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We outline a phenomenological theory of evolution and origin of
life by combining the formalism of classical thermodynamics with
a statistical description of learning. The maximum entropy princi-
ple constrained by the requirement for minimization of the loss
function is employed to derive a canonical ensemble of organisms
(population), the corresponding partition function (macroscopic
counterpart of fitness), and free energy (macroscopic counterpart
of additive fitness). We further define the biological counterparts
of temperature (evolutionary temperature) as the measure of sto-
chasticity of the evolutionary process and of chemical potential
(evolutionary potential) as the amount of evolutionary work
required to add a new trainable variable (such as an additional
gene) to the evolving system. We then develop a phenomenologi-
cal approach to the description of evolution, which involves
modeling the grand potential as a function of the evolutionary
temperature and evolutionary potential. We demonstrate how
this phenomenological approach can be used to study the “ideal
mutation” model of evolution and its generalizations. Finally, we
show that, within this thermodynamics framework, major transi-
tions in evolution, such as the transition from an ensemble of mol-
ecules to an ensemble of organisms, that is, the origin of life, can
be modeled as a special case of bona fide physical phase transi-
tions that are associated with the emergence of a new type of
grand canonical ensemble and the corresponding new level of
description.

entropy j laws of thermodynamics j major transitions in evolution j origin
of life j theory of learning

C lassical thermodynamics is probably the best example of
the efficiency of a purely phenomenological approach for

the study of an enormously broad range of physical and chemi-
cal phenomena (1, 2). According to Einstein, “It is the only
physical theory of universal content, which I am convinced, that
within the framework of applicability of its basic concepts will
never be overthrown” (3). Indeed, the basic laws of thermody-
namics were established at a time when the atomistic theory of
matter was only in its infancy, and even the existence of atoms
has not yet been demonstrated unequivocally. Nevertheless,
these laws remained untouched by all subsequent developments
in physics, with the important qualifier “within the framework
of applicability of its basic concepts.” This framework of appli-
cability is known as the “thermodynamic limit,” the limit of a
large number of particles when fluctuations are assumed to be
small (4). Moreover, the concept of entropy that is central to
thermodynamics was further generalized to become the corner-
stone of information theory [Shannon’s entropy (5)] and is cur-
rently considered to be one of the most important concepts in
all of science, reaching far beyond physics (6). The conventional
presentation of thermodynamics starts with the analysis of ther-
mal machines. However, a more recently promoted and appar-
ently much deeper approach is based on the understanding of
entropy as a measure of our knowledge (or, more accurately,
our ignorance) of a system (6–8). In a sense, there is no entropy
other than information entropy, and the loss of information
resulting from summation over a subset of the degrees of free-
dom is the only necessary condition to derive the Gibbs distri-
bution and hence all the laws of thermodynamics (9, 10).

It is therefore no surprise that many attempts have been made
to apply concepts of thermodynamics to problems of biology,
especially to population genetics and the theory of evolution. The
basic idea is straightforward: Evolving populations of organisms
fall within the domain of applicability of thermodynamics inas-
much as a population consists of a number of organisms suffi-
ciently large for the predictable collective effects to dominate over
unpredictable life histories of individual (where organisms are
analogous to particles and their individual histories are analogous
to thermal fluctuations). Ludwig Boltzmann prophetically
espoused the connection between entropy and biological evolu-
tion: “If you ask me about my innermost conviction whether our
century will be called the century of iron or the century of steam
or electricity, I answer without hesitation: it will be called the cen-
tury of the mechanical view of nature, the century of Darwin”
(11). More specifically, the link between thermodynamics and
evolution of biological populations was clearly formulated for the
first time by Ronald Fisher, the principal founder of theoretical
population genetics (12). Subsequently, extended efforts aimed at
establishing detailed mapping between the principal quantities
analyzed by thermodynamics, such as entropy, temperature, and
free energy, and those central to population genetics, such as
effective population size and fitness, were undertaken by Sella
and Hirsh (13) and elaborated by Barton and Coe (14). The par-
allel is indeed clear: The smaller the population size the stronger
are the effects of random processes (genetic drift), which in phys-
ics associates naturally with temperature increase. It should be
noted, however, that this crucial observation was predicated on
the specific model of independent, relatively rare mutations (low
mutation limit) in a constant environment or the so-called ideal
mutation model. Among other attempts to conceptualize the rela-
tionships between thermodynamics and evolution, of special note
is the work of Frank (15, 16) on applications of the maximum
entropy principle, according to which the distribution of any quan-
tity in a large ensemble of entities tends to the highest entropy
distribution subject to the relevant constraints (6). The nature of
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such constraints, as we shall see, is the major object of inquiry in
the study of evolution from the perspective of thermodynamics.

The notable parallels notwithstanding, the conceptual frame-
work of classical thermodynamics is insufficient for an adequate
description of evolving systems capable of learning. In such sys-
tems, the entropy increase caused by physical and chemical pro-
cesses in the environment, under the second law of thermodynam-
ics, competes with the entropy decrease engendered by learning,
under the second law of learning (17). Indeed, learning, by defini-
tion, decreases the uncertainty in knowledge and thus should
result in entropy decrease. In the accompanying paper, we
describe deep, multifaceted connections between learning and evo-
lution and outline a theory of evolution as learning (18). In partic-
ular, this theory incorporates a theoretical description of major
transitions in evolution (MTE) (19, 20) and multilevel selection
(21–24), two fundamental evolutionary phenomena that so far
have not been fully incorporated into the theory of evolution.

Here, we make the next logical step toward a formal descrip-
tion of biological evolution as learning. Our main goal is to
develop a macroscopic, phenomenological description of evolu-
tion in the spirit of classical thermodynamics, under the
assumption that not only the number of degrees of freedom but
also the number of the learning subsystems (organisms or pop-
ulations) is large. These conditions correspond to the thermo-
dynamic limit in statistical mechanics, where the statistical
description is accurate.

The paper is organized as follows. InMaximum Entropy Principle
Applied to Learning and Evolution we apply the maximum entropy
principle to derive a canonical ensemble of organisms and to define
relevant macroscopic quantities, such as partition function and free
energy. In Thermodynamics of Learning we discuss the first and sec-
ond laws of learning and their relations to the first and second laws
of thermodynamics, in the context of biological evolution. In Phe-
nomenology of Evolution we develop a phenomenological approach
to evolution and define relevant thermodynamic potentials (such as
average loss function, free energy, and grand potential) and ther-
modynamic parameters (such evolutionary temperature and evolu-
tionary potential). In Ideal Mutation Model we apply this phenome-
nological approach to analyze evolutionary dynamics of the “ideal
mutations” model previously analyzed by Hirsh and Sella (7). In
Ideal Gas of Organisms we demonstrate how the phenomenological
description can be generalized to study more complex systems in
the context of the “ideal gas” model. In Major Transitions in Evolu-
tion and the Origin of Life we apply the phenomenological descrip-
tion to model MTE, and in particular the origin of life as a phase
transition from an ideal gas of molecules to an ideal gas of organ-
isms. Finally, in Discussion, we summarize the main facets of our
phenomenological theory of evolution and discuss its general
implications.

Maximum Entropy Principle Applied to Learning
and Evolution
To build the vocabulary of evolutionary thermodynamics (Table
1), we proceed step by step. The natural first concept to intro-
duce is entropy, S, which is universally applicable beyond phys-
ics, thanks to the information representation of entropy (5).
The relevance of entropy in general, and the maximum entropy
principle in particular (6), for problems of population dynamics
and evolution has been addressed previously, in particular by
Frank (25, 26), and we adopt this principle as our starting
point. The maximum entropy principle states that the probabil-
ity distribution in a large ensemble of variables must be such
that the Shannon (or Boltzmann) entropy is maximized subject
to the relevant constraints. This principle is applicable to an
extremely broad variety of processes, but as shown below is insuf-
ficient for an adequate description of learning and evolutionary
dynamics and should be combined with the opposite principle of

minimization of entropy due to the learning process, or the sec-
ond law of learning (see Thermodynamics of Learning and ref.
17). Our presentation in this section could appear oversimplified,
but we find this approach essential to formulate as explicitly and
as generally as possible all the basic assumptions underlying ther-
modynamics of learning and evolution.

The crucial step in treating evolution as learning is the separa-
tion of variables into trainable and nontrainable ones (18). The
trainable variables are subject to evolution by natural selection
and, therefore, should be related, directly or indirectly, to the rep-
lication processes, whereas nontrainable variables initially charac-
terize the environment, which determines the criteria of selection.
As an obvious example, chemical and physical parameters of the
substances that serve as food for organisms are nontrainable vari-
ables, whereas the biochemical characteristics of proteins involved
in the consumption and utilize the food molecules as building
blocks and energy source are trainable variables.

Consider an arbitrary learning system described by trainable
variables q and nontrainable variables x, such that nontrainable
variables undergo stochastic dynamics and trainable variables
undergo learning dynamics. In the limit when the nontrainable
variables x have already equilibrated, but the trainable variables
q are still in the process of learning, the conditional probability
distribution pðxjqÞ over nontrainable variables x can be
obtained from the maximum entropy principle whereby Shan-
non (or Boltzmann) entropy

S¼�
ð
dNx p xjqð Þlogp xjqð Þ [2.1]

is maximized subject to the appropriate constraints on the sys-
tem, such as average lossð

dNx H x,qð Þp xjqð Þ ¼ U qð Þ [2.2]

and normalization conditionð
dNx p xjqð Þ ¼ 1: [2.3]

Its simplicity notwithstanding, the condition [2.2] is crucial.
This condition means, first, that learning can be mathematically
described as minimization of some function UðqÞ of trainable
variables only, and second that this function can be represented
as the average of some function Hðx,qÞ of both trainable, q,
and nontrainable, x, variables over the space of the latter. Eq.
2.2 is not an assumption but rather follows from the interpreta-
tion of the function pðxjqÞ as the probability density over non-
trainable variables, x, for a given set of trainable ones, q. This
condition is quite general and can be used to study, for exam-
ple, selection of the shapes of crystals (such as snowflakes), in
which case Hðx,qÞ represents Hamiltonian density.

In the context of biology, UðqÞ is expected to be a monotoni-
cally increasing function of Malthusian fitness φðqÞ, that is, repro-
duction rate (assuming a constant environment); a specific choice
of this function will be motivated below [2.9]. However, this con-
nection cannot be taken as a definition of the loss function. In a
learning process, loss function can be any measure of ignorance,
that is, inability of an organism to recognize the relevant features
of the environment and to predict its behavior. According to Sir
Francis Bacon’s famous motto scientia potentia est, better knowl-
edge and hence improved ability to predict the environment
increases chances of an organism’s survival and reproduction.
However, derivation of the Malthusian fitness from the properties
of the learning system requires a detailed microscopic theory such
as that outlined in the accompanying paper (18). Here, we look
instead at the theory from a macroscopic perspective by develop-
ing a phenomenological description of evolution.
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We postulate that a system under consideration obeys the
maximum entropy principle but is also learning or evolving by
minimizing the average loss function UðqÞ [2.2]. The corre-
sponding maximum entropy distribution can be calculated using
the method of Lagrange multipliers, that is, by solving the fol-
lowing variational problem:

δ S� β
Ð
dNy H y,qð Þp yjqð Þ �U

� �
� ν

Ð
dNy p yjqð Þ � 1

� �� �
δp xjqð Þ ¼ 0,

[2.4]

where β and ν are the Lagrange multipliers which impose,
respectively, the constraints [2.2] and [2.3]. The solution of
[2.4] is the Boltzmann (or Gibbs) distribution

�logp xjqð Þ � 1� βH x,qð Þ � ν¼ 0

p xjqð Þ ¼ exp �βH xð Þ � 1� νð Þ ¼ exp �βH x,qð Þð Þ
Zðβ,qÞ ,

[2.5]

where

Z β, qð Þ ¼ exp 1þ νð Þ ¼
ð
dNx exp �βH x, qð Þð Þ ¼

ð
dNx φðx, qÞ

[2.6]

is the partition function (Z stands for German Zustandssumme,
sum over states).

Formally, the partition function Z β,qð Þ is simply a normaliza-
tion constant in Eq. 2.5, but its dependence on β and q contains a
wealth of information about the learning system and its environ-
ment. For example, if the partition function is known, then the
average loss can be easily calculated by simple differentiation

U qð Þ ¼

ð
dNx H x,qð Þexp �βH x,qð Þð Þð

dNx exp �βH x, qð Þð Þ
¼ � ∂

∂β
logZ β,qð Þ

¼ ∂
∂β

ðβFðβ,qÞÞ, [2.7]

where the biological equivalent of free energy is defined as

F ≡�TlogZ¼�β�1logZ¼ U �TS [2.8]

and the biological equivalent of temperature is T ¼ β�1. Evolu-
tionary temperature is yet another key term in our vocabulary

(Table 1), after entropy, which emerges as the inverse of the
Lagrange multiplier β that imposes a constraint on the average
loss function [2.2], that is, defines the extent of stochasticity of
the process of evolution. Roughly, free energy F is the macro-
scopic counterpart of the loss function H or additive fitness
(18), whereas, as shown below, partition function Z is the mac-
roscopic counterpart of Malthusian fitness,

φ ≡ exp �βH x,qð Þð Þ: [2.9]

The relation between the loss function and fitness is discussed
in the accompanying paper (18) and in Ideal Mutation Model.
In biological terms, Z represents macroscopic fitness or the
sum over all possible fitness values for a given organism, that is,
over all genome sequences that are compatible with survival in
a given environment, whereas F represents the adaptation
potential of the organism.

Thermodynamics of Learning
In the rest of this analysis, we follow the previously developed
approach to the thermodynamics of learning (17). Here, the
key difference from conventional thermodynamics is that learn-
ing decreases the uncertainty in our knowledge on the training
dataset (or of the environment, in the case of biological sys-
tems) and therefore results in entropy decrease. Close to the
learning equilibrium, this decrease compensates exactly for the
thermodynamic entropy increase and such dynamics is formally
described by a time-reversible Schr€odinger-like equation (17,
27). An important consequence is that, whereas in conventional
thermodynamics, the equilibrium corresponds to the minimum
of the thermodynamic potential over all variables, in a learning
equilibrium the free energy FðqÞ can either be minimized or
maximized with respect to the trainable variables q. If for a par-
ticular trainable variable the entropy decrease due to learning
is negligible, then the free energy is minimized, as in conven-
tional thermodynamics, but if the entropy decrease dominates
the dynamics, then the free energy is maximized. Using the ter-
minology introduced in the accompanying paper (18), we will
call the variables of the first type neutral qðnÞ and those of the
second type adaptable or active variables qðaÞ. There is also a
third type of variables that are (effectively) constant or core
variables qðcÞ, that is, those that have already been well/trained.
The term “neutral” means that changing the values of these
variables does not affect the essential properties of the system,
such as its loss function or fitness, corresponding to the regime

Table 1. Corresponding quantities in thermodynamics, machine learning, and evolutionary biology

Thermodynamics Machine learning Evolutionary biology

x Microscopic physical degrees of
freedom

Variables describing training
dataset (nontrainable
variables)

Variables describing environment

q Generalized coordinates (e.g.,
volume)

Weight matrix and bias vector
(trainable variables)

Trainable variables (genotype,
phenotype)

Hðx,qÞ Energy Loss function Additive fitness,
H x,qð Þ ¼ �Tlog f qð Þ

SðqÞ Entropy of physical system Entropy of nontrainable variables Entropy of biological system
UðqÞ Internal energy Average loss function Average additive fitness
ZðT,qÞ Partition function Partition function Macroscopic fitness
FðT,qÞ Helmholtz free energy Free energy Adaptive potential (macroscopic

additive fitness)
ΩðT,μÞ Grand potential, ΩpðT,M Þ Grand potential Grand potential, ΩbðT ,μÞ
T or T Physical temperature, T Temperature Evolutionary temperature, T
μ or M Chemical potential, M Absent in conventional machine

learning
Evolutionary potential, μ

Ne or N Number of molecules, N Number of neurons, N Effective population size, Ne

K Absent in conventional physics Number of trainable variables Number of adaptable variables

For further details, see the text and refs. 17 and 18.
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of neutral evolution. The adaptable variables comprise the bulk
of the material for evolution. The core variables are most
important for optimization (that is, for survival) and thus are
quickly trained to their optimal values and remain more or less
constant during the further process of learning (evolution). The
equilibrium state corresponds to a saddle point on the free
energy landscape (viewed as a function of trainable variables
q), in agreement with both the first law of thermodynamics and
the first law of learning (17): The change in loss/energy equals
the heat added to the learning/thermodynamic system minus
the work done by the system,

dU ¼ TdS�Q � dq, [3.1]

where T is temperature, S is entropy, and Q is the learning/gen-
eralized force for the trainable/external variables q.

In the context of evolution, the first term in Eq. 3.1 repre-
sents the stochastic aspects of the dynamics, whereas the sec-
ond term represents adaptation (learning, work). If the state of
the entire learning system is such that the learning dynamics is
subdominant to the stochastic dynamics, then the total entropy
will increase (as is the case in regular, closed physical systems,
under the second law of thermodynamics), but if learning domi-
nates, then entropy will decrease as is the case in learning sys-
tems, under the second law of learning (17): The total entropy
of a thermodynamic system does not decrease and remains
constant in the thermodynamic equilibrium, but the total
entropy of a learning system does not increase and remains
constant in the learning equilibrium.

If the stochastic entropy production and the decrease in
entropy due to learning cancel out each other, then the overall
entropy of the system remains constant and the system is in the
state of learning equilibrium (see refs. 17, 27, and 28 for discus-
sion of different aspects of the equilibrium states.) This second
law, when applied to biological processes, specifies and formal-
izes Schr€odinger’s idea of life as a “negentropic” phenomenon
(29). Indeed, learning equilibrium is the fundamental stationary
state of biological systems. It should be emphasized that the
evolving systems we examine here are open within the context
of classical thermodynamics, but they turn into closed systems
that reach equilibrium when thermodynamics of learning is
incorporated into the model.

On longer time scales, when qðcÞ remains fixed but all other
variables (i.e., qðaÞ, qðnÞ, and x) have equilibrated, the adaptable
variables qðaÞ can transform into neutral ones qðnÞ, and, vice
versa, neutral variables can become adaptable ones (18). In
terms of statistical mechanics, such transformations can be
described by generalizing the canonical ensemble with the fixed
number of particles (that is, in our context, fixed number of var-
iables relevant for training) to a grand canonical ensemble
where the number of variables can fluctuate (2). For neural net-
works, such fluctuations correspond to recruiting additional
neurons from the environment or excluding neurons from the
learning process. On a phenomenological level, these transfor-
mations can be described as finite shifts in the loss function,
U ! U ± μ. In conventional thermodynamics, when dealing
with ensembles of particles, μ is known as chemical potential,
but in the context of biological evolution we shall refer to μ as
evolutionary potential, another key term in our vocabulary of
evolutionary thermodynamics and learning (Table 1). In ther-
modynamics, chemical potential describes how much energy is
required to move a particle from one phase to another (for
example, moving one water molecule from liquid to gaseous
phase during water evaporation). Analogously, the evolutionary
potential corresponds to the amount of evolutionary work
(expressed, for example, as the number of mutations) or the
magnitude of the change in the loss function is associated with
the addition or removal of a single adaptable variable to or

from the learning dynamics, that is, how much work it takes to
make a nonadaptable variable adaptable, or vice versa.

The concept of evolutionary potential, μ, has multiple impor-
tant connotations in evolutionary biology. Indeed, it is recog-
nized that networks of nearly neutral mutations and, more
broadly, nonfunctional genetic material (“junk DNA”) that
dominates the genomes of complex eukaryotes represents the
reservoir of potential adaptations (30–33), making the evolu-
tionary cost of adding a new adaptable variable low, which cor-
responds to small μ. Genomes of prokaryotes are far more
tightly constrained by purifying selection and thus contain little
junk DNA (34, 35); put another way, the evolutionary potential
μ associated with such neutral genetic sequences is high in pro-
karyotes. However, this comparative evolutionary rigidity of
prokaryote genomes is compensated by the high rate of gene
replacement (36), with vast pools of diverse DNA sequences
(open pangenomes) available for acquisition of new genes,
some of which can contribute to adaptation (37, 38). The cost
of gene acquisition varies greatly among genes of different
functional classes as captured in the genome plasticity parame-
ter of genome evolution that effectively corresponds to the evo-
lutionary potential introduced here (39). For many classes of
genes in prokaryotes, the evolutionary potential μ is relatively
lower, such that gene replacement represents the principal
route of evolution in these life forms. In viruses, especially,
those with RNA and single-stranded DNA genomes, the evolu-
tionary potential associated with gene acquisition is prohibi-
tively high, but this is compensated by high mutation rates (40,
41), that is, low evolutionary potential μ associated with exten-
sive nearly neutral mutational networks, making these networks
the main source of adaptation.

Treating the learning system as a grand-canonical ensemble,
Eq. 3.1, which represents the first law of learning, can be rewrit-
ten as

dU ¼ TdSþ μdK, [3.2]

where K is the number of adaptable variables. Eq. 3.2 is more
macroscopic than [3.1] in the sense that not only nontrainable
variables but also adaptable and neutral trainable variables are
now described in terms of phenomenological, thermodynamic
quantities. Roughly, the average loss associated with a single
nontrainable or a single adaptable variable can be identified,
respectively, with T and μ, and the total number of nontrain-
able and adaptable variables with, respectively, S and K. This
correspondence stems from the fact that S and K are extensive
variables, whereas T and μ are intensive ones, as in conven-
tional thermodynamics.

To describe phase transitions, we have to consider the system
moving from one learning equilibrium (that is, a saddle point
on the free energy landscape) to another. In terms of the
microscopic dynamics, such phase transitions can involve either
transitions from not fully trained adaptable variables qðaÞ to
fully trained ones qðcÞ or transitions between different learning
equilibria described by different values of qðcÞ. In biological
terms, the latter variety of transitions corresponds to MTE,
which involve emergence of new classes of slowly changing,
near constant variables (18), whereas the former variety of
smaller-scale transitions corresponds to the fixation of benefi-
cial mutations of all kinds, including capture of new genes (42),
that is, adaptive evolution. In Major Transitions in Evolution
and the Origin of Life we present a phenomenological descrip-
tion of MTE, in particular the very first one, the origin of life,
which involved the transition from an ensemble of molecules to
an ensemble of organisms. First, however, we describe how
such ensembles can be modeled phenomenologically.
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Phenomenology of Evolution
Consider an ensemble of organisms that differ from each other
only by the values of adaptable variables qðaÞ, whereas the effec-
tively constant variables qðcÞ are the same for all organisms.
The latter correspond to the set of core, essential genes that
are responsible for the housekeeping functions of the organ-
isms (43). Then, the ensemble can either represent a Bayesian
(subjective) probability distribution over degrees of freedom of
a single organism or a frequentist (objective) probability distri-
bution over the entire population of organisms; the connections
between these two approaches are addressed in detail in the
classic work of Jaynes (6). In the limit of an infinite number of
organisms, the two interpretations are indistinguishable, but in
the context of actual biological evolution the total number of
organisms is only exponentially large,

Ne ∝ exp bKð Þ, [4.1]

and is linked to the number of adaptable variables
K ∝ log Neð Þ=b in a population of the given size Ne. Eq. 4.1
indicates that the effective number of variables (genes or sites
in the genome) that are available for adaptation in a given pop-
ulation depends on the effective population size. In larger pop-
ulations that are mostly immune to the effect of random genetic
drift, more sites (genes) can be involved in adaptive evolution.
In addition to the effective population size Ne, the number of
adaptable variables depends on the coefficient b that can be
thought of as the measure of stochasticity caused by factors
independent of the population size. The smaller b, the more
genes can be involved in adaptation. In the biological context,
this implies that the entire adaptive potential of the population
is determined by mutations in a small fraction of the genome,
which is indeed realistic. It has been shown that in prokaryotes
effective population size estimated from the ratio of the rates
of nonsynonymous vs. synonymous mutations (dN/dS), indeed,
positively correlates with the number of genes in the genome,
and, presumably, with the number of genes that are available
for adaptation (44–46).

To study the state of learning equilibrium for a grand canoni-
cal ensemble of organisms, it is convenient to express the aver-
age loss function as

U S,Kð Þ ¼ T S,Kð ÞSþ μðS,KÞK , [4.2]

where the conjugate variables are, respectively, evolutionary
temperature

T ≡
∂U
∂S

[4.3]

and evolutionary potential

μ ≡
∂U
∂K

: [4.4]

Once again, evolutionary temperature is a measure of disorder,
that is, stochasticity in the evolutionary process, whereas evolu-
tionary potential is the measure of adaptability. For a given
phenomenological expression of the loss function [4.2], all
other thermodynamic potentials, such as free energy F T,Kð Þ
and grand potential ΩðT,μÞ, can be obtained by switching to
conjugate variables using Legendre transformations, i.e.,
S$ T, K $ μ.

The difference between the grand canonical ensembles in phys-
ics and in evolutionary biology should be emphasized. In physics,
the grand canonical ensemble is constructed by constraining the
average number of particles (2). In contrast, for the evolutionary
grand canonical ensemble the constraint is imposed not on the
number of organisms Ne per se but rather on the number of adapt-
able variables in organisms of a given species K∝log Neð Þ, which
depends on the effective population size. This key statement

implies that, in our approach, the primary agency of evolution
(adaptation, selection, or learning) is identified with individual
genes rather than with genomes and organisms (47). Only a rela-
tively small number of genes represent adaptable variables, that is,
are subject to selection at any given time, in accordance with the
classical results of population genetics (48). However, as discussed
in the accompanying paper (18), our theoretical framework extends
to multiple levels of biological organization and is centered around
the concept of multilevel selection such that higher-level units of
selection are identified with ensembles of genes or whole genomes
(organisms). Then, organisms can be treated as trainable variables
(units of selection) and populations as statistical ensembles. The
change in the constraint from Ne to K∝log Neð Þ is similar to chang-
ing the ensemble with annealed disorder to one with quenched dis-
order in statistical physics (49). Indeed, in the case of annealed
(thermal) disorder, we sum up (average) over a disorder partition
function, whereas for quenched disorder, we average the logarithm
of the partition function, that is, free energy.

Ideal Mutation Model
In this section we demonstrate how the phenomenological
approach developed in the previous sections can be applied to
model biological evolution in the thermodynamic limit, that is,
when both the number of organisms, Ne, and the number of
active degrees of freedom, K ∝ log Neð Þ, are sufficiently large.
In such a limit, the average loss function contains all the rele-
vant information on the learning system in equilibrium, which
can be derived from a theoretical model, such as the one devel-
oped in the accompanying paper (18) using the mathematical
framework of neural networks, or a phenomenological model
(such as the one developed in the previous section), or recon-
structed from observations or numerical simulations. In this
section, we adopt a phenomenological approach to model the
average loss function of a population of noninteracting organ-
isms (that is, selection only affects individuals), and in the fol-
lowing section we construct a more general phenomenological
model, which will also be relevant for the analysis of MTE in
Major Transitions in Evolution and the Origin of Life.

Consider a population of organisms described by their geno-
types q1,…,qNe

. There are rare mutations (on time scales ∼ τ)
from one genotype to another that are either quickly fixed or
eliminated from the population (on shorter time scales ≪ τ),
but the total number of organisms Ne remains fixed. In addi-
tion, we assume that the system is observed for a long period of
time ≫ τ so that it has reached a learning equilibrium (that is,
an evolutionarily stable configuration). In this simple model, all
organisms share the same qðcÞ, whereas all other variables have
already equilibrated, but their effect on the loss function
depends on the type of the variable, that is, qðaÞ vs. qðnÞ vs. x. In
particular, the trainable variables of individual organisms qn’s
evolve in such a way that entropy is minimized on short time
scales ≪ τ due to fixation of beneficial mutations but maximized
on long time scales ≫ τ due to equilibration, that is, exploration
of the entire nearly neutral mutational network (50, 51). Thus,
the same variables evolve toward maximizing free energy on
short time scales but toward minimizing free energy on longer
time scales. This evolutionary trajectory is similar to the phe-
nomenon of broken ergodicity in condensed matter systems,
where the short time and ensemble (or long-time) averages can
differ. The prototype of nonergodic systems in physics are
(spin) glasses (52–54). The glass-like character of evolutionary
phenomena was qualitatively examined previously (55, 56).
Nonergodicity unavoidably involves frustrations that emerge
from competing interactions (57), and such frustrations are
thought to be a major driving force of biological evolution (55).
In terms of the model we discuss here, the most fundamental
frustration that appears to be central to evolution is caused by

EV
O
LU

TI
O
N

Vanchurin et al.
Thermodynamics of evolution and the origin of life

PNAS j 5 of 10
https://doi.org/10.1073/pnas.2120042119



the competing trends of the conventional thermodynamic
entropy growth and entropy decrease due to learning.

The fixation of mutations on short time scales ≪ τ implies
that over most of the duration of evolution all organisms have
the same genotype q1 ¼…¼ qNe

¼ q (with some neutral vari-
ance), whereas the equilibration on the longer time scales ≫ τ
implies that the marginal distribution of genotypes is given by
the maximum entropy principle, as discussed in Maximum
Entropy Principle Applied to Learning and Evolution, that is,

p qð Þ∝
ð
∏
Ne

n¼1

dNxn exp �β ∑
Ne

n¼1

H xn,qð Þ
� �

¼ exp ð�βF qð ÞNeÞ,

[5.1]

where integration is taken over the states of the environment xn
for all organisms n¼ 1,…,Ne. This distribution was previously
considered in the context of population dynamics (13), where
Ne was interpreted as the inverse temperature parameter. How-
ever, as pointed out in Maximum Entropy Principle Applied to
Learning and Evolution, in our framework the inverse tempera-
ture β is the Lagrange multiplier, which imposes a constraint
on the average loss function [2.2]. Moreover, in the context of
the models considered by Sella and Hirsh (13), the distribution
can also be expressed as

p qð Þ ∝ ZðqÞNe , [5.2]

where the partition function Z qð Þ ¼ exp ð�βF qð ÞÞ is the macro-
scopic counterpart of fitness φðx,qÞ (see Eq. 2.6). Eq. 5.2
implies that evolutionary temperature has to be identified with
the multiplication constant in [2.8], T ¼ β�1. Thus, this is the
“ideal mutation” model, which allows us to establish a precise
relation between the loss function and Malthusian fitness.
Importantly, this relation holds only for the situation of multi-
ple, noninteracting mutations (i.e., without epistasis).

The model of Sella and Hirsh (13) is actually the Kimura
model of fixation of mutations in a finite population (58), which
is based on the effect of mutations on Malthusian fitness (in
the absence of epistasis). In population genetics, this model
plays a role analogous to the role of the ideal gas model in sta-
tistical physics and thermodynamics (59). The ideal gas model
ignores interactions between molecules in the gas, and the pop-
ulation genetics model similarly ignores epistasis, that is, inter-
action between mutations. This model necessitates that the loss
function is identified with minus logarithm of Malthusian fit-
ness (otherwise, the connection between these two quantities
would be arbitrary, with the only restriction that one of them
should be a monotonically decreasing function of the other).
However, identification of Ne with the inverse temperature β
(13) does not seem to be justified equally well. For the given
environment, the probability of the state [5.1] depends only on
the product of Ne and β, that is, the parameter of the Gibbs dis-
tribution. This parameter is proportional to Ne, so that we
could, in principle, choose the proportionality coefficient to be
equal to 1 (or, more precisely, 1, 2, or 4 depending on genome
ploidy and the type of reproduction), but only assuming that
the properties of the environment are fixed. However, in the
interest of generality, we keep the population size and the
“evolutionary temperature” separate, interpreting β as an over-
all measure of the level of stochasticity in the evolutionary pro-
cess including effects independent of the population size.

This key point merits further explanation. The smaller the pop-
ulation size the more important are evolutionary fluctuations, that
is, genetic drift (60). In statistical physics, the amplitude of fluctu-
ations increases with the temperature (2). Therefore, when the
correspondence between evolutionary population genetics and
thermodynamics is explored, it appears natural to identify effec-
tive population size with the inverse temperature (13, 14), which
is justified inasmuch as sources of noise independent of the

population size, such as changes in the environment, are disre-
garded. In statistical physics, the probability of a system’s leaving
a local optimum at a given temperature exponentially depends on
the number of particles in the system as compellingly illustrated
by the phenomenon of superparamagnetism (61). For a small
enough ferromagnetic particle, the total magnetic moment over-
comes the anisotropy barrier and oscillates between the spin-up
and spin-down directions, whereas in the thermodynamic limit
these oscillations are forbidden, which results in spontaneously
broken symmetry (2). Thus, the probability of “drift” from one
optimum to the other exponentially depends on the number of
particles, and the identification of the latter with the effective
population size appears natural. However, from a more general
standpoint, effective population size is not the only parameter
determining the probability of fluctuations, which is also affected
by environmental factors. In particular, stochasticity increases
dramatically under harsh conditions, due to stress-induced muta-
genesis (62–64). Therefore, it appears preferable to represent evo-
lutionary temperature as a general measure of evolutionary
stochasticity, to which effective population size is only one of
important contributors, with other contributions coming from the
mutation rate and the stochasticity of the environment. Extremely
high evolutionary temperature caused by any combination of
these factors can lead to a distinct type of phase transition, in
which complexity is destroyed, for example, due to mutational
meltdown of a population (error catastrophe) (65, 66).

Importantly, this simple model allows us to make concrete
predictions for a fixed size population, where beneficial muta-
tions are rare and quickly proceed to fixation. If such a system
evolves from one equilibrium state [at temperature T1 ¼ β�1

1 ,
with the fitness distribution Zð1Þ qð Þ] to another equilibrium
state [at temperature T2 ¼ β�1

2 and fitness distribution Zð2Þ qð Þ],
then, according to [2.8], the ratios

logZð1Þ qð Þ
logZð2Þ qð Þ ¼

β1F qð Þ
β2F qð Þ ¼

β1
β2

¼ T2

T1
[5.3]

are independent of q, that is, are the same for all organisms in
the ensemble, regardless of their fitness (again, under the key
assumption of no epistasis). Then, Eq. 5.3 can be used to mea-
sure ratios between different evolutionary temperatures and
thus to define a temperature scale. Moreover, the equilibrium
distribution [5.1] together with [4.1] enables us to express the
average loss function

UðKÞ ¼Hðx,qÞNe ∝ Hðx,qÞexp ðbKÞ, [5.4]

where Hðx,qÞ is the average loss function across individual
organisms. According to Eq. 5.4, the average loss UðS,KÞ scales
exponentially with the number of adaptable degrees of freedom
K, but the dependency on entropy is not yet explicit.

Ideal Gas of Organisms
For phenomenological modeling of evolution it is essential to
keep track not only of different organisms but also of the
entropy of the environment. On the microscopic level, the over-
all average loss function is an integral over all nontrainable var-
iables of all organisms, but on a more macroscopic level it can
be viewed as a phenomenological function UðS,KÞ, the micro-
scopic details of which are irrelevant. In principle, it should be
possible to reconstruct the average loss function directly from
experiment or simulation, but for the purpose of illustration we
first consider an analytical expression

U S,Kð Þ ¼H x,qð ÞNe ¼ aSnexp
b

S
K

� �
, [6.1]

where in addition to the exponential dependence on K, as in
[5.4], we also specify the power law dependency on S. In
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particular, we assume that H x,qð Þ ∝ Sn, where n > 0 is a free
parameter, that is, loss function is greater in an environment with
a higher entropy. This factor models the effect of the environment
on the loss function of individual organisms. In biological terms,
this means that diverse and complex environments promote adap-
tive evolution. In addition, the coefficient b in [5.4] is replaced
with b=S in [6.1], to model the effect of the environment on the
effective number of active trainable variables. We have to empha-
size that the model [6.1] is discussed here for the sole purpose of
illustrating the way our formalism works. A realistic model can be
built only through bioinformatic analysis of specific biological sys-
tems, which requires a major effort.

Thus, if a population of Ne organisms is capable of learning
the amount of information S about the environment, then the
total number of adaptable trainable variables K required for
such learning scales linearly with S and logarithmically with Ne,

K ¼ b�1Slog ðNeÞ: [6.2]

The logarithmic dependence on Ne is already present in [4.1]
and in [5.4], but the dependence on S is an addition introduced
in the phenomenological model [6.1]. Under this model, the
number of adaptable variables K is proportional to the entropy
of the environment. Assuming K is proportional also to the
total number of genes in the genome, the dependencies in Eq.
6.2 are at least qualitatively supported by comparative analysis
of microbial genomes. Indeed, bacteria that inhabit high-
entropy environments, such as soil, typically possess more genes
than those that live in low-entropy environments, for example
sea water (67). Furthermore, the number of genes in bacterial
genomes increases with the estimated effective population size
(44–46), which also can be interpreted as taking advantage of
diverse, high entropy environments.

Given a phenomenological expression for the average loss
function [6.1], the corresponding grand potential is given by
the Legendre transformation,

ΩðT, μÞ ¼ ð1� nÞSðTÞ μ
b
, [6.3]

where entropy should be expressed as a function of evolution-
ary temperature and evolutionary potential,

T ¼ μ

b
nþ log

ab

μ

� �
þ ðn� 1Þlog S

� �
: [6.4]

By solving [6.4] for S and plugging into [6.3], we obtain the
grand potential

Ω T,μð Þ ¼ �aðn� 1Þ μ

eb

� � n
n�1
exp

bT

ðn� 1Þμ
� �

: [6.5]

We shall refer to the ensemble described by [6.5] as an “ideal
gas” of organisms.

In principle, the grand potential can also be reconstructed
phenomenologically, directly from numerical simulations or
observations of time-series of the population size NeðtÞ and fit-
ness distribution Zðq, tÞ. Given such data, evolutionary temper-
ature T can be calculated using [5.3] and the distributions
pT Kð Þ ¼ plogNe of the number of adaptable variables K can be
estimated for a given temperature T. Then, the grand potential
is reconstructed from the cumulants κn Tð Þ of the distributions
pT Kð Þ:

Ω T,μð Þ ¼ �T ∑
∞

n¼1

κn Tð Þ
n!

μ

T

� �n

[6.6]

and the average loss function U S,Kð Þ is obtained by Legendre
transformation from variables T,μð Þ to S,Kð Þ. Obviously, the
phenomenological reconstruction of the thermodynamic poten-
tials Ω T,μð Þ and U S,Kð Þ is feasible only if the evolving learning

system can be observed over a long period of time, during
which the system visits different equilibrium states at different
temperatures. More realistically, the observation can be limited
to either a fixed temperature T or a fixed number of adaptable
variables K, and then the thermodynamic potentials would be
reconstructed in the respective variables only, that is, in K and
μ or in T and S.

Major Transitions in Evolution and the Origin of Life
In this section we discuss the MTE, starting from the very first
such transition, the origin of life. Under the definition of life
adopted by NASA, natural selection is the quintessential trait
of life. Here we assume that selection emerges from learning,
which appears to be a far more general feature of the processes
that occur on all scales in the universe (18, 68). Indeed, any sta-
tistical ensemble of molecules is governed by some optimization
principle, which is equivalent to the standard requirement of
minimization of the properly chosen potential in thermodynam-
ics. Evolving populations of organisms similarly face an optimi-
zation problem, but at face value the nature of the optimized
potential is completely different. So what, if anything, is in
common between thermodynamic free energy and Malthusian
fitness? Here we give a specific answer to this question: The
unifying feature is that, at any stage of the evolution or learning
dynamics, the loss function is optimized. Thus, as also discussed
in the accompanying paper (18), the origin of life is not equal
to the origin of learning or selection. Instead, we associate the
origin of life with a phase transition that gave rise to a distinct,
highly efficient form of learning or a learning algorithm known
as natural selection. Neither the nature of the statistical ensem-
ble of molecules that preceded this phase transition nor that of
the statistical ensemble of organisms that emerged from the
phase transition [referred to as the Last Universal Cellular
Ancestor, LUCA (69, 70)] are well understood, but at the phe-
nomenological level we can try to determine which statistical
ensembles yield the most biologically plausible results.

The origin of life can be identified with a phase transition
from an ideal gas of molecules that is often considered in the
analysis of physical systems to an ideal gas of organisms that is
discussed in the previous section. Then, during such a transi-
tion, the grand canonical ensemble of subsystems changes from
being constrained by a fixed average number of subsystems (or
molecules),

Ne ¼ Ne , [7.1]

to being constrained by a fixed average number of adaptable
variables associated with the subsystems (or organisms),

K ¼ K : [7.2]

Immediately before and immediately after the phase transition,
we are dealing with the very same system, but the ensembles
are described in terms of different ensembles of thermody-
namic variables. Formally, it is possible to describe an organism
by the coordinates of all atoms of which it is comprised, but
this is not a particularly useful language (71). Atoms (and mol-
ecules) behave in a collective manner, that is, coherently, and
therefore the appropriate language to describe their behavior is
the language of collective variables similar to, for example, the
“dual boson” approach to many-body systems (72).

According to [4.1], the total number of organisms (population
size) and the number of adaptable variables are related,
K ∝ log Neð Þ, but the choice of the constraint, [7.1] vs. [7.2],
determines the choice of the statistical ensemble, which describes
the state of the system. In particular, an ensemble of molecules
can be described by the grand potential ΩpðT,M Þ, where T is
the physical temperature, M is the chemical potential, and an
ensemble of biological subsystems can be described by the grand
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potential ΩbðT,μÞ, where, as before, T is the evolutionary temper-
ature and μ is the evolutionary potential. Assuming that both
ensembles can coexist at some critical temperatures T0 and T0 ,
the evolutionary phase transition will occur when

ΩpðT0,M 0Þ ¼ΩbðT0,μ0Þ: [7.3]

This condition is highly nontrivial because it implies that, at
phase transition, both physical and biological potentials provide
fundamentally different (or dual) descriptions of the exact
same system, and all of the biological and physical quantities
have different (or dual) interpretations. For example, the loss
function is to be interpreted as energy in the physical descrip-
tion, but as additive fitness in the biological description [2.9].

An ideal gas of molecules is described by the grand potential

ΩpðT,M Þ∝Tαexp γ
M

T

� �
[7.4]

and an ideal gas of organisms is described by the grand poten-
tial [6.5],

Ωb T, μð Þ∝μcexp b
T

μ

� �
: [7.5]

At higher temperatures, it is more efficient for the individual
subsystems to remain independent of each other, Ωp <Ωb, but
at lower temperatures sharing of degrees of freedom between
subsystems becomes beneficial such that Ωb <Ωp. Thus, a criti-
cal temperature exists that corresponds to the transition [7.3].
The macroscopic quantities in [7.4] and [7.5] characterize the
same system, but in terms of different (or dual) statistical
ensembles, and so in general only one of them would be rele-
vant at any given time. However, in the immediate vicinity the
phase transition [7.3], both phases can coexist and so the mac-
roscopic quantities (i.e., T, μ, ,T and M ) must all be related to
each other. For example, consider the following relations (or
dual mappings between physical and biological quantities):

T
0
¼ α

b
μ0logT0 [7.6]

and

M 0 ¼ c

γ
T0logμ0: [7.7]

Plugging [7.6] and [7.7] into [7.4] gives

Ωp T0,M 0ð Þ∝Tα
0exp

γM 0

T0

� �
¼ exp

bT0

αμ0

� �� �α

exp clog μ0ð Þ

¼ exp
bT0

μ0

� �
μc0∝Ωb T0, μ0ð Þ,

[7.8]

which is in agreement with [7.3]. The relations [7.6] and [7.7]
were used here to illustrate the conditions under which the
phase transition might occur, but it is also interesting to exam-
ine whether these relations actually make sense qualitatively.
Eq. 7.6 implies that energy/loss associated with learning dynam-
ics, T0, is logarithmically smaller compared to the energy/loss
associated with stochastic dynamics, T0, but depends linearly
on the energy/loss required to add a new adaptable variable to
the learning system, that is, the evolutionary potential μ0. This
dependency makes sense because the learning dynamics is far
more stringently constrained than the stochastic dynamics and
its efficiency critically depends on the ability to engage new
adaptable degrees of freedom. Eq. 7.7 implies that the energy/
loss, M 0, that is required to incorporate an additional nontrain-
able variable into the evolving system is logarithmically smaller
μ0 but depends linearly on the energy/loss, T0, associated with
stochastic dynamics. This also makes sense because it is much

easier to engage nontrainable degrees of freedom, and further-
more the capacity of the system to do so depends on the physi-
cal temperature.

It appears that for the origin of life phase transition to occur
the learning system has to satisfy at least three conditions. The
first one is the existence of effectively constant degrees of free-
dom, qðcÞ, which are the same in all subsystems. This condition
is satisfied, for example, for an ensemble of molecules, the sta-
bility of which is a prerequisite of the evolutionary phase transi-
tions, but it does not guarantee that the transition occurs. The
second condition is the existence of adaptable or active varia-
bles, qðaÞ, that are shared by all subsystems, but their values can
vary. These are the variables that undergo learning evolution
and, according to the second law of learning, adjust their values
to minimize entropy. Finally, for learning and evolution to be
efficient, the third condition is the existence of neutral varia-
bles, qðnÞ, which can become adaptable variables as learning
progresses. In the language of statistical ensembles, this is
equivalent to switching from a canonical ensemble with a fixed
number of adaptable variables to a grand canonical ensemble
where the number of adaptable variables can vary.

There are clear biological connotations of these three condi-
tions. In the accompanying paper (18) we identify the origin of
life with the advent of natural selection which requires genomes
that serve as instructions for the reproduction of organisms.
Genes comprising the genomes are shared by the organisms in
a population or community, forming expandable pangenome
that can acquire new genes, some of which contribute to adap-
tation (37). In each prokaryote genome about 10% of the genes
are rapidly replaced, with the implication that they represent
neutral variables that are subject to no or weak purifying selec-
tion and comprise the genetic reservoir for adaptation whereby
they turn into adaptable variables, that is, genes subject to sub-
stantial selection (36). The essential role of gene sharing via
horizontal gene transfer at the earliest stages in the evolution
of life is thought of as a major factor underlying the universality
of the translation system and the genetic code across all life
forms (73). Strictly speaking, the transition from an ensemble
of molecules to an ensemble of organisms could correspond to
the emergence of protocells that lacked genomes but neverthe-
less displayed collective behavior and were subject to primitive
form of selection for persistence (18). The origin of genomes
would be a later event that kicked off natural selection. How-
ever, under the phenomenological approach adopted here, Eq.
7.3 covers both these stages.

The subsequent MTE, such as the origin of eukaryotic cells
as a result of symbiosis between archaea and bacteria, or the
origin of multicellularity, or of sociality, in principle, follow the
same scheme: One has to switch between two alternative (or
dual) descriptions of the same system, that is, the grand poten-
tials in the dual descriptions should be equal at the MTE point,
similar to Eq. 7.3. Here we only illustrated how the phase tran-
sition associated with the origin of life could be modeled
phenomenologically and argue that essentially the same phe-
nomenological approach would generally apply to the other
MTEs.

Discussion
Since its emergence in the Big Bang about 13.8 billion y ago,
our universe has been evolving in the overall direction of
increasing entropy, according to the second law of thermody-
namics. Locally, however, numerous structures emerge that are
characterized by readily discernible (even if not necessarily eas-
ily described formally) order and complexity. The dynamics of
such structures was addressed by nonequilibrium thermody-
namics (74) but traditionally has not been described as a pro-
cess involving learning or selection, although some attempts in
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this direction have been made (75, 76). However, when learning
is conceived of as a universal process, under the “world as a
neural network” concept (68), there is no reason not to con-
sider all evolutionary processes in the universe within the
framework of the theory of learning. Under this perspective, all
systems that evolve complexity, from atoms to molecules to
organisms to galaxies, learn how to predict changes in their
environment with increasing accuracy, and those that succeed
in such prediction are selected for their stability, ability to per-
sist and, in some cases, to propagate. During this dynamics,
learning systems that evolve multiple levels of trainable varia-
bles that substantially differ in their rates of change outcompete
those without such scale separation. More specifically, as
argued in the accompanying paper, scale separation is consid-
ered to be a prerequisite for the origin of life (18).

Here we combine thermodynamics of learning (17) with the
theory of evolution as learning (18), in an attempt to construct
a formal framework for a phenomenological description of evo-
lution. In doing so, we continue along the lines of the previous
efforts on establishing the correspondence between thermody-
namics and evolution (13, 14). However, we take a more consis-
tent statistical approach, starting from the maximum entropy
principle and introducing the principal concepts of thermody-
namics and learning, which find natural counterparts in evolu-
tionary population genetics, and we believe are indispensable
for understanding evolution. The key idea of our theoretical
construction is the interplay between the entropy increase in
the environment dictated by the second law of thermodynamics
and the entropy decrease in evolving systems (such as organ-
isms or populations) dictated by the second law of learning
(17). Thus, the evolving biological systems are open from the
viewpoint of classical thermodynamics but are closed and reach
equilibrium within the extended approach that includes ther-
modynamics of learning.

Under the statistical description of evolution, Malthusian
fitness is naturally defined as the negative exponent of the
average loss function, establishing the direct connection
between the processes of evolution and learning. Further,
evolutionary temperature is defined as the inverse of the
Lagrange multiplier that constrains the average loss func-
tion. This interpretation of evolutionary temperature is
related to that given by Sella and Hirsh (13), where evolu-
tionary temperature was represented by the inverse of the
effective population size, but is more general, reflecting the
degree of stochasticity in the evolutionary process, which
depends not only on the effective population size, but also
on other factors, in particular interaction of organisms with
the environment. It should be emphasized that here we
adhere to a phenomenological thermodynamics approach,
under which the details of replicator dynamics are irrele-
vant, in contrast, for example, to the approach of Sella and
Hirsh (13).

Within our theoretical framework, adaptive evolution
involves primarily organisms learning to predict their envi-
ronment, and accordingly, the entropy of the environment
with respect to the organism is one of the key determinants
of evolution. For illustration, we consider a specific phenom-
enological model, in which the rate of adaptive evolution
reflected in the value of the loss function depends exponen-
tially on the number of adaptable variables and also shows a
power law dependence on the entropy of the environment.
The number of adaptable variables, or in biological terms the
number of genes or sites that are available for positive selec-
tion in a given evolving population at a given time, is itself
proportional to the entropy of the environment and to the
log of the effective population size. Thus, high-entropy
environments promote adaptation, and then success breeds
success, that is, adaptation is most effective in large populations.

These predictions of the phenomenological theory are at least
qualitatively compatible with the available data and are quantita-
tively testable as well.

Modern evolutionary theory includes an elaborate mathe-
matical description of microevolution (12, 77), but, to our
knowledge, there is no coherent theoretical representation of
MTE. Here we address this problem directly and propose a
theoretical framework for MTE analysis, in which the MTE are
treated as phase transitions, in the technical, physical sense.
Specifically, a transition is the point where two distinct grand
potentials, those characterizing units at different levels, such as
molecules vs. cells (organisms) in the case of the origin of life,
become equal or dual. Put another way, the transition is from
an ensemble of entities at a lower level of organization (for
example, molecules) to an ensemble of higher-level entities (for
example, organisms). At the new level of organization, the
lower-level units display collective behavior and the corre-
sponding phenomenological description applies. This formalism
entails the existence of a critical (biological) temperature for
the transition: The evolving systems have to be sufficiently
robust and resistant to fluctuations for the transition to occur.
Notably, this theory implies the existence of two distinct types
of phase transitions in evolution: Apart from MTE, each event
of an adaptive mutation fixation also is a bona fide transition
albeit on a much smaller scale. Of note, the origin of life has
been previously described as a first-order phase transition,
albeit within the framework of a specific model of replicator
evolution (78). Furthermore, the transition associated with the
origin of life corresponds to the transition from infrabiological
entities to biological ones, the first organisms, as formulated by
Szathm�ary (79) following Ganti’s chemoton concept. Accord-
ing to Ganti, life is characterized by the union of three
essential features: membrane compartmentalization, autocata-
lytic metabolic network, and informational replicator (80, 81).
The pretransition, infrabiological (protocellular) systems only
encompass the first two features, and the emergence of the
informational replicators precipitates the transition, at which
point all quantities describing the system have a dual meaning
according to Eq. 7.3 [see also the accompanying paper (18)].

The phenomenological theory of evolution outlined here is
highly abstract and requires extensive further elaboration, spec-
ification, and, most importantly, validation with empirical data;
we indicate several specific predictions for which such valida-
tion appears to be straightforward. Nevertheless, even in this
general form the theory achieves the crucial goal of merging
learning and thermodynamics into a single, coherent frame-
work for modeling biological evolution. Therefore, we hope
that this work will stimulate the development of new directions
in the study of the origin of life and other MTE. By incorporat-
ing biological evolution into the framework of learning pro-
cesses, this theory implies that the emergence of complexity
commensurate with life is an inherent feature of learning that
occurs throughout the history of our universe. Thus, although
the origin of life is likely to be rare due to the multiple con-
straints on the learning/evolutionary processes leading to such
an event (including the requirement for the essential chemicals,
concentration mechanisms, and more), it might not be an
extremely improbable, lucky accident but rather a manifestation
of a general evolutionary trend in a universe modeled as a
learning system (18, 68).

Data Availability. There are no data underlying this work.
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