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Abstract

Seminal fluid proteins have been shown to play important roles in male reproductive success, but the mechanisms for this
regulation remain largely unknown. In Caenorhabditis elegans, sperm differentiate from immature spermatids into mature,
motile spermatozoa during a process termed sperm activation. For C. elegans males, sperm activation occurs during
insemination of the hermaphrodite and is thought to be mediated by seminal fluid, but the molecular nature of this activity
has not been previously identified. Here we show that TRY-5 is a seminal fluid protease that is required in C. elegans for
male-mediated sperm activation. We observed that TRY-5::GFP is expressed in the male somatic gonad and is transferred
along with sperm to hermaphrodites during mating. In the absence of TRY-5, male seminal fluid loses its potency to
transactivate hermaphrodite sperm. However, TRY-5 is not required for either hermaphrodite or male fertility, suggesting
that hermaphrodite sperm are normally activated by a distinct hermaphrodite-specific activator to which male sperm are
also competent to respond. Within males, TRY-5::GFP localization within the seminal vesicle is antagonized by the protease
inhibitor SWM-1. Together, these data suggest that TRY-5 functions as an extracellular activator of C. elegans sperm. The
presence of TRY-5 within the seminal fluid couples the timing of sperm activation to that of transfer of sperm into the
hermaphrodite uterus, where motility must be rapidly acquired. Our results provide insight into how C. elegans has adopted
sex-specific regulation of sperm motility to accommodate its male-hermaphrodite mode of reproduction.

Citation: Smith JR, Stanfield GM (2011) TRY-5 Is a Sperm-Activating Protease in Caenorhabditis elegans Seminal Fluid. PLoS Genet 7(11): e1002375. doi:10.1371/
journal.pgen.1002375

Editor: Susan E. Mango, Harvard University, United States of America

Received June 20, 2011; Accepted September 12, 2011; Published November 17, 2011

Copyright: � 2011 Smith, Stanfield. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH R01-GM087705 and by T32-GM007464 to JRS. Some strains were provided by the Caenorhabditis Genetics Center,
which is funded by the NIH National Center for Research Resources. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gillians@genetics.utah.edu

Introduction

A general feature of sexual reproduction is the generation of

motile sperm that can navigate to an egg. To assist this process,

males transfer their sperm along with seminal fluid, which

enhances their reproductive success in a variety of ways (reviewed

in [1,2]). Seminal fluid factors promote sperm survival, motility

and fertilizing ability both by directly interacting with sperm and

by interacting with tissues of the female to make her reproductive

tract a more permissive environment. These factors include

seminal fluid-specific proteins, a variety of hormones, and energy

sources [2]. In mammals, roles for seminal fluid factors include the

regulation of sperm motility and capacitation and the modulation

of immune function [2,3]. Extensive analysis in Drosophila has

identified many seminal fluid proteins and uncovered roles for

several of these factors in sperm storage, sperm competition,

female reproductive behavior and physiology, and other processes

[4]. Due to their potential for influencing reproductive success,

components of seminal fluid represent a forum for both conflict

and cooperation between the sexes [1,5].

The androdioecious nematode Caenorhabditis elegans provides an

opportunity to analyze sperm development and function in a context

where both sexes produce sperm and can differentially regulate

gamete function to promote their fertility. Hermaphrodites are self-

fertilizing; during development, they produce a store of ‘‘self’’ sperm,

which can be used to fertilize their eggs. Males mate with and transfer

sperm to hermaphrodites. Males are not required for reproduction to

occur, and in their absence self sperm are used with extremely high

efficiency; more than 99% of self sperm are used. However, if male

sperm are present, then they preferentially fertilize eggs [6].

C. elegans sperm, like those of other nematodes, lack flagella;

instead, they move by crawling using a pseudopod [6–9]. Motility

is acquired during sperm activation, a process analogous to

spermiogenesis in flagellate sperm, in which haploid spermatids

undergo a dramatic cellular rearrangement to become competent

for both directional motility and fertilization of an oocyte [6].

While most aspects of sperm development are similar in males and

hermaphrodites, the timing and context of activation differ in the

two sexes. In hermaphrodites, spermatids activate when they move

into the spermathecae, regions of the gonad where sperm are

stored and fertilization occurs. In males, sperm are stored in a non-

activated form and become activated after mating and transfer to a

hermaphrodite ([6] and unpublished observations). Sperm also can

be activated in vitro in response to treatment with a variety of

factors, including an ionophore (monensin), proteases (Pronase), a

weak base (triethanolamine/TEA), and an ion channel inhibitor

(4,49-diisothiocyano-2,29-stilbenedisulfonic acid/DIDS) [10–13].

This ability, together with the observation that sperm generally

activate in vivo in response to a change in location, suggests that

activation is controlled by extracellular signals.

Genes that regulate sperm activation show distinct requirements

in hermaphrodites and males. The activity of a set of five genes
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termed the ‘‘spe-8 group’’ (spe-8, -12, -19, -27, and -29) is required

specifically for hermaphrodites to activate their self sperm;

hermaphrodites mutant for any one of these genes are self sterile,

while mutant males are fertile [12,14–19]. Mating of spe-8 group

mutant hermaphrodites with males results in self-sperm activation

(‘‘transactivation’’) and can restore self fertility, suggesting that

males provide their own activator to which spe-8 group

hermaphrodite sperm can respond [12]. spe-8 group functions

are dispensable for production of this activator, since both wild-

type and spe-8 group males are competent for transactivating

hermaphrodite sperm. While these analyses indicate that there are

differences in the intracellular pathways by which sperm are

activated in the two sexes, the functions of individual activation

genes are not strictly limited to a specific sex. spe-8 group mutant

male sperm show some defects, failing to activate in response to

Pronase in vitro [12,15,17,19]. Furthermore, some spe-8 group

activity is likely required for sperm to transactivate, since animals

harboring spe-8 group null alleles appear to be insensitive to male

activator [17,19]. While most analysis has focused on hermaph-

rodite sperm activation, a gene with a male-biased effect has been

identified as well. Activity of an extracellular trypsin inhibitor-like

protein, SWM-1, is required in males to prevent premature

activation from occurring prior to mating, and swm-1 mutant

males are infertile due to failure to transfer activated sperm [20].

swm-1 activity is dispensable in hermaphrodites, though loss of

swm-1 improves fertility in a sensitized spe-8 group mutant

background [20]. The finding that a protease inhibitor regulates

activation in males, combined with the ability of proteases to

activate sperm in vitro, suggested that protease activity could signal

activation in vivo. However, the endogenous activator has not been

identified as yet in either sex.

Here, we report the identification of a trypsin-family serine

protease, TRY-5, which has the properties expected of a male

sperm activator. Loss of try-5 suppresses mutations in swm-1.

Furthermore, during mating, TRY-5 is released from the somatic

gonad and transferred along with sperm, thus coupling the onset of

sperm motility to the time of their transfer to a hermaphrodite.

Within the male gonad, TRY-5 activity must be held in check to

ensure male fertility. Strikingly, TRY-5 is not required for male

fertility, but strains lacking both try-5 and spe-8 group activation

functions are totally sterile, confirming that while male and

hermaphrodite sperm motility is induced by distinct signals, the

two pathways are redundant. In summary, TRY-5 is the first

factor demonstrated to be a transferred component of seminal

fluid in C. elegans, where it plays a key role in male-specific

regulation of sperm function.

Results

C. elegans male sperm activation is regulated by a
protease

In wild-type males, sperm are stored in the inactive form within

the seminal vesicle (Figure 1A) and become activated after transfer

to a hermaphrodite ([6] and unpublished data). Mutations in the

secreted protease inhibitor SWM-1 result in premature sperm

activation within males (Figure 1B, Figure S1A, [20]). We

predicted that loss of activation-promoting factors should suppress

this phenotype. To identify such factors, we performed genetic

screens for suppressors of premature sperm activation caused by

the partial loss-of-function alleles swm-1(me86) or swm-1(me66)

(G.M.S., unpublished; [20]). Among the swm-1 suppressor

mutants, we identified three alleles of the serine protease gene

try-5 (Figure 1E and 1F). We subsequently obtained tm3813, a

deletion affecting the 59 end of the try-5 coding region (gift of S.

Mitani, National Bioresource Project, Japan), and showed that it

also suppressed swm-1(me86) (Figure 1F). Suppression of the

premature activation phenotype in swm-1 try-5 double mutants was

rescued by a genomic fragment containing the full-length try-5

gene (Figure 1G, Tables S1, S2, S4 and data not shown),

confirming that try-5 was responsible for this effect.

In parallel to our forward genetic screen, we also tested

individual serine proteases for a role in sperm activation. We used

RNA interference to reduce the function of individual protease

genes in a swm-1 mutant background and screened for effects on

premature activation in males. Among the tested proteases, only

reduction of try-5 resulted in strong suppression (Materials and

Methods and data not shown), consistent with our finding that try-

5 is a regulator of sperm activation.

Based on conservation of its sequence and domain structure

[21] with those of the trypsin-like superfamily, try-5 is predicted

to encode a trypsin-class serine protease. This family of

proteases contains numerous members in eukaryotes and

regulates many processes, including blood coagulation, devel-

opmental signaling and fertilization [22]. Specific residues that

form the protease active site are conserved in TRY-5, and the

presence of a signal sequence on the N terminus of the protein

suggests that it is secreted (Figure S2). While TRY-5 has clear

orthologs in other closely related nematodes, it is divergent from

serine proteases in more distantly related species (data not

shown). In addition, its substrate-binding region is divergent

from those of trypsin family members with characterized

substrate specificities [23].

We initially identified try-5 using partial loss-of-function alleles

of swm-1. To determine whether mutations in try-5 are capable of

suppressing a swm-1 null, we examined animals harboring both

the null allele swm-1(me87) and an allele of try-5. We found that

whereas swm-1(me87) mutant males contain activated sperm [20],

swm-1(me87) try-5(jn2) and swm-1(me87) try-5(tm3813) males

contained non-activated sperm like those found in the wild type

or in a try-5 mutant ([20], Figure 1A–1D and 1F, Figure S1). In

summary, these results indicate that the protease TRY-5 is

responsible for the premature sperm activation and associated

loss of fertility that occur in swm-1 mutant males and suggest that

the function of SWM-1 is to inhibit TRY-5 activity within the

male.

Author Summary

Sexual reproduction requires the generation of highly
specialized gametes, eggs and sperm, that must encounter
one another and fuse together to form a zygote. Males
provide not only sperm but also seminal fluid, which
contains a variety of factors that promote male fertility
through effects on sperm and on female physiology. We
have identified a C. elegans seminal fluid protease, TRY-5,
that regulates sperm activation, the process by which
immature spermatids complete their differentiation to a
motile form capable of fertilizing an oocyte. We observed
release of TRY-5 that coincided with transfer of sperm,
coupling the onset of sperm motility to transfer during
mating. Although TRY-5 functions only in males, both male
and hermaphrodite sperm are capable of responding to it.
TRY-5 is not required for fertility, and we propose that a
hermaphrodite activator compensates in its absence. Our
results reveal how sperm development can be differen-
tially modulated by males and hermaphrodites to promote
fertility in each sex, and we identify a novel function for a
seminal fluid protein.

C. elegans Seminal Fluid Sperm Activator
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Male sperm can activate in the absence of try-5
To see if try-5 is required for male sperm to activate, we assessed

the ability of try-5 mutant sperm to respond to treatments that

bypass normal activation signals. Wild-type sperm can be activated

in vitro by treatment with any of a variety of compounds [10–13].

Since TRY-5 is predicted to be a protease, we first assayed the

ability of try-5 mutant spermatids to activate in response to Pronase

treatment. In the absence of Pronase, both wild-type and try-5

mutant sperm remained non-activated (Figure 2A and 2B). Within 5

to 10 min after addition of Pronase, the majority of sperm cells

developed a pseudopod, consistent with activation (Figure 2A and

2C, Video S1). These cells were capable of motility, as they were

observed crawling across the microscope slide (note altered positions

of some cells in Figure 2B versus Figure 2C). There was no

significant difference in either the level of activation (Figure 2A;

P = 0.89, Student’s t test) or the rate of activation (data not shown) of

try-5 mutant sperm as compared to the wild type. We then tested the

ability of try-5(tm3813) spermatids to activate in response to

Figure 1. Mutations in the serine protease gene try-5 suppress premature sperm activation in swm-1 mutant males. Sperm activation
was examined in staged 48 hr post-L4 adult virgin males. (A–D) Differential interference contrast (DIC) images showing sperm morphology in the
indicated strains. Top row: Images of intact males in the region of the seminal vesicle (SV), where sperm are stored. Strains shown in A, C and D have
round spermatids, which pack together in the SV of intact animals to form a uniformly grainy appearance. The strain shown in B contains activated
sperm, resulting in a rough appearance. Arrowheads indicate the anterior (white) and posterior (black) boundaries of the SV. Scale bar, 25 mm.
Bottom row: DIC images of dissected sperm. Arrow indicates a pseudopod. Scale bar, 5 mm. (See Figure S1 for high-resolution versions of the images
in B, C.) (E) Schematic of the try-5 region. We used RACE and RT-PCR to characterize try-5 transcripts, generating updated gene models as compared
to the WormBase prediction ([59]; accession numbers JN651275, JN651276 and JN651277). On gene models, darker shading indicates predicted
coding regions and arrow indicates the direction of transcription. The positions of mutations in try-5 are indicated along with their predicted effects.
(See also Figure S2.) (F) Quantitation of suppression of swm-1 by mutations in try-5. Stacked columns indicate the percent of males containing either
only activated sperm (black), a mixture of spermatids and activated sperm (hatched), or only non-activated spermatids (grey). At least 30 animals
were scored for each genotype. (G) A try-5 transgene restores sperm activation in swm-1 mutant males. Sperm activation was assayed in unc-119;
swm-1(me86) try-5(jn2) him-5 males bearing extrachromosomal arrays of pJRS14, which contains try-5(+) and C. briggsae unc-119(+) (Tables S1 and S2).
Data from three independent transgenic lines are shown. Key for stacked columns as in (F). Between 22 and 31 animals were scored for each
genotype.
doi:10.1371/journal.pgen.1002375.g001
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treatment with a second known activator, the weak base TEA.

When treated with TEA, try-5 mutant spermatids activated at levels

similar to wild-type sperm (data not shown). Thus, try-5 is not

required for sperm activation initiated in vitro either by exogenous

proteases or TEA. This result distinguishes try-5 mutants from the

previously-characterized spe-8 group mutants, for which sperm

activate normally when treated with TEA, but arrest at a partially-

activated, ‘‘spiky’’ stage in response to Pronase [12,15,17,19].

We next determined if try-5 is required for activation induced by

loss of the intracellular activation inhibitor spe-6. SPE-6 is a sperm

casein kinase 1-like protein that functions at two points during

spermatogenesis: during spermatogenic cell divisions [24] and later

during sperm activation [18]. Specific mutations in spe-6 allow

spermatogenesis to occur but lead to premature sperm activation

in males, a phenotype that is thought to be independent of

extracellular signaling [18]. To determine whether try-5 function is

required for the premature sperm activation phenotype of spe-6,

we assayed sperm activation in spe-6(hc163); try-5(tm3813) and spe-

6(hc163); try-5(jn2) mutant males. We found that, like spe-6(hc163)

mutant males, spe-6(hc163); try-5 males contained activated sperm

(Table 1) and their appearance was indistinguishable from that of

the spe-6 mutant (data not shown). Thus, TRY-5 activity does not

function downstream of the sperm protein SPE-6. Together, the

ability of try-5 sperm to activate in response to either in vitro

activators or loss of an intracellular inhibitor indicates that TRY-5

is not required for the subcellular rearrangements of sperm

activation. Rather, these data suggest a regulatory role for this

protease in signaling sperm to initiate the activation process.

try-5 is not required for fertility
Since activation is necessary to generate mature, motile

spermatozoa that are competent for fertilization, failure to activate

results in infertility. If try-5 is required for sperm activation, then

loss of try-5 should result in decreased fertility. To test this idea, we

assayed fertility in try-5 and swm-1(me87) try-5 hermaphrodites and

males, using the try-5 alleles jn2 and tm3813. In self-fertilizing

hermaphrodites, sperm is the limiting gamete for offspring

production; nearly every self sperm in a hermaphrodite will

fertilize an oocyte [6], so the total self brood size is a sensitive

measure of the number of functional, activated sperm produced.

We found no significant difference between the number of

progeny produced by try-5 or swm-1 try-5 mutant hermaphrodites

as compared to wild-type and swm-1 controls (Figure 3A, Figure

S3A). Thus, try-5 is not required for hermaphrodite sperm

activation or fertility.

We next measured male fertility in crosses of individual males to

spe-8(hc40); dpy-4 recipient hermaphrodites. While there was a

great deal of variation in the number of cross progeny produced

even by wild-type males, as observed previously [25], try-5 mutant

males showed a high level of fertility and no significant difference

with the wild type was observed (Figure 3B). In addition, swm-1 try-

5 males showed high levels of fertility, in some cases equivalent to

that of the wild type (Figure S3B), along with suppression of the

swm-1 transfer defect (data not shown). While our assays detected

no obvious fertility defects in try-5 animals, it is possible that they

might exhibit reduced fertility in other situations, e.g., outside the

laboratory or under conditions of sperm competition. However,

these results suggest that try-5 is not required for sperm activation

or other aspects of fertility in either sex.

try-5 and the spe-8 group define two pathways for sperm
activation

Although try-5 is not required for either male or hermaphrodite

fertility, there is previous evidence for distinct pathways of sperm

activation in males vs. hermaphrodites [12,14], raising the

possibility that the effect of try-5 loss is masked by functional

redundancy. Therefore, we tested genes in the hermaphrodite

pathway for redundancy with try-5. The activities of a set of five

genes termed the ‘‘spe-8 group’’ (spe-8, -12, -19, -27, and -29) are

required for self-sperm activation in the hermaphrodite but not for

activation of male sperm (reviewed in [26]). To test whether try-5

and the spe-8 group function in independent, redundant activation

pathways, we assayed sperm activation and male fertility in worms

lacking both try-5 and spe-8 group activity, using the spe-8 group

mutations spe-27(it110) and spe-29(it127). While spe-27 mutant

males are fertile and capable of generating cross progeny, we

found that spe-27; try-5 mutant males were completely infertile

(Figure 3C). Similarly, while spe-29 mutant males are fertile, spe-29;

try-5 fertility was greatly reduced as compared to the wild type

(Figure 3C).

Figure 2. try-5 mutant sperm are capable of activation. Sperm
were assayed for activation in response to protease treatment. Wild-
type or try-5(tm3813) mutant sperm were dissected and incubated in
200 mg/mL Pronase for 25 min; activation was scored every 5 min
based on the presence or absence of a pseudopod. (A) Maximal
activation observed at a single time point during the assay; average of 3
repeats. Error bars represent standard error of the mean. (B,C) DIC
images of try-5(tm3813) sperm prior to Pronase treatment (B) and the
same field of cells at 20 min (C). See also Video S1. Arrows indicate the
pseudopodia for two of the activated cells. Scale bar, 10 mm.
doi:10.1371/journal.pgen.1002375.g002

Table 1. TRY-5 is not required for activation in spe-6 animals.

Genotype1 % Act2 n

wild type 97 32

spe-6(hc163) 100 40

try-5(jn2) 0 43

try-5(tm3813) 0 53

spe-6(hc163); try-5(jn2) 100 42

spe-6(hc163); try-5(tm3813) 100 61

1All strains also contained the mutation dpy-18(e364).
2Percent of 48 hr post-L4 males containing activated sperm.
doi:10.1371/journal.pgen.1002375.t001
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To investigate the cause of this infertility, we labeled males with

MitoTracker [27] and crossed them to unlabeled recipient

hermaphrodites to assay sperm transfer and migration [20]. We

found that spe-27; try-5 males were able to transfer sperm to

hermaphrodites, but the transferred sperm did not migrate.

Similarly, for spe-29; try-5 males, we observed only rare instances

of successful migration (Table S3 and data not shown). To

determine if the migration defect was due to improper activation

or a defect in migration after sperm activation, we dissected

hermaphrodites immediately after their mating to spe-27; try-5

males and examined transferred, MitoTracker-labeled sperm. We

found that whereas spe-27 sperm activate within fifteen minutes

after transfer to a hermaphrodite, spe-27; try-5 sperm fail to

activate (data not shown). Thus, spe-27; try-5 males are infertile due

to failure to activate sperm upon transfer to hermaphrodites. Our

findings of residual fertility and sperm migration in spe-29; try-5

males are consistent with previous observations [17] that the single

known mutation in spe-29 leads to a weaker phenotype as

compared to known null mutations in other spe-8 group genes.

These results suggest that try-5 activity is the source of fertility in

spe-8 group mutant males; i.e., the spe-8 group and try-5 function in

two separate pathways for sperm activation, and either pathway is

normally sufficient for full male fertility.

try-5 mutant males do not transfer activator to
hermaphrodites

To determine whether try-5 indeed functions in the male-

derived activation pathway, we used a specific assay to measure

transfer of functional male activator. Wild-type male seminal fluid

is capable of activating spe-8-group mutant hermaphrodite sperm

during mating; this process is termed ‘‘transactivation’’ and is

generally assayed using fer-1 mutant males, which are defective for

producing functional sperm, to prevent cross-progeny production

[12]. We crossed either fer-1 [25] or fer-1; try-5 males to spe-8(hc53);

dpy-4 hermaphrodites and counted the number of self progeny

generated. Crosses with fer-1 control males resulted in transactiva-

tion approximately 58% of the time. However, fer-1; try-5 males

were rarely if ever capable of transactivating hermaphrodite sperm

(Figure 4). To exclude the possibility that fer-1; try-5 males simply

might harbor a behavioral defect that reduced their mating

frequency, we used MitoTracker to label males and assessed their

ability to transfer sperm. We observed similar frequencies of

hermaphrodites containing labeled sperm after incubation with fer-

1 males, fer-1; try-5(jn2) males, or fer-1; try-5(tm3813) males (43%,

57%, or 63%, respectively). These data indicate that fer-1; try-5

mutants mate and transfer sperm with similar success rates as

compared to the control. Thus, try-5 mutant males are defective in

transfer of the male activator responsible for transactivation of spe-

8 group hermaphrodite sperm.

TRY-5 is expressed in and secreted from the male
somatic gonad

To determine how TRY-5 functions in male sperm activation,

we sought to determine where it is expressed and localized. Since

we predicted that TRY-5 protein is secreted, we generated both a

Ptry-5::GFP::H2B transcriptional reporter, a histone-H2B fusion

that localizes to cell nuclei and facilitates identification of cells, and

a Ptry-5::TRY-5::GFP translational reporter for assessing TRY-5

protein localization and function. We created stable transgenic

worm strains using MosSCI (Mos1-mediated Single Copy gene

Insertion [28], Tables S1 and S2) and confirmed that the Ptry-

5::TRY-5::GFP transgene restored a premature sperm activation

Figure 3. try-5 is not required for fertility and functions in parallel to the spe-8 group. Hermaphrodite and/or male fertility was measured
for try-5 mutant strains. (A) try-5 hermaphrodites show normal fertility. Columns indicate average brood size of self-fertilizing hermaphrodites. Error
bars represent standard error of the mean. (B) try-5 males show normal fertility. Males were placed with spe-8(hc40); dpy-4 hermaphrodites in 1:1
crosses for 48 hr and the entire brood size was measured by counting the total number of non-Dumpy cross progeny. try-5 mutants were not
significantly different from the control (try-5(jn2), p = 0.95; try-5(tm3813), p = 0.40; Mann-Whitney U Test). (C) try-5 is required for fertility in spe-8 group
mutant males. Males were placed with spe-8(hc40); dpy-4 hermaphrodites in 1:1 crosses for 48 hr and the number of non-Dumpy cross progeny
produced during the mating period was counted. Infertility of spe-8 group; try-5 males was due to failure of sperm to activate or migrate (Table S3).
(B,C) Each point represents the result of an individual cross; gray lines represent medians. Sets of crosses with each genotype were repeated at least
twice and a representative set of data is shown. (See also Figure S3.)
doi:10.1371/journal.pgen.1002375.g003
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phenotype to swm-1 try-5 mutants (Materials and Methods, Tables

S1, S2, S4).

Using the Ptry-5::GFP::H2B reporter, we found that the primary

site of try-5 expression was in the male somatic gonad, in particular

within tissues involved in storing sperm and tissues through which

sperm pass during transfer to a hermaphrodite. The C. elegans male

gonad is essentially a long tube. At the distal end of this tube,

germline stem cells reside and proliferate, and as they move

proximally, they undergo meiosis and differentiate into spermatids.

A subset of somatic gonadal cells surround spermatids to form a

storage organ, the seminal vesicle; a more proximal set forms a

channel, the vas deferens, through which sperm move during

transfer. A valve structure regulates movement of sperm between

the seminal vesicle and vas deferens. The vas deferens contains at

least two distinct cell types, based on shape: cuboidal and

elongated cells [29]. Beyond an obvious structural role, other

functions of these different cell types are not known, although

some of them appear to be involved in secretion [29]. Starting at

the L4 larval stage, when sperm production initiates, we observed

Ptry-5::GFP::H2B expression in several regions of the male gonad

(Figure 5A): the seminal vesicle (up to seven of the twenty-three

total cells in this tissue [30]), the valve region (four cells), and the

twelve cuboidal cells of the vas deferens [29]. This overall pattern

persisted into adulthood until at least 72 hr post L4; highest

expression levels were present consistently in the valve region. We

observed no expression in the hermaphrodite gonad, so gonadal

expression of try-5 is sexually dimorphic. However, we also

observed low levels of expression in a few cells within the head and

tail of both males and hermaphrodites (data not shown).

In worms carrying the Ptry-5::TRY-5::GFP reporter, the TRY-

5::GFP fusion protein exhibited a localization pattern consistent

with secretion from the vas deferens. Within the valve and

cuboidal cells, TRY-5::GFP was localized to globular foci. In L4

larvae, most globules aligned with the apical domain that lines the

developing sperm channel (Figure 5B). In mature adults, very large

globules were present that tended to cluster apically, and

additional small globules were present throughout the cytoplasm

(Figure 5C and 5D). Such large globular structures are generally

visible in adult males by DIC microscopy and diagnostic of vas

deferens tissue, including within wild-type animals lacking a

transgene. Based on their size and location, these large globules

are likely to represent the ‘‘secretory globules’’ observed by

electron microscopy [29].

We sometimes observed TRY-5::GFP within the lumen of the

seminal vesicle, likely as a result of release from the adjacent,

highly-expressing valve cells (Figure 5D and 5E, Table S5). The

timing and extent of TRY-5::GFP expansion into the seminal

vesicle was dependent on activity of the protease inhibitor SWM-

1, the level of expression, and male age. In animals wild-type for

swm-1, TRY-5::GFP was usually restricted to the valve cells or

regions close by; when present near sperm cells, TRY-5::GFP was

usually localized to a few discrete foci (data not shown). However,

in animals lacking swm-1 activity, we often observed large zones of

TRY-5::GFP extending from the valve and surrounding sperm in

the seminal vesicle (compare Figure 5C and 5D; see Table S5).

Even in swm-1(+) animals, when high levels of TRY-5::GFP were

present in the seminal vesicle, we almost always observed that

sperm were activated (Figure 5E, Tables S4 and S5). Together,

these data suggest that TRY-5 is produced by cells of the male

somatic gonad and can induce sperm activation within males if it is

released into the seminal vesicle. It has been observed previously

that older wild-type males sometimes contain activated sperm

[20], and the finding that TRY-5::GFP is released into the seminal

vesicle in older males provides a basis for this phenotype. Thus,

these results support a model in which TRY-5 acts locally on

sperm, either to signal their activation or to generate such a signal,

and SWM-1 acts to inhibit the accumulation and/or activity of

TRY-5 in the seminal vesicle.

TRY-5 is transferred to hermaphrodites during mating
Since TRY-5 localization is consistent with secretion from the

male gonad, we sought to determine whether TRY-5 is transferred

during mating. We placed individual MitoTracker-labeled Ptry-

5::TRY-5::GFP; try-5(tm3813) males with unc-52 hermaphrodites,

monitored the males for mating behavior [31], and acquired

fluorescence images starting at or just before spicule insertion. We

observed that TRY-5::GFP was transferred to hermaphrodites

during mating (Figure 6 and Video S2). Shortly after spicule

insertion, TRY-5::GFP was released from the vas deferens and

transferred to the hermaphrodite (Figure 6A and 6B). A brief

pause without obvious transfer then occurred (Figure 6C). Next,

TRY-5::GFP was released from the valve cells and travelled

rapidly through the vas deferens into the hermaphrodite

(Figure 6D and 6E). Movement of this valve pool was immediately

followed by transfer of sperm (data not shown). After transfer, the

TRY-5::GFP signal dispersed throughout the uterus (Figure 6F)

and remained visible near the vulva for several minutes, if eggs

were not laid immediately. This stereotypical series of events

occurred for all cases (n = 5) in which the entire process was

observed from spicule insertion to sperm transfer. We also

observed a partial time course of five other matings, all of which

were consistent with this sequence of events.

To confirm that this behavioral sequence is not unique to this

specific hermaphrodite genotype, we mated Ptry-5::TRY-5::GFP;

try-5(tm3813) males to either unc-31 (n = 4) or him-5 unc-76 (n = 3)

hermaphrodites. We were unable to observe vas deferens TRY-

5::GFP transfer in these cases due to excess hermaphrodite

movement. However, we did observe that valve TRY-5::GFP

transfer initiated approximately 15–55 sec after spicule insertion,

which is similar to the time observed for mating with unc-52

hermaphrodites (Figure 6, Video S2 and data not shown) and

consistent with the reported timing for sperm transfer from 14.4 to

90.2 sec after spicule insertion as determined by Schindelman

[32]. In summary, our data suggest that TRY-5 is a seminal fluid

Figure 4. TRY-5 is required for the activation of hermaphrodite
sperm by male seminal fluid. Transactivation was assayed for try-5
males. L4 males were mated to L4 spe-8(hc53); dpy-4 hermaphrodites in
4:1 crosses for 48 hr, and the number of Dumpy self progeny produced
during the mating period was counted. Each point represents the result
from one cross. Gray bars represent medians.
doi:10.1371/journal.pgen.1002375.g004
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Figure 5. try-5 is expressed in the male somatic gonad. Confocal and transmitted-light (TL) images of transgenic males bearing try-5 reporter
insertions. In TL images, boundaries of regions of the somatic gonad are labeled as sv, seminal vesicle; vl, valve; and vas, vas deferens. Scale bars,
10 mm. (A) jnSi49[Ptry-5::GFP::H2B]; try-5(tm3813) L4 male. In focal planes shown, GFP is visible in the four GFP-positive seminal vesicle cells, two of
four GFP-positive valve cells, and six of twelve GFP-positive cuboidal cells. (B) jnSi62[Ptry-5::TRY-5::GFP]; try-5(tm3813) L4 male. TRY-5::GFP is
concentrated at the apical side of seminal vesicle, valve and cuboidal cells. (C) jnSi62[Ptry-5::TRY-5::GFP]; try-5(tm3813) 48 hr adult male. Both large and
small TRY-5::GFP globules are present in the cuboidal cells and valve region. In the seminal vesicle, TRY-5::GFP is present in the proximal region near
the valve. (D) jnSi62[Ptry-5::TRY-5::GFP]; swm-1(me87) try-5(tm3813) 48 hr adult male. TRY-5::GFP has expanded into the seminal vesicle lumen and
sperm are activated. (C9, D9) Images of seminal vesicle regions outlined in C and D with intensity levels optimized for the fainter GFP signal in these
tissues. Arrows indicate GFP in the distal sheath-like cells of the seminal vesicle. (E) Paired DIC, epifluorescence and merged images of a jnSi62[Ptry-
5::TRY-5::GFP]; try-5(tm3813) 72 hr adult male in the region of the seminal vesicle. Localization of TRY-5::GFP is correlated with activated sperm (also
see Table S4 and S5).
doi:10.1371/journal.pgen.1002375.g005
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protein that is transferred to the hermaphrodite during copulation.

Furthermore, our observations indicate that seminal fluid is

released in discrete pools from specific tissues of the male gonad

and that these events occur largely prior to and coincident with

transfer of sperm.

Discussion

Activation of C. elegans sperm motility by a protease
signal

We have identified a serine protease, TRY-5, which functions in

C. elegans male sperm activation, the process by which amoeboid

sperm cells become motile and competent to fertilize an egg. Based

on our analysis of the defects of try-5 mutants and the dynamic

localization of a TRY-5 reporter, we propose that TRY-5 is a

sperm activating signal (Figure 7A and 7C). TRY-5 function is

required for premature activation of stored sperm in males lacking

the protease inhibitor SWM-1. TRY-5::GFP is expressed by the

male somatic gonad within secretory cells. When observed outside

these cells, localization of TRY-5::GFP protein strongly correlates

with the localization of activated sperm. We have directly observed

the transfer of TRY-5::GFP to hermaphrodites during copulation,

and try-5 mutant males are incapable of transferring sperm

activator to hermaphrodites. Together, these data strongly support

a model in which TRY-5 is a component of seminal fluid that is

transferred during copulation to signal sperm activation. Coupling

the exposure of sperm to TRY-5 to the timing of transfer serves to

ensure that sperm motility is rapidly induced at the time of - but

not before - entry into a hermaphrodite’s reproductive tract,

thereby promoting male fertility.

Our discovery of a seminal fluid serine protease provides a

mechanistic explanation for previous results linking extracellular

protease activity with sperm activation in C. elegans and in other

nematodes. C. elegans sperm can be activated in vitro by incubation

with Pronase, a protease preparation that primarily contains trypsin-

like activity at the pH used for these assays [11]. In C. elegans males,

loss of the SWM-1 protease inhibitor, which should result in

increased protease activity, results in increased activation [20].

Recent studies of sex determination in C. remanei, a male-female

species, showed that females could be transformed into sperm-

Figure 6. TRY-5 is transferred to hermaphrodites during mating. Selected still images (A–F) and schematics (A9–F9) depicting the time course
of TRY-5::GFP transfer to an unc-52 hermaphrodite (see Video S2). (A) TRY-5::GFP is visible within its source cells in the valve (small bracket) and vas
deferens (large bracket). (B) Transfer of TRY-5::GFP from the vas deferens into the hermaphrodite. (C) Pause between transfer of the two pools. (D, E)
Transfer of TRY-5::GFP from the valve into the hermaphrodite. (F) Spread of TRY-5::GFP within the uterus concomitant with transfer of sperm (data not
shown). Arrows indicate TRY-5::GFP during transfer, ‘‘V’’ symbols indicate position of the hermaphrodite vulva, and arrowheads indicate TRY-5::GFP
within the uterus. Time shown is relative to the beginning of Video S2.
doi:10.1371/journal.pgen.1002375.g006
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producing ‘‘pseudohermaphrodites,’’ but their sperm were not

motile; production of functional, activated sperm could be achieved

through additional inhibition of the C. remanei orthologue of swm-1

[33]. Finally, the somatic gonad of males from the related nematode

Ascaris suum contains a protease activity, which can activate sperm

[34,35]. Thus, a role for protease activity in promoting sperm

motility appears to be conserved among nematodes.

Here we describe a novel role for a protease as a signaling

molecule for differentiation of sperm to a motile form. Why would

a protease be used in this context? The onset of motility in C.

elegans sperm, as in flagellate sperm, occurs at a stage subsequent to

meiotic cell division and the compaction of the haploid genome.

At this stage, C. elegans sperm cells no longer express new protein

products [26]. Therefore, to alter their behavior they must either

reorganize their cellular contents in response to their environment

or take in external factors. In addition, the timing of activation

must be tightly controlled: C. elegans sperm must become motile

rapidly upon entry into the hermaphrodite to avoid being lost due

to the continuous outward passage of eggs [6], but early activation

of motility precludes transfer of sperm from the male [20]. A

protease activator provides a mechanism to trigger irreversible

changes in the sperm cell surface that is readily coupled to mixing

of sperm with seminal fluid. This type of activator also provides a

simple mechanism to hold activation in check: the use of specific

protease inhibitors such as SWM-1. We propose that the balance

of TRY-5 and SWM-1 activities controls the likelihood of

activation in specific locations and times within the male and

hermaphrodite (Figure 7). For example, within the male gonad,

SWM-1 may directly inhibit TRY-5 activity to prevent activation,

allowing for sperm transfer and maintaining male fertility

(Figure 7A). It is likely that additional proteases and/or inhibitors

also function in this process. try-5 mutant hermaphrodites are

fertile, suggesting that hermaphrodites have an activator that is

independent of TRY-5 (Figure 7B). This activator could be a

protease, though its identity is not known. Male sperm sometimes

activate prematurely in try-5 mutants, suggesting that males could

contain a second activator. However, if it exists, such a secondary

male activator must not be competent to activate male or

hermaphrodite spe-8 group sperm.

Genetic analysis of swm-1 had suggested that it functions to

inhibit two distinct protease activities that act in parallel to

promote sperm activation within males [20]. This model was

based on the result that partial loss-of-function mutations affecting

each of the two TIL domains of SWM-1 partially complement one

another. By this model, loss of a single protease would not be

expected to block sperm activation. However, we find that all

SWM-1 activity works through TRY-5 in males, suggesting that

both domains of SWM-1 inhibit TRY-5. The apparently separable

activities of the SWM-1 TIL domains could arise from interactions

with factors other than proteases. Alternatively, these results can

be reconciled by a regulatory model in which SWM-1 inhibits two

distinct proteases, both of which act upstream of TRY-5. It is also

possible that SWM-1 might inhibit both TRY-5 and a second,

TRY-5-activating protease. Consistent with these ideas, many

well-known protease pathways consist of sequential cascades of

activator and effector functions (e.g., [36,37]).

As an extracellular protease, TRY-5 likely signals activation by

cleaving sperm cell surface proteins and altering their activity.

Some of the targets of TRY-5 may be SPE-8 group proteins, based

on the fact that TRY-5 is required for transactivation, a process

dependent on having some spe-8 group activity (sperm from

hermaphrodites harboring null alleles of these genes are essentially

incapable of being transactivated [16,19]). However, spe-8 group

mutant males are fertile, suggesting that SPE-8 group proteins are

not essential for activation in all contexts. Thus, other targets may

not be members of the SPE-8 group. The existence of such targets

is further supported by our finding of additional swm-1 suppressors

(distinct from try-5) that show full fertility in hermaphrodites and so

do not fall into the spe-8 phenotypic class (G.M.S., unpublished

data).

Could TRY-5 be functioning in some role other than as a direct

activator? Sperm from try-5 mutant males can be activated within

hermaphrodites after mating, in spe-6 mutants, or by exogenous

activators in vitro. Thus, other activators can bypass TRY-5, and

Figure 7. Models for the protease regulation of sperm
activation in males and hermaphrodites. (A) Model: Male pathway
for sperm activation, shown prior to mating when SWM-1 inhibits TRY-5
activity within the male gonad to prevent premature activation. In the
absence of SWM-1, activation is signaled through interaction between
TRY-5 and spermatids, likely through cleaving a target(s) on the cell
surface (black arrows). Potential targets of TRY-5 include both members
of the SPE-8 group and one or more additional sperm surface proteins.
(B) Model: Hermaphrodite pathway for self-sperm activation. Activation
is signaled through interaction between hermaphrodite activator and
spermatids in the spermathecae (black arrow). This process is
dependent on activity of the SPE-8 group. SWM-1 weakly antagonizes
self sperm activation, suggesting that the hermaphrodite activator may
be a protease. (C) Model: Pathways for activation after mating and
seminal fluid transfer. When mating occurs, components of male and
hermaphrodite pathways are both present and can promote sperm
activation. Either pathway can activate both male and hermaphrodite
sperm (grey arrows). However, hermaphrodite activator may function
solely through the SPE-8 group.
doi:10.1371/journal.pgen.1002375.g007
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try-5 is not required for the cellular rearrangements that occur

after activation is triggered. These data support the idea that

TRY-5 functions in a regulatory step of the activation process. It is

clear that TRY-5 is essential for transfer of sperm activator by C.

elegans males and its localization correlates strongly with that of

activated sperm. These data strongly suggest that if TRY-5 is not

the signaling molecule per se, its activity is intimately associated

with generation of the sperm activation signal.

TRY-5 as a component of seminal fluid
Production and transfer of seminal fluid is an important aspect

of male reproduction [2,38,39]. TRY-5 is one of the first seminal

fluid proteins identified in C. elegans. Indeed, it is the first directly

demonstrated to be transferred at mating, and the first with a

specific role in promoting gamete function. Previously, plg-1 was

identified as a seminal fluid factor required for production of a

copulatory plug [40] and shown to encode a mucin-like protein

with a function in male mate guarding [41]. plg-1 is expressed

within the male somatic gonad in a subset of cells that express try-

5; interestingly, plg-1 is not expressed within the valve region [41],

from which most TRY-5 appears to be released during mating

(Video S2). Thus, as in other animals [42,43], different regions of

the C. elegans male gonad appear to be specialized to produce

specific components of seminal fluid. Furthermore, our data

reveal considerable complexity in the timing of release of seminal

fluid from specific tissues during the mating behavioral program.

Regulatory logic of sperm activation in a
male-hermaphrodite species

We have found that try-5 is functionally redundant for fertility in

C. elegans. Although try-5 mutant males fail to transfer activator,

they are fertile; however, loss of both try-5 and spe-8-group function

leads to complete infertility for both hermaphrodites and males

(tested here with mutations in two of the spe-8-group genes, spe-27

and spe-29). These data can be explained by the following model:

spe-27; try-5 and spe-29; try-5 animals (1) make sperm that do not

respond to hermaphrodite activator (due to loss of spe-8-group

function) and (2) do not produce male activator (due to loss of try-

5). In other words, try-5 males may be fertile due not to the

presence of additional activators provided by the male, but rather

due to rescue of male sperm activation by a signal within the

hermaphrodite (Figure 7C).

These findings of redundancy raise the question: why does C.

elegans have try-5? At least part of the answer might lie in the

evolutionary history of this species, which evolved from a

gonochoristic (male-female) ancestor [44,45]. As the male

activator, try-5 may represent the ancestral mode of activating

sperm. Baldi et al. [33] have shown that the transition from

gonochorism to androdioecy in the related species C. remanei

requires only two steps: making sperm and activating it.

Acquisition of the ability to make sperm could be advantageous,

even in the initial absence of a robust self-sperm activation

mechanism, as long as it tended to increase fertility. Chance

encounters with a male would potentially activate hermaphrodite

self sperm, as long as hermaphrodite sperm remained capable of

responding to male activator. In turn, the male may have

developed mechanisms to ensure his sperm were used preferen-

tially; indeed, C. elegans male sperm show strong precedence over

those of the hermaphrodite [6,46]. Eventually, the hermaphrodite

might evolve her own mechanism for activating sperm. The self-

sperm activator in C. elegans is not known, but it may be a serine

protease. Indirect evidence for this idea is provided by data

indicating that the inhibitor SWM-1 functions in hermaphrodites:

while animals mutant for the spe-8 class gene spe-29 have very low

levels of self sperm activation and fertility, this phenotype is

partially suppressed by mutations in swm-1 [20]. However, this

protease is likely distinct from TRY-5, since we have found that

try-5 is not required for either normal hermaphrodite fertility or

increased activation in spe-29; swm-1 hermaphrodites (Figure 3A,

Figure S4).

Alternatively, production of TRY-5 would be advantageous for

males if it is a more efficient activator than that of hermaphrodites.

While our fertility assays revealed no difference between fertility of

wild-type and try-5 males, those assays were performed under

highly permissive conditions: young adult animals were provided

with many opportunities for mating to occur under conditions of

unlimited food resources. TRY-5 might be important to increase

reproductive fitness in less-than-ideal conditions. For example,

activation by TRY-5 might occur more rapidly than that mediated

by the hermaphrodite activator. If so, its transfer would decrease

the chance that transferred sperm would be lost before they have

the opportunity to migrate away from the vulva.

In summary, our work has identified a serine protease in C.

elegans male seminal fluid that regulates the timing of sperm

activation to promote male fertility. TRY-5 is transferred along

with sperm during mating to couple sperm motility to entry into

the hermaphrodite reproductive tract. While TRY-5 appears to be

necessary for males to signal activation, hermaphrodites contain

their own activator. Interestingly, these redundant pathways are

competent to activate sperm from either sex, providing insight into

the strategies used by C. elegans to adopt a male-hermaphrodite

mode of reproduction. Further dissection of these signaling

pathways will require identifying targets of TRY-5 and determin-

ing the nature of the hermaphrodite activator.

Materials and Methods

C. elegans genetics
C. elegans strains were grown as described by Brenner [47] at

20uC, except where otherwise noted. All strains were derived from

the wild-type isolate Bristol N2. To ensure a ready supply of males,

a strain harboring the mutation him-5(e1490) [48] was used as the

wild type and him-5(e1490) was present in all other strains unless

explicitly noted. The try-5 alleles jn2 and jn13 were isolated as

suppressors of swm-1(me86) and jn21 was isolated as a suppressor of

swm-1(me66) (G.M.S., unpublished results). Ethyl methanesulfo-

nate (EMS) mutagenesis was performed as in [49]. try-5(tm3813)

was a gift of S. Mitani (National Bioresource Project, Japan).

Other alleles (described in Wood [49] unless otherwise noted)

were: spe-8(hc40, hc53) I, fer-1(hc1ts) I, ttTi5605 II [28], unc-

52(e444) II, dpy-18(e364) III, spe-6(hc163) III [18], unc-119(ed3, ed9)

III [50], spe-27(it110) IV [15], spe-29(it127) IV [17], dpy-20(e1282)

IV, mIs11[myo-2::GFP, pes-10::GFP, gut::GFP] IV, dpy-4(e1166) IV,

unc-31(e169) IV, swm-1(me66, me86, me87) V [20], unc-76(e911) V

and nT1[unc-?(n754) let-? qIs50 ](IV, V).

Strains containing mutations in both a spe-8 group gene and try-

5 were maintained as heterozygotes using the balancer nT1.

Homozygous spe-8 group; try-5 males were generated by

transactivation crosses of homozygous self-sterile hermaphrodites

to swm-1 mutant males, which are competent for transferring

seminal fluid but rarely transfer sperm [20]. For example, for the

spe-27 dpy-20/nT1; try-5 him-5/nT1 strain, homozygous spe-27 dpy-

20; try-5 him-5 hermaphrodites were selected and crossed to either

swm-1(me87) him-5 or mIs11; swm-1(me87) him-5 males to induce

production of self progeny, which can be recognized as being

phenotypically Dumpy.

To screen C. elegans proteases for a function in sperm activation,

RNAi against individual protease genes was performed on swm-1
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him-5 worm strains by feeding on agar plates essentially as

described by [51]. Bacteria containing inducible RNAi clones

(described in [52,53]) were obtained from Source BioScience.

Genes tested by RNAi were try-1, try-2, try-3, try-5, try-6, try-7, try-8,

F25E5.3, F25E5.4, F25E5.7, and F48E3.4. For each gene, swm-

1(me66) him-5 and swm-1(me86) him-5 eggs were collected on RNAi

plates and allowed to grow to the L4 stage; L4 males were then

transferred to a fresh RNAi plate and scored either 24 hr or 48 hr

later for sperm activation.

Microscopy
Sperm activation was assayed in virgin males collected as L4

larvae and incubated at 20uC for 48 hr, unless otherwise

indicated. To examine individual sperm cells, males were dissected

in sperm medium (SM) (5 mM HEPES sodium salt pH 7.4,

50 mM NaCl, 25 mM KCl, 5 mM CaCl2, 1 mM MgSO4)

supplemented with 10 mM dextrose [10]. Samples were observed

using differential interference contrast (DIC) microscopy and

sperm were scored based on cell shape as either non-activated, if

spherical, or activated, based on the presence of a pseudopod.

Samples were observed using an AxioImager M1 equipped with

an AxioCam MRm (Zeiss). Confocal imaging was performed using

a TCS SP2 (Leica). Images were processed using ImageJ [54] and

Photoshop (Adobe Systems).

Fertility assays
Hermaphrodite self fertility was measured by picking individual

hermaphrodites, transferring them to fresh plates every 1–2 days

until no more eggs were laid, and counting the total progeny after

worms reached the L4 stage. Cases in which hermaphrodites failed

to lay oocytes or died less than four days after adulthood were

excluded from analysis.

Male fertility was measured in 1:1 crosses to spe-8(hc40); dpy-4

hermaphrodites. L4 stage animals were placed together for 48 hr;

hermaphrodites were then transferred to fresh plates without

males and transferred again every 1–2 days until no more eggs

were laid. All cross progeny, identifiable by their non-Dumpy

phenotype, were counted after worms reached the L4 stage. Use of

the spe-8 mutation in recipient hermaphrodites allows for detection

of mating even in cases where functional sperm are not

transferred, since transfer of seminal fluid leads to production of

self progeny [14,20]. Cases in which mating was not confirmed or

the hermaphrodite died less than three days after adulthood were

excluded from analysis.

For all fertility assays, wild-type broods were measured in

parallel to those of the strain being assayed to control for variations

in temperature, media quality and other factors that can affect

progeny production or mating efficiency.

Sperm and seminal fluid transfer assays
To assay sperm transfer and migration, males were labeled with

1 mg/mL MitoTracker CMXRos (Invitrogen) as described by

Chen et al. [27] and observed as described previously [20].

Seminal fluid transfer (transactivation, [12]) was assayed using

males harboring the fer-1(hc1ts) mutation, which results in non-

functional sperm at the restrictive temperature of 25uC [25]. L4 males

were crossed in a 4:1 ratio to L4 spe-8(hc53); dpy-4 hermaphrodites for

48 hr at 25uC. The number of self progeny (Dumpy offspring)

produced during the mating period was determined after three

additional days. Any crosses resulting in cross progeny (non-Dumpy

offspring) were excluded from analysis. All other crosses with recipient

worms surviving to the end of the mating period were included,

because no marker for successful mating is available for this assay. To

assess mating frequency in different fer-1 mutant strains, males were

labeled with MitoTracker and incubated with hermaphrodites in 1:1

crosses. Hermaphrodites were then examined after 5 hr for the

presence of labeled sperm. This assay likely underestimates the total

mating frequency in transactivation assays, since 1) fer-1 sperm can

not migrate and are only retained within hermaphrodites for a short

time period, and 2) a higher ratio of 4 males:1 hermaphrodite was

used for transactivation assays.

Assays of in vitro sperm activation
Activation assays were performed essentially as in [12]. Adult

virgin males were dissected to release sperm in a drop of SM on a

glass slide; a chamber was formed over the cells using a coverslip

supported by a thin layer of Vaseline; additional SM either with

activator (200 mg/mL Pronase or 60 mM TEA) or without it

(control) was wicked through this chamber; and the coverslip was

completely sealed with Vaseline. An image was obtained

immediately upon wicking through activator and subsequent

images were obtained every 5 min for at least 25 min. Activation

was scored at each time point based on cell shape. To obtain time-

lapse videos, activation assays were performed as described except

that images were obtained once per minute.

Observation of TRY-5::GFP transfer
For each trial, one to two 24 hr post-L4 Ptry-5::TRY-5::GFP; try-

5(tm3813) him-5 males were placed at the center of a circle of ten

unc-52, unc-31 or unc-76 him-5 virgin adult hermaphrodites. Males

were observed for 10 min under transmitted light using a Leica

MZ16FL microscope. Prior to or shortly after spicule insertion

occurred, the light source was switched to epifluorescence and

images were collected at maximum speed (an exposure time of

approximately 300 msec) using an AxioCam MRm (Zeiss) until

spicules were removed. If copulation was not attempted within

10 min, males were removed and replaced with fresh males.

Molecular biology
Standard molecular biology protocols were used [55]. RNA

was extracted from mixed-stage him-5 worms using TRIzol

(Invitrogen). Reactions for 59- and 39-RACE (rapid amplification

of cDNA ends) were performed using GeneRacer (Invitrogen).

The MultiSite Gateway Three-fragment Vector Construction Kit

(Invitrogen) with pCFJ150 as the destination vector [28] was used

to generate MosSCI donor constructs (Tables S1 and S2).

Plasmid pCM1.35 was a gift from G. Seydoux [56]. For TRY-

5::GFP, fusion PCR was performed as in [57]. Details of Gateway

plasmid construction are listed in Table S1 and Table S2. To

generate pJRS17, the 279 bp KpnI-XhoI fragment from

pPD95.85 was ligated into the 4855 bp KpnI-XhoI fragment

from pJRS11, thereby replacing the Ser65Cys variation present

in GFP derived from pPD95.75 with the Ser65Thr variation from

pPD95.85.

Transgenic strains
To generate transgenic strains harboring extrachromosomal

arrays, constructs were injected [58] into the strain unc-119;

swm-1(me86) try-5(jn2) him-5 and transgenic lines were selected

based on rescue of the Unc-119 phenotype [28,50]. Single-copy

insertion (MosSCI) strains were generated by the direct insertion

technique into the Mos1 insertion site ttTi5605 as described by

Frokjaer-Jensen [28]. Targeting constructs were coinjected with

Pglh-2::transposase as the source of Mos transposase and

coinjection markers labeling pharyngeal muscle (Pmyo-

2::mCherry), body wall muscle (Pmyo-3::mCherry), and neurons

(Prab-3::mCherry) [28].
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Supporting Information

Figure S1 High-resolution images of adult males showing

suppression of swm-1(me87) premature sperm activation by try-

5(tm3813). (A and A9) swm-1(me87) male from Figure 1B.

Prematurely activated sperm within the seminal vesicle result in

a disorganized appearance. Arrows indicate a subset of individual

spermatozoa for which pseudopods are visible. (B and B9) swm-

1(me87) try-5(tm3813) male from Figure 1C. Non-activated

spermatids, containing condensed nuclei and distinctive grainy

cytoplasm, are present throughout the seminal vesicle. Individual

cell boundaries are often not visible by DIC; to convey packing

together of these cells, arrowheads indicate the nuclei of two

adjacent spermatids.

(TIF)

Figure S2 TRY-5 is a serine protease. Alignment of TRY-5 with

the serine proteases trypsin, chymotrypsin and elastase (accession

numbers NP_002760, NP_001897, and NP_031378). The signal

sequence was predicted for TRY-5 using SignalP 3.0 [60].

Positions of try-5 alleles are shown. Shading corresponds to

identities (black) or similarities (grey) among two or more family

members. Arrows indicate residues of the active site. Arrowheads

indicate residues important for substrate binding.

(TIF)

Figure S3 swm-1 try-5 double mutant hermaphrodites and males

are fertile. Assays of hermaphrodite self fertility and male fertility.

(A) swm-1 try-5 double mutant hermaphrodites have wild-type

fertility levels. Columns indicate average brood size of self-

fertilizing hermaphrodites. Error bars represent standard error of

the mean. (B) swm-1 try-5 males have improved fertility as

compared to swm-1 males. Although the fertility of double mutants

was always significantly higher than that of swm-1, variable levels

of suppression were observed for the swm-1 try-5(tm3813) strain.

The results of two representative experiments are shown. Each

point represents the result of an individual cross; gray lines

represent medians. For Repeat 1, swm-1 try-5(tm3813) fertility did

not differ from that of wild-type males (p = 0.67, Mann-Whitney U

Test), a result obtained twice. For Repeat 2, swm-1 try-5(tm3813)

fertility did differ from that of wild-type males (p = 0.003, Mann-

Whitney U Test), a result that was also obtained twice. For both

repeats, swm-1 try-5(jn2) fertility did not differ from that of wild-

type males (Repeat 1: p = 0.97, Repeat 2: p = 0.12; Mann-Whitney

U Test).

(TIF)

Figure S4 try-5 activity is not required in hermaphrodites for

suppression of spe-29 sterility by swm-1. Assay of hermaphrodite

self fertility. Total self-progeny broods from individual hermaph-

rodites were counted for each strain (Text S1). Each point

represents the total self progeny from an individual hermaphro-

dite; lines indicate the median for each set. Three replicates of the

experiment were performed, with equivalent results; data from one

such replicate are shown. spe-29; swm-1 and spe-29; swm-1 try-5

hermaphrodite fertility were each significantly different when

compared to spe-29 fertility (p,1026, Mann-Whitney U test).

Their fertility was not significantly different when compared to

each other (p = 0.65). In addition to the listed genotypes, all strains

also contained the mutation dpy-20(e1282).

(TIF)

Table S1 Primers used for construction of Gateway Donor

plasmids.

(DOC)

Table S2 Donor plasmids used for construction of destination

constructs.

(DOC)

Table S3 spe-8 group; try-5 sperm do not migrate after transfer

to a hermaphrodite.

(DOC)

Table S4 Premature sperm activation depends on TRY-5 and

SWM-1 and increases with male age.

(DOC)

Table S5 Correlation between sperm activation and TRY-

5::GFP localization.

(DOC)

Text S1 Quantification of spe-29.

(DOC)

Video S1 try-5 sperm activate when treated with Pronase. try-

5(tm3813) spermatids were treated with 200 mg/ml Pronase and

images were acquired once a minute for 30 min. After activating,

some sperm cells extend their pseudopods and crawl across the

slide. Selected time points are shown in Figure 2B and 2C.

(MOV)

Video S2 TRY-5::GFP is transferred during mating. Transfer of

TRY-5::GFP from a Ptry-5::TRY-5::GFP; try-5(tm3813) him-5 male

to an unc-52 hermaphrodite. Details are described in Results and

selected time points are shown in Figure 6.

(MOV)
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