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Summary

Designing improved vaccines against mutable viruses such as dengue and

influenza would be helped by a better understanding of how the B-cell

memory compartment responds to variant antigens. Towards this we have

recently shown, after secondary immunization of mice with a widely vari-

ant dengue virus envelope protein with only 63% amino acid identity,

that IgM+ memory B cells with few mutations supported an efficient sec-

ondary germinal centre (GC) and serum response, superior to a primary

response to the same protein. Here, further investigation of memory

responses to variant proteins, using more closely related influenza virus

haemagglutinins (HA) that were 82% identical, produced a variant-

induced boost response in the GC dominated by highly mutated B cells

that failed, not efficiently improving serum avidity even in the presence of

extra adjuvant, and that was worse than a primary response. This sup-

ports a hypothesis that over a certain level of antigenic differences, cross-

reactive memory B-cell populations have reduced competency for affinity

maturation. Combined with our previous observations, these findings also

provide new parameters of success and failure in antibody memory

responses.

Keywords: affinity maturation; antibodies; B-cell memory; cross-reactive;

influenza virus.

Introduction

Foreign antigens stimulate the formation of memory B

cells that have undergone somatic hypermutation

(SHM) of their antibody genes and selection in germinal

centres (GCs).1,2 In this manner, immunity is estab-

lished against identical pathogens. Despite the impor-

tance of understanding protection against mutable

viruses such as dengue and influenza viruses, however,

how memory B cells respond to variant antigens is

poorly understood.

We have recently shown that antibody memory

responses to widely variant proteins involved secondary

GCs with a higher proportion of IgM+ B cells, with fewer

VH mutations,1 compared with the memory response to

the homotypic antigen. These observations support the

idea that ‘lower’ layers of the B-cell memory compartment,

with less SHM, could furnish secondary responses against

variant antigens.3–5

A complication of sequential infection by certain vari-

ant viruses, however, is that immune responses to the sec-

ond virus can be compromised. In such situations,

termed antigenic sin, cross-reactive memory-derived anti-

bodies are induced that have a lower avidity and may

increase pathology, as they are non-neutralizing or

enhance infectivity.6–9 A critical question is why such

memory responses then fail to rapidly evolve higher affin-

ity to variant antigens through a secondary GC reaction.

Using sequential immunization with variant influenza

virus haemagglutinins (HA), which we have selected

because they are more closely related than the previ-

ously used dengue virus proteins, we have identified an

antibody memory response to a variant antigen that

exhibits inefficient secondary affinity maturation

Abbreviations: Bris, Brisbane 59/07; ELISA, enzyme-linked immunosorbent assay; GC, germinal centre; HA, haemagglutinin; RT-
PCR, reverse transcription–polymerase chain reaction; SHM, somatic hypermutation
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associated with altered GC reactions and mutation pro-

files, linking ‘antigenic sin’ to altered GC activity for

the first time.

Materials and methods

Mice, immunization, antigens

All antigens were from Sino Biologicals (Beijing, China)

and female 8- to 11-week-old BALB/c mice were obtained

from Charles River Laboratories (Margate, UK). Most

primary immunizations were, 25 lg PR8/34 HA1 alum

precipitated with 2 9 107 heat-killed Bordetella pertussis

administered intraperitoneally. Brisbane 59/07 (Bris) HA1

or HA was also used for priming as stated in the Results

section, also with alum/pertussis. Secondary immuniza-

tions were 25 lg PR8/34 or Bris HA protein administered

intraperitoneally in phosphate-buffered saline, or with

Sigma Adjuvant System (Sigma-Aldrich, Gillingham, Dor-

set, UK), as stated in the Results section. Rationale for

HA1 priming/HA boost was to focus the response away

from the conserved stem and on to the variable epitopes

of the head and to avoid sequential exposure to the C-

terminal HA1/His tag region, to reduce confounding

sequence similarities. All animal experiments were per-

formed under UK Home Office license PPL 30/3089 with

permission from the University of Exeter local animal

welfare ethics review board.

ELISA

Standard protocol for enzyme-linked immunosorbent

assay (ELISA) used 1 lg/ml coating protein in bicarbon-

ate buffer. End-point titre values plotted are log2 of

1/(end-point dilution 9 100), each unit increase repre-

sents a doubling of titre.

Urea avidity ELISA

Standard ELISA was performed, following Puschnik

et al.,10 then after the serum step, we performed 19

wash, 10-min incubation with 7 M urea/Phosphate-buf-

fered saline Tween (PBST), 29 wash, then standard pro-

tocol. Avidity index was calculated as 7-M urea readings/

readings from PBST-only treatment, after subtraction of

background.

Flow cytometry

Red blood cell-depleted spleen cells were incubated with

Fc-block (BD Biosciences, Wokingham, Berkshire, UK)

then allophycocyanin-conjugated anti-B220, BV421-conju-

gated anti-CD38 and phycoerythrin-conjugated anti-

CD95/Fas (BD), and anti-IgM (eBioscience/Thermo-Fisher

Scientific, Paisley, UK), following standard protocols.

B-cell antibody sequencing

Single GC B cells were sorted into 10 ll chilled 10 mM

Tris–HCl pH 8�0, 1 U/ll RNAsin (Promega, Southamp-

ton, UK) and frozen at �80°. One-Step reverse transcrip-

tion–polymerase chain reaction (RT-PCR) (Qiagen,

Manchester, UK) was performed with primer sets as

described by Tiller et al.11, for 50 cycles annealing at 53�6°.
Heavy-chain second-round PCRs used 2 ll first-round

PCR, Tiller et al.11 primers, and Taq (Qiagen) for 50 cycles

with annealing at 56°. Products were sequenced using pri-

mer 5ʹ-MsVHE,11 which leaves part of the 5ʹ end of FR1

unsequenced; hence, FR1 was not analysed. VH sequences

were analysed using IMGT V-QUEST platform. Sequences

are given in the Supplementary material (Table S1).

Statistics

Three mice were randomly allocated to cages. For greater

sample sizes, treatments were independently replicated.

Where t-test was applied, data points were analysed for

equality of variance; where this was violated they were

subject to a two-tailed test for unequal variance, other-

wise a two-tailed test for equal variance was used.

Results

Primary and secondary responses to PR8 HA

We defined the serum and GC response after a homo-

typic antigen prime-boost. Mice were primed with PR8/

34 (PR8) HA1 with adjuvant and boosted 38 days later

with soluble PR8 HA (see Materials and methods for

explanation).

Priming induced an increasing IgG titre to day 44

(Fig. 1a). Boosting increased the titre modestly (twofold)

but significantly by day 17. Levels of GC B cells rose from

a background of 0�18% to 0�75% by day 6 after priming,

remained elevated until day 17, and fell to background by

day 44 (Fig. 1b,c). Boosting induced GC B cells to a sig-

nificantly higher level, 1�5%, by day 6, which reduced by

day 17, but not significantly (Fig. 1c).

VH mutations increased by day 17 after priming, con-

sistent with active SHM and affinity maturation (Fig. 1d).

Boosting induced GC B cells with a higher level of VH

mutation at day 6 (median = 3) than seen at day 6 after

priming (median = 1�5), consistent with a response from

memory B cells focused on the HA1 head region. GC B

cells then accumulated further mutations by day 17 after

boost (median = 6), consistent with further affinity matu-

ration. Analysis of the relative avidity of serum IgG

(Fig. 1e) showed a rapid increase by day 6 after PR8 HA

boosting, which points to stimulation of the highest affin-

ity memory cells by the homotypic boost. There was a

further increase by day 30, up to 51%.
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A failed secondary response to heterotypic HA

After PR8 HA1 priming, we performed boosts with Bris

HA, which has 82% identity with PR8 over the HA1 region.

Initially, the boosts were not adjuvanted because this was

not previously necessary to induce successful heterotypic

secondary responses.1 In the experiments reported below,

however, because of the poor durability of the non-adju-

vanted boost response in the GC, we repeated all boosts

with an adjuvant. In this way, we sought also to determine

if adjuvant increased the longevity of the GC response, and

if it did, what effect this had on the resulting affinity matu-

ration. Figure 2(a) shows the serum titres induced by the

heterotypic Bris HA boosts, a Bris HA prime and a Bris/

Bris prime-boost.

Without adjuvant, the heterotypic Bris HA boost

induced a robust GC response by day 6, up to just over

1�0%, which collapsed by day 17 to 0�3%, close to the

pre-boost background level of 0�18% (Fig. 2b). This con-

trasted with the sustained response seen after PR8 HA

boosting, and the responses after boosting with heteroty-

pic dengue virus proteins, which were still fourfold to

eightfold above background at day 17.1 Analysis of total

VH mutations in Bris HA boosted GC B cells showed the

same profile as the PR8 HA boost (Fig. 2c). With the

previously reported heterotypic dengue virus proteins,

early GC B cells had fewer mutations, compared with the

homotypic boost.1 Further, here, at day 6 after Bris HA

boosting, there was a lower proportion of IgM+ B cells

(Fig. 2d) compared with the homotypic PR8 boost, again

contrasting with the dengue virus protein responses.

There was not a significant increase in the relative avidity

of serum IgG detected by day 30 after Bris HA boost, to

32% (Fig. 2e). This rise was less than that seen after a

Bris HA prime, up to 51% at day 30 (Fig. 2e), and het-

erotypic dengue-4 envelope-protein boosting, up to 53%

by day 32.1

To test whether Bris HA is not just a weaker antigen,

we performed a homotypic Bris/Bris prime-boost. This

induced similar levels of early GC B cells (1�2%; Fig. 2b)

to the homotypic PR8 prime-boost (1�5%; Figs 1c and

2b), which then declined slightly by day 17, to 0�7%. It

also indeced twofold higher serum IgG titres (Fig. 2a)

compared with the homotypic PR8 prime-boost (Fig. 1a),

suggesting that its antigenicity is similar.
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Figure 1. Primary and secondary response to homotypic PR8 haemagglutinin (HA). (a) Anti-PR8 HA serum IgG response. Bar shows mean. Px,
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mean. NI, not immunized; other labels as for panel (a). (d) VH mutations in single sorted germinal centre (GC) B cells. From n = 3 mice (Px)

and n = 6 mice (Bx). Bar shows median value. Labels as for panel (a). (e) Relative serum IgG avidity for PR8 HA. Bar shows mean. Labels as for

panel (a).
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Effect of adjuvant on the heterotypic Bris HA boost
response

Adjuvants containing Toll-like receptor ligands can

increase GC responses.12

Adjuvanted Bris HA boosts induced a nearly fourfold

increase in IgG titre at day 17, above that of the non-

adjuvant boost (Fig. 2a), and induced sustained GC B-

cell levels, rising to 1�2% of lymphocytes by day 6 and

only falling to 0�9% by day 17 (Fig. 2b). At day 30,

however, the IgG titre was similar in adjuvanted Bris

HA-boosted mice compared with Bris HA-primed mice

(Fig. 2a).

Early GC B cells had similar, if not greater, levels of

VH mutation (median = 4) compared with the non-adju-

vanted boost (median = 3; Fig. 2c), and an equivalent

proportion of IgM GC B cells (Fig. 2d), implying that no

extra naive cells were recruited to GCs by adjuvant. By

day 17, median VH mutations in this group had only

increased by one (Fig. 2c).

The adjuvanted Bris HA boost induced a significant

increase in serum avidity from day 6 to day 30, but only

to levels comparable to those seen with the Bris HA

prime group, being 54% versus 51%, and not approach-

ing the avidity of the homotypic Bris HA1/Bris HA

prime-boost which was 72% (Fig. 2e). Considering the

net level of increase in avidity between day 6 and day 30,

the Bris HA prime was more efficient (41% increase)

than the adjuvanted heterotypic boost (28% increase).

Altered selection of VH mutations in Bris HA-
boosted mice

Despite a sustained GC reaction, the adjuvanted Bris HA

response only supported a slight increase in overall VH

mutation (median = +1) between days 6 and 17 (Fig. 2c),

compared with the PR8 HA1 primary (+2�5), PR8 HA

boost (+3) and dengue-4 envelope protein boost (+4).1

Analysis of the levels of VH mutations in IgM and IgG

showed further evidence of altered selection. The primary
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Figure 2. Secondary responses to variant

haemagglutinin (HA) boosting. (a) Anti-Bris-

bane 59/07 (Bris) HA serum IgG titres after

Bris HA boosting. Bars indicate mean. x-axis

labels: P44, PR8 HA1 prime only, day 44. All

other labels: Px, x days since priming with
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boosting with antigen indicated below. Bris,
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reproduced from Fig. 1(c) for comparison.
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Bars show mean. x-axis labels as for panel (a).

(f) VH mutations in IgM+ and IgG+ GC B

cells. Number of mice in each group indicated

as n = . Bars indicate median. x-axis labels as

for panel (a).
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and secondary responses to PR8 HA and the heterotypic

dengue protein E4 and E2 responses all showed increases

in IgM VH mutation of between +1�5 and +4�5 as the GC

response matured (Fig. 2f, and ref. 1). In the adjuvanted

Bris HA boost response, there was no increase in IgM

mutations. The non-adjuvanted Bris HA boost response

was not included in this analysis as the failure of the GC

reaction implies that few cells were successfully selected

to day 17.

Discussion

We have shown how B-cell memory responses to boost-

ing with heterotypic antigens can be inefficient. With the

non-adjuvanted heterotypic Bris HA boosts, GC B-cell

numbers collapsed by day 17 despite ongoing SHM, and

serum avidity failed to increase significantly, contrasting

with heterotypic dengue protein boosts in mice, and

reproducing an ‘antigenic sin’ response. With adjuvant,

Bris HA boosting induced comparable IgG titres but a

smaller increase in serum avidity than the primary

response to Bris HA. Considering the adjuvanted Bris HA

boost response initiated with 3�6-fold higher numbers of

GC B cells (day 6) above background (Fig. 2b), it is less

efficient than the primary response. The presence of a

cross-reactive memory B-cell compartment, therefore, was

an impediment to the response to Bris HA.

We do not consider that the failed secondary response

to the non-adjuvanted heterotypic Bris HA boost could

be due to blocking by pre-existing cross-reactive antibod-

ies because this effect would be stronger in the homotypic

boosts (PR8/PR8 and Bris/Bris), which both show longev-

ity of the GC reaction.

We previously reported that successful heterotypic sec-

ondary responses had early GCs containing more IgM+ B

cells with fewer mutations.1 The heterotypic responses to

Bris HA reported here had early GCs with lower propor-

tions of IgM+ B cells (Fig. 2d), with equivalent or even

higher levels of mutation compared with the homotypic

boost (Fig. 2c). In the adjuvanted Bris HA boost, the high

levels of mutation in IgM failed to increase further by

day 17 (Fig. 2f). We propose that these heterotypic sec-

ondary responses to Bris HA were compromised because

the antibody’s ability to evolve was reduced. This could

be due to an intrinsic loss of ability to evolve in mutated

V genes, as they have lost hotspots for the aicd mutator,

lost codons predisposed to non-conservative substitu-

tions13 and despite being diverse at the sequence level

may be more restricted in V-gene diversity. It could also

be for GC dynamic reasons, such as increased SHM and

class switching affecting GC B-cell longevity and fate.14

The model of Deem and Lee15 provides a mathematical

description of this. It predicts that over a certain window

of antigenic difference, highly mutated memory responses

to variant antigens can be worse than primary responses,

despite memory B cells initiating with a higher affinity

than naive cells, which also explains their dominance of

the recall response.

It seems that the HA1 region of the Bris HA protein

was sufficiently similar to PR8 HA1 (82% identity) to

recruit the most mutated, and more often class-switched,

anti-PR8 HA1 memory cells, which were then inefficient

at further improving affinity for Bris HA. This outcome

contrasts with the efficient affinity maturation previously

observed with less mutated memory B cells1 and indicates

that mutation levels are an important parameter for

assessing the eventual success of cross-reactive vaccine

protection. We consider that the effects reported here are

relevant to understanding sub-optimal immune responses

against pandemic strains of influenza where antigenic dif-

ferences are larger compared with seasonal influenza epi-

demics, which are usually associated with a few mutations

in the HA protein.
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