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ABSTRACT

MicroRNAs (miRNAs) negatively regulate the levels
of messenger RNA (mRNA) post-transcriptionally.
Recent advances in CLIP (cross-linking immunopre-
cipitation) technology allowed capturing miRNAs
with their cognate mRNAs. Consequently, thou-
sands of validated mRNA–miRNA pairs have been
revealed. Herein, we present a comprehensive
outline for the combinatorial regulation by miRNAs.
We implemented combinatorial and statistical con-
straints in the miRror2.0 algorithm. miRror esti-
mates the likelihood of combinatorial miRNA
activity in explaining the observed data. We tested
the success of miRror in recovering the correct
miRNA from 30 transcriptomic profiles of cells
overexpressing a miRNA, and to identify hundreds
of genes from miRNA sets, which are observed in
CLIP experiments. We show that the success of
miRror in recovering the miRNA regulation from
overexpression experiments and CLIP data is
superior in respect to a dozen leading miRNA-
target prediction algorithms. We further described
the balance between alternative modes of joint
regulation that are executed by pairs of miRNAs.
Finally, manipulated cells were tested for the
possible involvement of miRNA in shaping their
transcriptomes. We identified instances in which
the observed transcriptome can be explained by a
combinatorial regulation of miRNA pairs. We
conclude that the joint operation of miRNAs is an
attractive strategy to maintain cell homeostasis
and overcoming the low specificity inherent in indi-
vidual miRNA–mRNA interaction.

INTRODUCTION

MicroRNAs (miRNAs) are short non-coding RNAs
(ncRNAs) that negatively regulate gene expression
post-transcriptionally (1). Recent miRNA detection

techniques confirmed the presence of hundreds of
miRNAs in healthy and diseased tissues (2,3). An
estimate across animal genomes suggests that up to
1–2% of the genes in human and Caenorhabditis elegans
consist of miRNAs. These estimates are derived from a
combination of computational and experimental methods
(4,5). Deep sequencing datasets have led to an expansion
in numbers of known miRNAs. Currently, miRBase is the
most exhaustive collection of miRNAs, IsomiRs, miRNA
families and experimental evidence (6).

In humans and other metazoa, miRNAs play a role as
an additional layer of post-transcriptional regulators (7).
miRNAs are best known for the regulation of stem cell
differentiation, immunological cell function, organogen-
esis, cell identity, apoptosis and more. The study of
miRNAs in the context of cancer biology shows that dis-
ruption in miRNA biogenesis leads to tumorigenesis and
to a drastic change in the relative expression of a large
number of mRNAs (8). Furthermore, several miRNAs
directly regulate cell cycle genes and thus induce onco-
genic activity (3,9). In other instances, the activity of
miRNA resembles tumor suppression (10).

Mechanistically, miRNAs exert their function via
base-pair complementarity with mRNA. This interaction
occurs within the RNA-induces silencing complex (RISC)
(11,12). The binding of miRNA to mRNA occurs mainly
at the 30-untranslated region (30-UTR). However, binding
sites at the coding region or the 50-UTR were reported
(13). Binding of the miRNA to the mRNA leads to gene
silencing due to changes in mRNA stability, enhanced
degradation and to some extent, translational arrest
(14,15). A coherent picture of miRNA regulation
remains elusive, mainly due to gaps in knowledge of
miRNA modes of action in vivo (16).

The attenuation of target expression by individual
miRNAs is usually quite modest (17). Consequently, a
definitive mapping of miRNAs to their genuine targets
is inherently challenging (18). Numerous databases, algo-
rithms and resources provide predictions for the matching
of miRNAs with their direct targets (19). Although all
resources use the knowledge of the minimal requirement
for sequence complementarity (called seed), some
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algorithms account for imperfect hybridization, context-
dependent features (e.g. accessibility of binding sites, GC
content), inter-species conservation, thermodynamic sta-
bility of the miRNA–mRNA duplex and combinations
of these constraints. Additional descriptive features
associated with miRNAs include the distribution of
miRNA binding sites, positioning of the binding sites on
the mRNAs, transcript length and energetic favorability
of the transcript secondary structures (20,21). Although
each of these features is founded on biological insight,
poor coherence among miRNA-target prediction re-
sources was reported (22–24). The main source for incon-
sistency is attributed to the many false positives across all
prediction methods (25). In addition, the number of false
negatives is still unknown (26,27), especially as each
miRNA is assumed to attenuate tens to hundreds of
targets. Importantly, distinguishing between a direct and
indirect miRNA–target interaction remains challenging.

Regulation at the levels of gene promoters and tran-
scripts are interconnected (28). With almost 2000
reported miRNAs in human (29), and about 10 000 can-
didate genes (excluding alternative splicing variants), the
network of interactions is extremely complex. The concen-
tration of individual miRNAs in cells may vary by four
orders of magnitude (30) and thus the effectiveness of
miRNA regulation also depends on the stoichiometry
with competing factors (31). The degree of miRNA regu-
lation results from the integration of: (i) accessibility of
miRNAs to their cognate targets; (ii) miRNA turnover;
(iii) transcript stability; and (iv) the concentration of
targeted genes (both genuine and off-targets) (32,33).
Furthermore, the effective modeling of off-target effects,
local concentration, saturation of binding and competi-
tion on binding sites is still in its infancy (34).

A coordinated action of miRNAs on their targets was
proposed (see Discussion (35,36)). For example, for the
known targets of miR-375, a combined addition of
miR-124 and let-7b led to a synergy in target inhibition
(35). Similarly, the expression of miR-16, miR-34a and
miR-106b altered the cell cycle. Combining these
miRNAs resulted in cell cycle arrest that was stronger
than for each of the miRNAs alone (36). The regulation
of the tumor suppressor FUS1 in cancer cells depends on
the presence of at least three miRNAs (miR-93, miR-98,
miR-197 and additional unidentified miRNAs) (37). The
potential of miRNA pairs or triplets to alter the integrity
of pathways was systematically studied (38). The general-
ity of these observations is not yet established, mostly
because accurate information is missing on the stability,
local concentration and competition among miRNAs in
living cells.

In this study, we focus on the rich set of human
miRNAs while seeking trends that are best explained by
a large collection of experimental data. In addition to
miRNA over-expressed experiments in cell-line, HITS-
CLIP (high-throughput sequencing of RNAs isolated by
cross-linking immunoprecipitation) technology provides
an in vivo collection of the miRNAs that were hybridized
with their targets at the RISC complex (27). We show that
the success of miRror to recover the miRNA regulation
from over-expression experiments and CLIP data is

superior in respect to a dozen leading miRNA-target pre-
diction databases (MDBs). Moreover, we show that the
incorporation of statistical and combinatorial consid-
erations empowered the systems’ predictive success in
view of leading miRNA-target prediction resources.
Large-scale data from CLIP technologies were used for
testing the validity and quality of our combinatorial-
statistical analysis. We provide evidence for the concept
of ‘miRNAs working together’ for an individual targeted
gene and a large set of genes. We offer miRror2.0 as a
computational, statistical platform that incorporates the
notion of a collective mode of action, in view of the ex-
perimental results. We conclude by formulating general
trends on the design principles for cellular regulation by
multiple miRNAs. We discuss the notion of a miRNA-
Duo (pair) as a basic regulatory element. We assess the
validity of miRNA-Duos in governing the profile of gene
expression in manipulated cells. We discuss several in-
stances that support the involvement of a set of
miRNAs in governing the observed gene expression. We
conclude that the miRror2.0 platform is useful in reducing
the prediction noise and in capturing the underlying com-
binatorial modus operandi of miRNA in a wide range of
cellular conditions.

MATERIALS AND METHODS

Prediction databases

Database files that are included in miRror encompass
most of the available miRNA-target prediction tools
covering human miRNAs (and several other species).
The resources used are collectively called MDBs:
(i) TargetScan database (39); (ii) microCosm that is
based on the miRanda algorithm (40); (iii) PicTar, accord-
ing to species conservation scheme (35); (iv) DIANA–
MicroT (41); (v) PITA (42); (vi) MirZ (43); (vii)
microRNA.org that allows analysis on multiple miRNA
acting on the same gene-target, based on miRanda (44);
(viii) miRDB resource (45); (ix) TargetRank (46); (x)
RNA22 (47); (xi) MAMI (48); and (xii) miRNAMap2
(49). We used the latest versions available (February
2012). miRNAMap2 is based on RNAhybrid, miRanda
and TargetScan, while requiring a minimal score from
miRanda. Reducing false positives is achieved by
increasing the numbers of binding sites and their accessi-
bility. We included a resource that applied statistical
machine learning algorithms (i.e. miRDB, (22)) and a
meta-server that integrates some of the major resources
(i.e. MAMI (48)). The number of candidate genes and
the number of miRNAs are indicated for each of the
major MDBs (Supplementary Figure S1A,
Supplementary Table S1). The union of the miRNAs
and genes for all the reported MDBs is �2500 and �47
000, respectively. These numbers exceed the number of
known miRNAs due to inconsistency in naming by the
different MDBs. For this study, MDB refers to the
entire collection of miRNA—gene matches that result
from the underlying prediction algorithm.
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Gene expression data

The complete list of experiments was extracted from the
GEO (50) and ArrayExpress (51). The platforms that we
considered are from Affymetrix (HG-U133 Plus 2.0, 22K
probes, 14.5K genes) and Agilent spotted oligonucleotides
(Human 3.0 A1, 23K genes). Data were collected from the
SOFT files. See Supplementary Figure S1 and
Supplementary Table S2 for a complete list.

Prediction performance

The MDBs are not designed to deal with hundreds and
thousands of genes as input. In order to assess the perform-
ance of each MDB, we score each miRNA by counting the
number of down-regulated genes that are predicted as
targeted by it. The miRNA that is ranked first is the
miRNA that is associated with the highest number of pre-
dictions from the down-regulated genes that were tested.
CLIP data were retrieved from StarBase v2.1 (52). The

identification of miRNAs from the CLIP data is based on
predictions from TargetScan, PicTar, RNA22, PITA and
miRanda. We confirmed that 98% of the unified list of
miRNAs derived from these 5 MDBs. We exported and
analyzed all documented miRNA–target interactions that
concerned human cells. For the CLIP data, the MDBs’
prediction accuracy was estimated by counting the
number of cases the appropriate gene was predicted
from the large number of its regulating miRNAs.

miRror application for miRNA cooperative regulation

The miRror platform (53) was used to match between the
input gene list and the miRNAs that best explain such
input. The statistical basis of miRror is implemented in
the miRTegrate algorithm (53) that calculates the prob-
ability of matching a gene list while considering the
coverage of the miRNA-targets for each of the prediction
databases. Formally, the probability of the miRNA inter-
action with the input gene set as opposed to the rest of the
genes in that MDB is calculated. We used a statistical
threshold to ensure that the contribution of any MDB
that covers only a small number of miRNAs with high
specificity remains significant. On the other extreme, the
impact of an MDB that over predicts (i.e. each miRNA
matches almost any gene) to miRror results should be
minimal. Calculating the P-value for genes as input was
performed according to the hypergeometric distribution.
Where N is the total number of genes in the database, n

is the number of genes predicted for the specific miRNA,
m is the number of genes in the input set and k is the
number of genes that appear in both the input set and
the predicted miRNA targets, the probability of such k is:

PðX ¼ kÞ ¼

m
k

� �
N�m
n� k

� �

N
n

� �

P-value is obtained by summing over all X� k (53). A
correction for multiple testing was included using the false
discovery rate (FDR) procedure. The P-value threshold

that was used in this study is 0.05 (unless mentioned
otherwise).

In this study, we used the miRror2.0 that includes
number of new capabilities. Most notably, implementing
an optional analysis on the basis of miRNA families,
incorporating miRIS (miRror Internal Score) as a
quality score, adding several MDBs (RNA22, MAMI
and miRNAMap2) and updating the new scoring
method presented by miRanda-microRNA.org.

Mapping genes to pairs of miRNAs

For each prediction results, we considered the 5 top pre-
dictions and analyzed by miRror the success of each pair
(10 pairs). The ranking of miRror is according to miRIS.
This score balances between (i) the proportions of predict-
ing MDBs out of all tested MDBs and (ii) the fraction of
the potentially regulated genes from the entire input genes.
The 10 pairs are tested by their ability to increase the
miRIS score beyond the miRIS obtained from the individ-
ual miRNA. Each pair is tested for the degree of comple-
menting each of the individual miRNA and the degree of
overlapping, redundant mode. These values range from 0
to 1. Formally:

Complementation ¼
A \ Bj j

A [ Bj j
, Redundant ¼ 1�

A \ Bj j

A [ Bj j

An increase in miRIS to the level that was considered a
standard deviation apart from the calculated value is con-
sidered a successful recovery of miRNA.

An inherent redundancy in miRNAs is evident in
miRNA families (as defined by miRBase). The redun-
dancy is based on target binding site and seed overlap.
Still, several MDBs do not cover the same miRNA or
the same targets, thus small differences are still found.
These cases are often identified by high redundancy and
low complementation. The consideration of pairs of
miRNAs provides the notion of joint miRIS (JM), an in-
tuitive generalization of miRIS:

DBj j

DBtotalj j
+

Query
�� ��
Querytotal
�� ��! DB1 [DB2j j

DBtotalj j
+

Query1 [Query2
�� ��

DBtotalj j

The best five ranked candidates are chosen. We tested the
joint miRIS values and the Jaccard Index (JI) to identify
candidates of miRNA-Duos that explain best the gene ex-
pression profiles. Analyzing all combinations of the top 5
miRNAs provides 10 pairs per for each experiment.

miRNA family unification

A source for inconsistency and thus a reduced quantity of
prediction is attributed to the use of slightly different
names for the same miRNAs. A compilation of miRNAs
to their families was applied according to the miRBase no-
tations. Compressing the miRNAs to their families reduced
the number of entries by 2.7-folds (Supplementary Table
S3). Another conservative and systematic approach
assigned miRNAs to their seed families. We cluster
miRNAs into the same seed family if nucleotides 2–7 of
the mature miRNA are identical. Seed families compress
the number of miRNAs by 1.6-folds (on average).
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RESULTS

Limited success in identifying the underlying miRNA from
over-expression experiments

With the goal of revealing global trends in miRNA regu-
lation, we considered the major miRNA resources. Data
from MDBs that comprise the most stable resources were
collected. We designed a systematic analysis of each MDB
from an unbiased list of transcripts. Several criteria were
used in order to select experimental data: (i) Experiments
are conducted on human cell-lines that are transfected
with a single miRNA. (ii) The entire cell transcriptome
is compared with controlled cells (often introduced with
a scrambled or mutated sequence). (iii) The platforms used
for the gene expression profiling cover most known genes
(See Materials and Methods). We tested the potential of
recovering the appropriate miRNA by each MDB from
the unbiased transcriptomic data. We selected 12 of
the leading resources (PITA-Top, DIANA-microT3.0,
MiRanda-microRNA.org, MicroCosm, TargetScan,
TargetRank, PicTar-4ways, MirZ-ElMMo, RNA22,
MAMI, miRDB and MAP2) for the rest of this study
(Supplementary Figure S1).

The transcriptome from hsa-miR-124 overexpression
experiment (54) (GSE6207, HepG2 cells, time series for
4–120 h after transfection) was used as a test case. We
found that the success in predicting the subjected
miRNA is restricted to data collected from �24 h after
transfection. A maximal level of expression for the func-
tional miRNA is reached between 24 and 48 h after trans-
fection. Data from earlier time points (4–16 h after
transfection) were uninformative and have not been
further analyzed. We focused on the down-regulated
genes at a permissive repression level of 1.2-fold relative
to control cells (Supplementary Table S4). Different
names for miR-124 (i.e. miR-124a and miR-124-3p) were
unified to limit the inconsistency for these results. The 100
most significant down-regulated genes were used as the
input for the 12 MDBs (see Materials and Methods).
We found that 75% of the MDBs identified hsa-miR-
124 as their top prediction and the rest of MDBs predicted
hsa-miR-124 among the top 9 predictions. Notably, the
actual degree (e.g. fold change) by which miRNA reduced
the amount of its candidate targets is a poor indicator for
a successful recovery (t-test, P-value=0.8).

We collected raw transcriptomic data from additional
30 large-scale experiments that cover 26 different miRNAs
from a variety of cell-lines (Supplementary Figure S1).
Figure 1 illustrates the workflow for the miRNA-gene pre-
diction task. All together we produced over 10 000 predic-
tion results (30 experiments, 12 MDBs, 8 input sets, 4
selections of MDB internal scores). A common protocol
for the 12 MDBs (Figure 1, right) and miRror (53) as a
unified-predictor (Figure 1, Left) is shown. The miRror
platform examines the combinatorial nature of miRNA
regulation. miRror seeks the miRNAs that are the most
likely explanation for the observed gene expression profile.
For this study we applied miRror2.0, an improved version
of the original platform (see Materials and Methods).

Figure 2 shows the performance for each MDB in view
of the miRror2.0 results. We marked the success in

predicting the appropriate miRNA at various levels of
accuracy (ranked 1, 2 and 3–9). Figure 2A shows the
results from 30 experiments and across 12 MDBs. Most
MDBs fail to recover over 50% of the subjected miRNAs.
miRror (Figure 1A, purple bar) outperformed all MDBs
with 60% success (for the 1–9 ranked predictions,
Supplementary Table S5).

Internal prediction scores fail to improve the quality of
predictions

Most MDBs provide internal scores for ranking their pre-
diction results. Such scoring is presented in order to
reduce the inherent numbers of false predictions (dis-
cussed in (55)). We tested whether the miRNA predictions
can be improved by applying the internal scoring as
provided by each MDB (Figure 2B). The internal scores
for the MDBs differ by their underlying principles, their
distribution and range. We thus used percentiles (i.e. top
10, 25 and 50%) to select the suggested top predictions as
defined by each MDB. Figure 2B shows prediction results,
using the top 25% according to the internal scores (only
10 of the 12 MDBs support internal scorings).
Surprisingly, only a few of the MDBs (microCosm,
TargetScan and Miranda-microRNA.org) improved
their success when the filter of the internal score was
activated. For the other MDBs, the prediction success
was reduced. Consequently, a slight reduction in the
number of successful prediction is recorded for miRror
(Figure 2B, dark purple, Supplementary Table S5).
An experiment-centric view shows that only some ex-

periments are associated with a successful recovery of the
relevant miRNA (Figure 2C, green line). The average
number of miRNA predictions for the analyzed MDB is
720 (Supplementary Figure S1 and Supplementary Table
S1). For about half of the experiments the average success
by the MDBs is very poor (Figure 2C, orange and red
lines).
The high performance of miRror in view of each MDB

is intriguing (Figure 2). We thus assessed the consistency
of the results by combining a large number of prediction
tests (Supplementary Figure S2). The results confirmed the
robustness of miRror predictions in view of the individual
MDBs. The miRror2.0 protocol consistently outper-
formed the 12 other MDBs with 55–60% success. The
performance of miRror is robust in view of thousands of
predictions across a wide range of parameters
(Supplementary Table S6).

miRror score unifies the combinatorial nature of the input
and the coherence of predictions

Based on the reported results, we developed a scoring
method that benefits from the individual MDBs. The
score, called miRIS, balances between (i) the proportions
of predicting MDBs out of all tested MDBs and (ii) the
fraction of the potentially regulated genes from the entire
input genes. A default of two successful MDBs is a
minimal demand for consistency, as well as at least two
genes from the input set—a minimal demand for
cooperativity.
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Figure 3A shows the contribution of the two compo-
nents that comprise miRIS. The analysis is based on
hsa-miR-124 (GSE6207, HepG2 cells, 24 h after transfec-
tion). We analyzed 240 genes as input (10% down-
regulated genes, P-value=0.05, Supplementary Table
S4). Figure 3A shows the contribution of the fraction of
MDBs and the fraction of hits from the input list. The two
measures are not replaceable and only weakly correlate
(r=0.3–0.5). miRIS balances between these two comple-
mentary components (Figure 3A).
An additional statistical prerequisite is the P-value for

the miRTegrate algorithm (P-value� 0.05, see Materials
and Methods). This threshold remains a useful parameter

for tuning the stringency by changing the statistical sig-
nificance of the analyses. The application of a stringent
P-value tends to increase the prediction success (not
shown).

Presenting the entire list of miRror predictions revealed
that remarkably, only few miRNAs are associated with
the highest miRIS values (Figure 3B and C). We illustrate
the miRIS ranking for hsa-miR-7 (Figure 3B) and
hsa-miR-124 (Figure 3C). Notably, all other 12 MDBs
failed to recover the hsa-miR-7 (Supplementary Tables
S5). For 75% of the successful predictions miRIS values
drops after 1–3 predictions. This trend is not dependent on
the size of the input or the length of the predicted list

Figure 1. A workflow for assessing the performance of miRNA predictions. Analysis of miRror2.0 is illustrated for genes as an input (Gene2miR
mode, default parameters). A filter for the collection of the top predictions according to internal scores was activated. Stringency refers to parameters
including the choice of P-value threshold. Additional parameters that provide fine-tuning for the platform are ignored (tissue of interest, highly
expressed subset, MDB choices). By changing these parameters, a relaxed or a strict search protocol can be activated. We assigned several categories
for success according to the rank of the prediction (prediction ranked 1, 2, 3–5, 6–9, �10).
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Figure 2. Success rates of MDB’s prediction. (A) 10% of the down-regulated genes from 30 experiments were subjected to miRNA prediction by the
12 MDBs and miRror. The color intensity is according to the indicated predictions’ quality. miRror results are shown in purple (Supplementary
Table S5). (B) Reanalysis of the same input as in (A) with top predictions (25%) by the internal scoring system for each MDB. Only 10/12 MDBs
provide an internal score (Supplementary Table S5). For example, PicTar-4 performs poorly when the top 25% of its internal score is applied.
However, without such filtration, a good performance of PicTar-4 is recorded (compare Figure 4A with Figure 4B). (C) Average success rates based
on the 12 MDBs for each of the 30 transcriptomics datasets. A miRNA overexpression experiment that is marked as 99% (green line) means that the
rank across the 12 MDB is in the top 1% predictions. The colors mark the prediction success as very high (green), high (blue), moderate (orange)
and poor (red).
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Figure 3. miRror internal scoring. (A) The overexpression of hsa-miR-124 transcriptomic data (10% of the down-regulated genes) is used to predict
the top 100 miRNAs. (A) The fraction of MDBs (from 12) that agree on each of the miRNA prediction (orange color), and the fraction of genes
from the input genes that are explained by the miRNA prediction (blue color). A minimal agreement of two MDBs and of two genes from the input
is requested. The unified miRIS is the averaged of these components. The 100 predicted miRNAs are sorted according to miRIS. (B) The prediction
list, ranked by miRIS for hsa-miR-7 (GSE14507). The highest miRIS identified hsa-miR-7 whereas the other MDBs failed to predict it. The average
rank for hsa-miR-7 by all the MDBs is 38.4±30.6. (C) Predictions of hsa-miR-124 (GSE6207). The miRIS indicated hsa-miR-124 as the second
prediction and hsa-miR-506 as the first one. These two miRNAs belong to the same family according to TargetScan. Insets display a zoomed view on
the top 10 predictions. Note the abrupt drop in score among the top 10 predictions.
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(compare Figure 3B with Figure 3C). Although the
absolute miRIS values might be relatively low, an
abrupt drop in miRIS often signifies a successful
prediction.

Combinatorial nature of miRNA regulation is reflected by
CLIP-Seq data

We further tested the combinatorial nature of miRNAs in
human cells. The discussed miRNA experiments
(Supplementary Figure S1) represent non-physiological
settings that are prone to off-target noise (56).
Therefore, we tested the combinatorial concept on CLIP
technology experiments (24,27). Specifically, validated
data for �6500 genes that are regulated by 653 miRNAs
are compiled in StarBase (52). Note that based on the
CLIP technology, the actual sequence from the mRNA
that is bound to miRNA is identified by sequencing.

Thus, it eliminates the largest source of error (e.g. the
label of a site as true of false).
Figure 4A shows a cumulative representation of

miRNA regulation according to the number of miRNAs
per gene. Only 10% of the genes are regulated by a single
miRNA. We noted that 50% of the targeted genes are
associated with up to 8 miRNAs. About 90% of the
genes are targeted by up to 35 miRNAs, with a few
genes that are regulated by as many as >80 miRNAs
(Supplementary Figure S3). The analysis includes the
task of recovering the human genes by an input of the
set of miRNAs that jointly regulate it (Figure 4B).
We use the miRror procedure in a miR2Gene mode
(Figure 4B). Figure 4C shows the analysis for the 12
MDBs and miRror (ranked by miRIS) for the genes that
are regulated by 30–40 miRNAs (362 genes,
Supplementary Table S7). The results show that for
33% of the genes, miRror correctly determined the

Figure 4. CLIP data analysis. (A) A cumulative view of the number of miRNAs regulating each gene, from the CLIP experiments in StarBase (52).
The cumulative view demonstrates the prevalent regulation of genes by multiple miRNAs. The Total number of genes in the analysis is 6287.
(B) A scheme for miRror interpretation of the CLIP data. Using miR2Gene mode to assess the recovery of a gene from the collection of miRNAs
that are based on CLIP experimental data. (C) Sets of miRNAs that are regulated by 30–40 miRNAs per gene are the input for miRror application.
362 such genes were analyzed and success is categorized as two levels (top 1–9 and top 10–20 genes). Y-axis is defined as the fraction of success
prediction from all selected targeted genes (total 362). The prediction success of miRror (purple) and the 12 MDBs are shown (Supplementary Table
S7). Inset, the fraction of identified genes in the entire prediction list. miRror outperformed the other 12 MDBs in both success measurements.
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subjected gene whereas the other MDBs failed to reach
such success (success is considered a correct prediction
among the top ranked 20 results). miRror also outper-
forms the other methods for recovering the genes at the
top 1% of the predictions (Figure 4C, inset). Note that
half of the MDBs failed to recover 90% of the relevant
genes (Figure 4C).

Evidence for miRNA pairs governing cellular regulation

The tools and methodologies developed for the experi-
mental data from miRNA overexpression (Figures 2
and 3) and CLIP datasets (Figure 4) are used to explore
the concept of ‘miRNA-Duos’. A Duo (pair) of miRNAs
is the simplest form of coordinated co-regulation by
miRNAs and thus a starting point for the assessment.
The number of human genes that are reported by the
numerous CLIP data is �6500. A vast majority of them
(90%) are regulated by multiple miRNAs (Figure 4A).
For a quantitative view of all possible pairs of miRNAs,

we used the human CLIP data as an in vivo evidence for
miRNA-Duos. There are 212 878 human miRNA-pairs in
StarBase. Regulation by a miRNA-Duo can be generally
described as one of two modes: (i) a miRNA-Duo that
expands the set of gene-targets, thus allowing a higher
coverage of the genes; and (ii) a miRNA-Duo with
overlapping targets that can be considered as a backup
mode (Figure 5A). The two extreme scenarios are
formulated using the JI. Intuitively, JI is a straightforward
measure for comparing the correspondence (intersection)
and expansion (union) of two sets. Thus, a low JI value is
indicative of the expansion mode whereas high JI indicates
dominance by a backup mode (Figure 5A). We noted that
the CLIP data have exceptionally low JI (average=0.020,
Supplementary Table S8).
The miRNA pairs (from the CLIP data) are tested by JI

(Figure 5A). Each MDB is centered at a characteristic
range of JI. This is strongly affected by the number of
shared targets between the pair (Figure 5B). The average
JI is 0.032, 0.027 and 0.096 for PITA-Top,
TargetScan-conserved and Miranda-microRNA.org, re-
spectively (Supplementary Table S8). The tendency of
each MDB toward a restricted range of JI exposes the
inherent bias of each MDB.

Inspecting transcriptome profiles for evidence of a
combinatorial miRNA regulation mode

We tested the validity of miRNA-Duo regulation in a wide
range of cellular contexts. As miRror provides a robust
approach for a combinatorial regulation by miRNA, we
tested miRror’s capacity toward miRNA-Duos. Figure 5C
illustrates a simplified test case. Each miRNA is assigned
with its calculated miRIS. An edge connecting two nodes
is marked by JM value which is associated with a miRNA
pair. Specifically, the JM considers the miRIS of each of
the miRNAs under the assumption that the miRNA pair
is a new entity. For example, a miRNA that covers 50% of
the genes query and 50% of the MDBs will have a miRIS
of 0.5. Similarly, the miRIS of its pair miRNA is also 0.5.
For this example, the JM must range from 0.5 to 1.0. The
JM is thus an indirect measure of the intersection and

union (measured by JI) of the miRNA in the pair. We
illustrate miRNA-Duos in which the overlapping,
backup mode dominates (miR-a and miR-d; miR-b and
miR-c). Other miRNAs adopt an expanding, complemen-
tation mode (miR-a and miR-c; miR-c and miR-d).

As miRNAs that belong to the same family regulate a
similar list of genes, a bias toward a backup mode of regu-
lation is expected (Figure 5A). Thus, we integrated a com-
pression of miRNAs into their families (Supplementary
Table S3) for eliminating miRNA-Duos that trivially
overlap their gene lists. We selected 20 large-scale gene
expression experiments (Supplementary Table S9), and
set to evaluate the potential of miRNA-pairs to explain
the observed transcriptomic profile. We focused on experi-
ments that were conducted on human cell-lines that were
exposed to a variety of stress conditions, molecular and
pharmacological manipulations. Importantly, in none of
these experiments the involvement of miRNAs regulation
was proposed.

Figure 5D shows the relationship of two essential
features for miRNA-Duos regulation: the joint miRIS
(JM, Materials and Methods) and the JI. For each of
the 20 experiments, the 5 top ranked predictions (by
miRIS) were considered as miRNA-pairs. A correlation
between the Joint miRIS and the JI is substantial
(R2=0.245). We focused on pairs that were specified by
unusually high JI and low Joint miRIS. Such pairs are
miR-25 and miR-32; miR-363 and miR-367. We found
that these miRNAs share the same 6-mer seed and thus
represent cases of overlapping, backup regulatory mode.
Note that the family relations were not reported by
miRBase or any other resource. The same is valid for
the miRNA-Duo of miR-26 and miR-1297 whose
overlap in the seed sequence is overlooked (Figure 5D).

The regulatory strategy of expanding, complementation
mode dominates the CLIP data (Figure 5B, CLIP). We
search pairs that are characterized by a low JI and a sig-
nificant Joint miRIS. Such instances can be explained by
cooperative activity by a small set of miRNAs. miRNAs
that interact with hsa-miR-218 (Figure 5D, orange
symbols) are promising candidates. The miRNA-Duos
that pair with hsa-miR-218 maximized the likelihood of
the observed profile of down-regulation genes. These pairs
were predicted for the transcriptome of 293T cells treated
with camptothecin (GSE2451). We found no evidence to
support miRNA-Duos as a hidden layer of regulation for
most (85%) of the tested experiments, as expected
(Supplementary Table S10). However, for 3 experiments
a significant coverage of the input genes can be explained
by miRNA-pair acting together: (i) the RPTEC cells that
were exposed to hypoxia (GSE12792); (ii) ultrasound
treatment in human leukemia U937 cells (GSE10212);
and (iii) 293T cells treated with camptothecin
(GSE2451). Camptothecin is a natural cytotoxic quinoline
alkaloid drug that inhibits DNA topoisomerase I and is
used in cancer chemotherapy. Many of the down-
regulated genes from this experiment are associated with
cell-cycle regulation genes that are subjected to miRNA
regulation. We anticipate that irrespectively to the
primary target of the drug, the camptothecin treated cell
reached homeostasis through the involvement of miRNA
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regulation. Indeed, several recent studies confirmed
the participation of miRNAs in camptothecin treated
cells (57).

DISCUSSION

The concept of combinatorial miRNA regulation is not
new. It was discuss regarding an individual target (58), a
combination of miRNAs (35,59) and as part of a network
(60) with transcription regulation (61). At the cell pheno-
type level, a synergism in miRNA action was studied in
the context of human diseases (62) and the disruption of
human pathways (38). In this study, we present experi-
mental evidence that emphasize the importance of a com-
binatorial mode for analyzing cell regulation under

changing conditions. We present miRror2.0 as a tool
that implemented the concept of ‘miRNAs working
together’ into a meta-prediction platform. We show that
miRror can be applied to input consisting of either a gene
set or a collection of miRNAs. As such, it supports the
experimental biologists in gaining insights from a broad
range of experimental protocols, under a wide range of
parameters. The predictive power of miRror relative to
the other 12 relevant MDBs strengthens the notion of a
combinatorial miRNA control mode, particularly in the
form of miRNA-pairs. The MDBs do not carry the
capacity to analyze a large number of genes or miRNAs.
These MDBs are designed to match a miRNA with its
direct targets or a specific gene to its regulating
miRNAs. The success of miRror2.0 in explaining the
cell’s transcriptomic signature and the CLIP data should

Figure 5. Assessment of the combinatorial nature of miRNAs. (A) miRNA regulation of miRNA-Duos according to the JI. The JI combines the
intersection and the union of the targeted genes by the miRNA-Duos. Data on the miRNA-pairs are extracted from the CLIP-based experiments.
The average JI value for several of the most successful MDBs is shown in view of the observations from the CLIP experiments (from StarBase).
Average JI calculated for all 12 MDBs are shown in Supplementary Table S8. (B) The distribution of miRNA-Duos target overlap for several of the
most successful MDBs is shown. Note that each MDB is characterized by a unique distribution. The CLIP data shows 17.5% of miRNA-Duos as
having no joint targets, in contrast with the MDBs who show no such pairs. Still, a generally low overlap dominates both the MDBs and the
experimental data. (C) An illustration of a scheme for the intersection of any six pairs of miRNA (for miRNAs that are marked miR-a, miR-b,
miR-c and miR-d). In this scheme, the interesting candidate pair that reaches a maximal coverage (measured by JM) is the combination of miR-a
and miR-b. Note that miR-c and miR-d are actually included in the predicted list of genes of miR-a and miR-b. (D) Global analysis of 20
experiments in manipulated cell-lines (Supplementary Table S9). The top 5 miRNA predictions are listed as 10 pairs (total of 200 data-points).
The joint miRIS is plotted in view of the JI. miRNA pairs that are within the statistical variance of the data are highlighted in light yellow. Several
extreme cases are emphasized. Note the 4 pairs that involve miR-218. The combination of some miRNAs with miR-218 led to a substantial increase
in the number of predictions relative to the input list.
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be considered as a proof of concept. Accordingly, a
transcriptomic signature can be applied as input for
miRror to assess the contribution of miRNA regulation.
We leverage miRror’s predictive capabilities to success-
fully identify a hidden layer of regulation in manipulated
cells (Figure 5D).

Coping with noisy predictions by miRror

An estimation of prediction accuracy by established
MDBs is reported in (21). The miRror2.0 system outper-
formed other MDBs, with the success attributable to: (i)
the incorporation of statistical considerations for predic-
tions above a predetermined threshold; and (ii) the
concept that is applied to genes or miRNAs sets as
input. We demonstrate that our protocol (Figure 1) suc-
cessfully overcomes the noisy predictions of existing
MDBs. Surprisingly, we found that the use of the
internal scoring methods had a negative impact on
miRror’s success rate (Figure 2B), dropping from 60%
to 53% (success being defined as a correct entry in the
top 9 predictions). Only Miranda-microRNA.org and
microT3.0 improved their success (from 40% to 47%
and from 40% to 50%, respectively). Both MDBs have
recently refined their internal scoring methods (55,63).
MAMI and TargetScan maintained their success rate.
The success of the other MDBs had actually deteriorated.
For PicTar-4 the success was reduced from 40% to 10%
using its suggested internal score. Thus, it seems that the
value of the scoring methods for some of the MDBs
should be revisited.
A known pitfall in the field of miRNA prediction

concerns the inconsistency in miRNA notation schemes.
The use of 12 difference resources led to an artificial
expansion of the miRNA input set (e.g. hsa-miR-19 is
sometimes denoted as hsa-mir-19a, hsa-mir-19b or hsa-
mir-19b-2). Furthermore, the hsa-mir-19a* and
hsa-mir-19b* are disputably grouped as part of the has-
miR-19 equivalence class. Due to the inconsistency in
miRNA nomenclature, the union of miRNAs and genes
submitted to miRror reached an unrealistic number of
2528 and 46 921, respectively (Supplementary Figure
S1). Therefore, we applied the miRNA family compres-
sion scheme. The family representation according to
miRBase definition compresses the MDBs by 2–4-folds.
However, a family assignment that is based on seed
sequence identity reduces the number of miRNAs by
only 38% (Supplementary Table S3). Such representation
improved our prediction success, with only a minimal
reduction in sensitivity. Furthermore, the prevalence of
the overlapping mode of miRNA regulation was reduced
to a minimum following the compressing of miRNAs to
their respective families.
Interestingly, many variants of miRNAs (called

isomiRs) were found by deep-sequencing studies.
Experimental analysis showed that isomiRs and their ca-
nonical counterparts act coordinately to target function-
ally related genes and pathways (64). Thus, in addition to
the seed dependent family assignment (Supplementary
Figure S3) isomiRs function as an additional mode for
increasing the specificity of miRNA regulation.

Exposing a combinatorial mode of action from raw data

miRNAs constitute an additional layer of post-
transcriptional regulation. Several studies aim to unveil
the design principle underlying miRNA regulation (14).
Systems biology has identified small miRNA modules
that by simultaneous regulation alter a functional
module (e.g. EGFR-driven cell-cycle pathway (65)). The
hierarchy among miRNAs suggests that some miRNAs
act as pathway hubs whereas others are interconnected
with transcription factors to provide small functional
modules (60). In this study, we assessed the capacity and
limitations of the miRror platform in exposing miRNA
cell regulation in healthy human cells. We applied the
Joint miRIS (JM) as a measure for the validity of regula-
tion by miRNA-Duos. The assumption being that a small
number of coordinated miRNAs act to maintain robust
homeostasis. Under this assumption, even a modest
modulation executed in a combinatorial fashion can
yield to a substantial change in cell phenotype. In our
analysis we had not considered the spacing of the
binding sites along the transcripts. It was shown that a
combinatorial regulation at the level of one transcript is
not necessarily cooperative but may be competing. Thus,
the outcome of a combined action of miRNAs may be a
lower efficacy than a single site (66).

An intriguing observation from the analyzed CLIP data
is the dominant appearance of expanding, complementa-
tion mode. We confirm an identical distribution for
simulated data (randomizing the pairs of miRNA and
genes in a two-sided graph) and the observed CLIP
data. Thus, we reject the possibility of a biased sampling
of the in vivo situation (see Discussion in (24)). Instead, a
strong preference in the CLIP data toward the expanded
mode suggests that accessibility and competition with
RNA binding proteins drives the preferential binding of
miRNA on their targets (14). However, a test for each of
the MDBs (e.g. TargetScan, Supplementary Figure S3)
and the union of the MDBs differ from the properties of
the CLIP data (24,27,67,68) (Supplementary Figure S3).
Whether the expanding mode is the preferred mode of
action in vivo under stress and extreme conditions in yet
to be determined.

We anticipate that the miRror platform will be used
successfully for screening for overlooked miRNA regula-
tion (in either Gene2miR or miR2Gene modes). In this
regards we intentionally excluded from our analysis any
transcriptomic data from cancer tissues and transformed
cells as many of these datasets are dominated overwhelm-
ingly by cancer-related miRNAs (69). Notably, the
majority of the transcriptomic studies (20 experiments,
Supplementary Table S10) do not claim any miRNA regu-
lation process. However, for 15% of cell manipulated ex-
periments (3/20), a regulation by miRNAs remains a
plausible hypothesis (Figure 5D).

The expression levels of miRNAs in cell-lines (70) and
normal tissues are accumulating (2,71). In this view, the
expression of hsa-miR-218 and hsa-miR-374 (Figure 5D)
co-occur in most independent experiments. Actually, the
miRNA-Duo of miR-218 and miR-374 doubled the
number of successful hits from 27 to 54 genes
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(Supplementary Table S10). We expect to identify sets of
miRNAs that have the potential to govern the observed
transcriptomic profile in view of the co-occurrence in
miRNAs expression.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–10 and Supplementary Figures
1–3.
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