X on Y from the marginal model 

; and iv) , the p-value for the multivariate test of all  and X, which is 

estimated using a standard multivariate approach (i.e. MANOVA).

Filtering is applied in two steps using the aforementioned features and additional parameters 

described thereafter. Step 1 is an iterative procedure focusing on . It consists in 

removing potential covariates until  reaches , a p-value threshold set to 0.05 by 
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default. This step is effective at removing combination of covariates with strong to moderate 

effects, but will potentially leave weakly associated covariates.

Step 2 is also iterative and uses covariates pre-selected at step 1. It consists in deriving two 

confidence intervals  and , for the expected distribution of  conditional on 

under a complete null model (  and ), and the unconditional distribution of , 

respectively. The unconditional distribution of  can be approximated as , 

while the conditional distribution is , where  is the estimated 

correlation between Y and C (see Supplementary Note). The inclusion area for each  is 

defined as the union of  and , which are determined from the conditional and 

unconditional distributions, ), , and distribution-specific weights  and  we 

further introduced to improve power and robustness. Specifically, 

and 

 where ,  and 

 are the unconditional and conditional means and standard deviations 

respectively.

The weights  and  are always less than 2 and shrink the size of the inclusion area. To 

get (  we first set a stringency parameter 

, which decreases as 

increase. This makes the inclusion area smaller as the covariate  being considered explains 

more of the variance of Y. The purpose of this parameter is to decrease the risk of false 

positives because bias will be enhanced when the residual variance of the outcome is 

reduced14. This is illustrated in Figure 3, where the unconditioned inclusion area from CMS 
is smaller than for the standard approach.

As  increases, the likelihood of the true  being null decreases and we want , and the 

conditional interval , to shrink to zero. We use a simple linear function for with a 

transition that corresponds to the point where the 95% CI of the observed  and  stop 

overlapping. The former CI approximately equal , where  is the 

standard deviation of X, while the later equals . Expressed as chi-squared 

this transition point corresponds to . We set 

and  where  and are defined below to linearly scale 

with respect to this transition point.

Altering the transition point or scaling the inclusion interval can increase the risk of false 

positives or decrease power (Supplementary Figs. 15–17). We chose the CMS parameters 

conservatively to prevent false positives, however, alternative approaches such as cross 

validation may identify parameters that increase the power of CMS while maintaining a 
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calibrated null distribution. Interestingly, the omnibus association test between  and Y 
has very little impact on the overall performance (Supplementary Fig. 17) with the 

parameters used here.

Finally, because of multicollinearity, the estimated  can vary substantially depending on 

which other covariates  is already included in the model. As a result,  cannot be 

estimated from a marginal model such as . To address, this issue we implemented 

the selection of covariates into an iterative loop where  terms are re-estimated 

each time a candidate covariate is excluded.

The complete CMS algorithm is provided in the Supplementary Note.

Simulations

We simulated series of genetic and phenotypic datasets under a variety of genetic models to 

interrogate the properties of the proposed test. Each dataset included n individuals 

genotyped at a single nucleotide polymorphism (SNP), a normally distributed phenotype Y, 

and  correlated covariates . Genotypes g for each of 

individuals were generated by summing two samples from a binomial distribution with 

probability uniformly drawn in [0.05, 0.5] and then normalized to have mean 0 and variance 

1. Under the null, the SNP does not contribute to the phenotype and under the alternate the 

SNP contributes to the phenotype under an additive model. In some datasets, the SNP also 

contributes to a fraction  of the covariates. These are the covariates, 

which we wish to identify and filter out of the regression. The remaining variance for each 

phenotype, which represents the remaining genetic and environmental variance, was drawn 

from a m+1-dimensional multivariate normal distribution with mean 0 and variance C. In 

instances where this matrix was not positive definite we used the Higham algorithm29 to find 

the closest positive definite matrix. The diagonal of the covariance matrix was specified as 1 
minus the effect of g (if relevant) such that the total variance of each phenotype had an 

expected value of 1.

We considered sample sizes n of 300, 2,000 and 6,000, we varied , the variance of Y 
explained by C, from 25% to 75%. We varied the effect of the predictor on Y and C, when 

relevant, from almost undetectable (i.e. median ) to relatively large (i.e. median 

). For each choice of parameters, we generated 10,000 replicates and performed four 

association tests: (unadjusted) linear regression (LR), linear regression with covariates 

included based on p-value filtering at an  threshold of 0.1 (FT), CMS, and an oracle 

method that includes only the covariates not associated with the SNP (OPT), this being the 

optimal test regarding our goal. For each null model we derived the genomic inflation 

factor30 , while for the alternative model we estimated power at an  threshold of 

5×10−7, to account for the 100,000 tests performed. All tests were two-sided. Results for 

each of the 432 scenarios considered are presented in Supplementary Figs. 18–44.

To comprehensively summarize the performance of the different tests across these scenarios, 

we randomly sampled subsets of the simulations to mimic real datasets while focusing on a 

sample size of 2,000 individuals and a total of 100,000 SNPs tested. For null models, we 
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assumed that two thirds (66%) of the genotypes are under the complete null (not associated 

with any covariate, ), while 27% are associated with a small proportion of the covariates 

( ), and the remaining 7% are highly pleiotropic ( ).

We compared the performances of CMS against other recently proposed multi-phenotype 

approaches. This includes mvBIMBAM, a Bayesian approach that aims to classify the 

outcome as directly associated, indirectly associated, or unassociated with the predictor. The 

mvBIMBAM approach has the main advantage of proposing a formal theoretical framework 

that, similar to structural equation modelling, explores a wide range of underlying causal 

models. However, there is a large computational cost, and the approach is currently limited 

to the analysis of a relatively small number of traits (<10). We therefore performed our 

comparison using small-scale simulated data (i.e. 10 phenotypes).

Other potential alternatives to CMS are data reduction techniques that aimed at modelling 

hidden structure. They have been widely-used for the analysis of molecular phenotypic data, 

with a primary goal of removing confounding effects8, 9, 19. We examined principal 

component analysis, as it has been widely used and is still one of the most popular 

approaches8, and a more complex factor analysis inspired method (PEER), which has 

outperformed similar methods9. We simulated series of large multivariate datasets under a 

null model, where a genotype is associated with multiple variables but not the primary 

outcome of interest (i.e. in the presence of type II covariates). For each dataset we tested the 

association between the primary outcome and the genotype while adding principal 

components (PCs) or PEER factors. Results from this experiment are presented in 

Supplementary Figure 7, and show an increasing type I error rates when increasing the 

number of PCs or PEER factors in the model.

Previous studies also observed that including fixed effects can improve power over 

dimensionality reductions approaches that incorporate these same variables31. This is likely 

driven by the shrink that is applied when these methods jointly fit effect sizes of multiple 

correlated variables. To investigate the power gains available to CMS when PCs/PEER 

factors are used we simulated data under an alternative model of true association but in the 

absence of type II covariates to avoid the aforementioned issue. We applied CMS on top of a 

variable number of PEER factors that were always included as covariates PEER 

(Supplementary Fig. 8).

The metabolite data

Circulating metabolites were profiled by liquid chromatography-tandem mass spectrometry 

(LC-MS) in prediagnostic plasma from 453 prospectively-identified pancreatic cancer cases 

and 898 controls. These subjects were drawn from four U.S. cohort studies: the Nurses 

Health Study (NHS), Health Professionals Follow-up Study (HPFS), Physicians Health 

Study (PHS) and Women’s Health Initiative (WHI). Two controls were matched to each case 

by year of birth, cohort, smoking status, fasting status at the time of blood collection, and 

month/year of blood collection. Metabolites were measured in the laboratory of Dr. Clary 

Clish at the Broad Institute using the methods described in Wang et al.32 and Townsend et al.
33 A total of 133 known metabolites were measured; 50 were excluded from analysis 

because of poor reproducibility in samples with delayed processing (n=32), CV>25% 
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(n=13), or undetectable levels for >10% subjects (n=5). The remaining 83 metabolites 

showed good reproducibility in technical replicates or after delayed processing.33 Among 

those, 79 had no missing data and were considered further for analysis. Additional details of 

these data have can be found here34. Genotypic data was also available for some of these 

participants. A subset of 645 individuals from NHS, HPFS and PHS had genome-wide 

genotypes data as part of PanScan study35. Among the remaining participants, 547 have 

been genotyped for 668 SNPs chosen to tag genes in the inflammation, vitamin D, and 

immune pathways. To maximize sample size we focused our analysis on these 668 SNPS 

which were therefore available in a total of 1,192 individuals. In-sample minor allele 

frequency of these variants range from 1.1% to 50%. Metabolite levels were approximately 

Gaussian after adjusting for the confounding factors and were therefore not transformed 

further (Supplementary Figure 45). We first applied standard linear regression testing each 

SNP for association with each metabolite while adjusting for five potential confounding 

factors: pancreatic cancer case-control status, age at blood draw, fasting status, self-reported 

race, and gender. We then applied the CMS while also including the five confounding factors 

as covariates. All tests were two-sided.

The gEUVADIS data

The gEUVADIS data20 consists of RNA-seq data for 464 lymphoblastoid cell line (LCL) 

samples from five populations in the 1000 genomes project. Of these, 375 are of European 

ancestry (CEU, FIN, GBR, TSI) and 89 are of African ancestry (YRI). In these analyses, we 

considered only the European ancestry samples. Raw RNA-sequencing reads obtained from 

the European Nucleotide Archive were aligned to the transcriptome using UCSC annotations 

matching hg19 coordinates. RSEM (RNA-Seq by Expectation-Maximization)36 was used to 

estimate the abundances of each annotated isoform and total gene abundance is calculated as 

the sum of all isoform abundances normalized to one million total counts or transcripts per 

million (TPM). For each population, TPMs were log2 transform and median normalized to 

account for differences in sequencing depth in each sample. A total of 29,763 total genes 

were initially available. We removed those that appear to be duplicates or that had low 

expression value (defined as log2(TPM)<2 in all samples). After filtering, 13,484 genes 

remain. The genotype data was obtained from 1000 Genomes Project Phase 1 data set. We 

restricted the analysis to the SNPs with a MAF≥5% that were within ±50kB from the gene 

tested for cis-effect. A total of 11,175 genes had at least one SNP that match these criteria. 

We performed a standard cis-eQTL screening applying first standard linear regression while 

adjusting for PEER factors. We then applied CMS while including the same PEER factors as 

covariates. All tests were two-sided.

When running CMS, we performed a pre-filtering of the candidate covariates. More 

specifically, for each gene analyzed –referred further as the target gene– we restrained the 

number of candidate covariates (i.e. gene other than the target) to be evaluated. First, we 

aimed at avoiding genes which expression is more likely to be associated with some of the 

SNPs tested because of a cis-effect, as such genes are more likely to induce false signal. 

Thus, all genes in close physically proximity with the target genes (≤1Mb) were excluded. 

Second, we aimed at reducing the number of candidate covariates (13,484 minus 1, a priori), 
as most of them are likely uninformative and because our simulation showed that for small 
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sample size, CMS would have reduced robustness if the number of candidate covariates is 

too large. To do so we performed an initial screening for association between the target and 

all other genes and used the top 50 showing the strongest squared-correlation with the target.

We performed an in-silico replication analysis using two databases of known eQTLs. The 

first database included results from 15 publicly available studies (excluding the European 

gEUVADIS) from multiple tissues21, and a second one included eQTLs in whole blood 

samples from a joint analysis of 7 studies22. Summary statistics were not available for every 

SNP, instead these databases listed all SNPs found at an FDR of 5% in each study. 

Therefore, we could not perform a standard replication study and instead compared the 

replication rate of CMS and LR in these databases. Note that we expect smaller replication 

rate for the LR-only and CMS-only compared to those identified by both approaches, as the 

latter group includes variants with the largest effects, while the former ones correspond to 

associations of smaller magnitude. Finally, we performed a quasi-null experiment where we 

tested for trans-effects using random SNPs from the genome, assuming that the majority of 

these will be under the null.

Variance explained in multiple regressions

We plotted in Figure 2b-c the variance of a set of outcomes  that can be 

explained by covariates in the data –i.e. how much of the variance of  can be explained by 

. For illustration purposes, we also approximated the individual contribution of each 

covariate. In brief, we standardized all variables and estimated , the proportion of variance 

of the outcome explained by each  from the marginal models , and , the 

total variance of  explained by all  jointly, from the model . Then, we 

derived , an approximation of the relative contribution of each  to the variance of  as 

follows:

Note that this is an arbitrary re-scaling of the real contribution of the  variable. Indeed, 

the correlation between all  induces multicollinearity in the regression and it follows that 

.

Missing data

The current version of the algorithm includes a naïve imputation strategy for missing data 

that consists in replacing missing values of candidate covariates by their mean value. This 

allows avoiding the sharp decrease in sample size that could arise if the proportion of 

missing value is too large. Note that the inference is performed per predictor-outcome pair 

and only for the covariates while we do not infer missing values for the outcome or the 

predictor tested. We show in Supplementary Figure 14 that the imputation does not have a 
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strong impact on the robustness of the test, although we note that large-scale (i.e. ≥50% of 

missing values) random missingness appears to slightly deflate the test statistics from CMS.

Data availability

The gEUVADIS RNA-sequencing data, genotype data, variant annotations, splice scores, 

quantifications, and QTL results are freely and openly available with no restrictions at 

www.geuvadis.org. The Metabolites data that support the findings of this study are available 

from the corresponding author upon reasonable request.

Code availability

An implementation of the approach is freely available at https://github.com/haschard/CMS

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Variance components of adjusted variables
We illustrate the components of the variance of an outcome Y before and after adjusting for 

other variables. The predictor of interest, X, is displayed in red. In (a), the adjusting 

variables (U1 and U2) are true causal factors that have direct effects on Y, therefore adjusting 

Y for U1 and U2 reduces the variance of Y. In (b) the true factors are not measured but a 

variable C influenced by U1 and U2, is measured. Adjusting Y for C reduces the residual 

variance of Y, but also introduces a component of the variance specific to C. In (c) the 

covariate shares factors with Y, but is also influenced by X. When the effect of X on C is 
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concordant with the effect of X on Y, this can induce a power loss. In (d) Y is not associated 

with the predictor and adjusting for C can induce false association signal by introducing the 

effect of X into the residual of Y.
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Figure 2. Examples of shared variance in real data and equivalent increases in sample size
Panel (a) shows the equivalent increase in sample size as a function of the variance of the 

outcome explained by covariates assuming initial sample sizes ranging from 100 to 10,000. 

Panels (b) and (c) show the distribution of variance explained by other variables for 79 

metabolites from the PANSCAN study, and a random sub-sample of expression abundance 

estimates from 79 genes in the gEUVADIS study. The size of the bar corresponds to the total 

variance explained of each outcome by other available covariates, while the relative 

contribution of these covariates to each outcome is illustrated with different sets of random 

colors for each bar.
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Figure 3. Conditional and unconditional distribution

Example of inclusion area based on the distribution of , the estimated effect between the 

predictor X and the covariate C under the null hypothesis of no association between X and C 
( ) and no association between X and the outcome Y ( ). (a) presents the standard 

95% confidence interval (green area) corresponding to p-value <0.05 unconditional on . (b) 

and (c) show both the unconditional (blue curve) and conditional (pink curve) distribution of 

. CMS combines the two, setting an inclusion area (blue+pink shaded), while weighting 

both interval by a factor depending on the correlation between Y and C, which equals 0.5 in 
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(b) and 0.8 in (c). Plots were drawn assuming all variables are standardized, using a sample 

size of 10,000, an overall variance of Y explained of 0.7,  and a multivariate test of 

association between all covariates and Y with a p-value ( ) of 0.3.
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Figure 4. Power and robustness
QQ plots under the null and alternate distributions of p-values from a series of simulations. 

We compare four statistical tests: a standard marginal univariate test (LR); the optimally 

adjusted test (OPT) that includes as covariates only the outcomes not associated with the 

predictor; CMS; and a univariate test that include as covariate all outcomes with a p-value 

for association with the predictor above 0.1 (FT). Grey boxes show the genomic inflation 

factor  for the null models (upper panels), and estimated power at an α threshold of 

5×10−7 (to correct for 100,000 tests) for the alternative model (lower panels). Null models 

also include the 95% confidence interval of the −log10(p-values), displayed as a grey cone 

around the diagonal. Simulations were taken from 100,000 datasets including 10 (a), 40 (b) 

and 80 (c) outcomes under a null model (upper panels), where a predictor of interest is not 

associated with a primary outcome but is associated with either 0%, 15% or 35% of the 

other outcomes with probability 0.75, 0.2 and 0.05 respectively, and under the alternative 

(lower panels), where the predictor is associated with the primary outcome only. The 

variance of the primary outcome that can be explained by the other outcomes was randomly 

chosen from [25%, 50%, 75%] with equal probability.
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Figure 5. Analysis of the gEUVADIS data
−log10(p-values) of the most significant SNP per gene obtained by CMS (y-axis) and linear 

regression (LR, x-axis) from a genome-wide cis-eQTL mapping of 11,675 genes in 375 

individuals from the gEUVADIS study. For illustration purposes we truncated the plots at 

−log10(p-value)=30. Both CMS and LR adjusted for 10 PEER factors, while the CMS 
analysis also included 0 to 50 additional covariates per SNP/gene pair tested. We considered 

a stringent significance threshold of 1.4×10−8 to account for the approximately 3.5 million 

tests and derived the number of gene showing at least one cis-eQTL with LR only (blue), 

CMS only (red), both approaches (turquoise), or neither (grey).
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