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Abstract

INTRODUCTION: 18F-Fluoro-deoxyglucose–positron emission tomography (FDG-

PET) is a supportive biomarker in dementia with Lewy bodies (DLB) diagnosis and

its advanced analysis methods, including radiomics and machine learning (ML), were

developed recently. The aim of this study was to evaluate the FDG-PET diagnostic

performance in predicting a DLB versus Alzheimer’s disease (AD) diagnosis.

METHODS: FDG-PET scans were visually and semi-quantitatively analyzed in 61

patients. Radiomics andMLanalyseswere performed, building fiveMLmodels: (1) clin-

ical features; (2) visual and semi-quantitative PET features; (3) radiomic features; (4) all

PET features; and (5) overall features.
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RESULTS:At follow-up, 34patientshadDLBand27hadAD.At visual analysis,DLBPET

signs were significantly more frequent in DLB, having the highest diagnostic accuracy

(86.9%). At semi-quantitative analysis, the right precuneus, superior parietal, lateral

occipital, and primary visual cortices showed significantly reduced uptake in DLB. The

MLmodel 2 had the highest diagnostic accuracy (84.3%).

DISCUSSION: FDG-PET is a valuable tool in DLB diagnosis, having visual and semi-

quantitative analyses with the highest diagnostic accuracy atML analyses.

KEYWORDS

18F-FDG, artificial intelligence, biomarkers, dementia, Lewy body dementia, machine learning,
PET-CT, radiomics

1 BACKGROUND

Dementia with Lewy bodies (DLB) is a common neurodegenerative

condition in the elderly,1 representing 15%–20% of dementia cases in

post-mortem examination.2,3

The pathologic hallmark of DLB consists of Lewy-related pathology

(LRP), characterized by abnormal accumulation and aggregation of α-
synuclein in neurons.4,5 Currently, no direct in vivo biomarker for LRP

is available.

Diagnosis ofDLB is basedonconsensus criteria,6 but theaccuracyof

the clinical diagnosis ofDLB is not satisfactory, withmany casesmissed

or misdiagnosed. Indeed, the clinical presentation may overlap with

other forms of neurodegenerative dementia, especially Alzheimer’s

disease (AD).7

Moreover, in a high percentage of patients with dementia, multi-

ple neurodegenerative pathologies coexist.6,8 Indeed, DLB and AD can

oftenbeassociated: almost 90%ofpatientswithDLBhavemoderate to

abundant cortical amyloid plaques.9 Thus, in these patients withmixed

pathologies, the clinical diagnosis is evenmore difficult.

The use of biomarkers, including nuclear medicine functional imag-

ing, can contribute to enhance diagnostic accuracy.10,11

In particular, positron emission tomography (PET) technique with
18F-Fluoro-deoxyglucose (18F-FDG) can detect the following markers

of DLB: (1) a reduction of glucose metabolism in the occipital cortex,

along with a bilateral parietotemporal hypometabolism12–15; and (2)a

relative preservation of glucose metabolism at of the posterior cin-

gulate cortex compared to the cuneus and precuneus,16 the so-called

cingulate island sign (CIS). These two indices are considered supportive

biomarkers for DLB.6

Recently, an occipital tunnel sign (OTS) was described,17 which

results from relative sparing of 18F-FDG uptake in the mesial occipital

(primary visual) cortex compared with more severe loss in the sur-

rounding lateral occipital (visual association) cortex, especially in sagit-

tal projections. More recently, a relative preservation of metabolism

in the amygdala on PET with 18F-FDG (FDG-PET) as a potential imag-

ing marker for DLB, named the amygdala sign (AS), has also been

reported.18

The analysis of nuclear medicine biomarkers in DLB can be per-

formed by visual assessment of images, which depends highly on

the observer’s experience with possible variance in reduced sensi-

tivity and specificity of the marker among centers; by automatic

semi-quantitative methods, including three-dimensional stereotactic

surface projections (3D-SSP), which is based on statistical mapping

method,19,20 where the pixel values on FDG-PET images are normal-

ized to the value of a reference region (pons or cerebellum).21,22 An

image set fromasingle subject is then compared toadatabaseobtained

from multiple normal subjects, which is embedded within the system

and can be further implemented according to the needs of the center

and expressed as a Z-score.20,23

In recent years, radiomics and artificial intelligence (AI) meth-

ods, including machine learning (ML) in medical image analysis, have

been applied successfully to neurological diseases, including demen-

tia and parkinsonism.24,25 Radiomics analysis is an advanced tech-

nique focused on extracting a wide range of quantitative features,

including texture, shape, and intensity parameters, from nuclear

medicine images, including FDG-PET.26 The extracted radiomic fea-

tures are then utilized in combination with ML algorithms, which

analyze the radiomic features to identify correlations, relationships,

or meaningful patterns. Leveraging radiomics and ML analysis, more

detailed information can be obtained, revealing subtle or complex

aspects of the PET/computed tomography (PET-CT) images that may

not be immediately apparent during qualitative or semi-quantitative

analysis.27

The aim of our study was to evaluate the diagnostic perfor-

mance of combined nuclear medicine indices of DLB (i.e., occipital

hypometabolism, CIS, OTS, and AS), integrated with clinical infor-

mation, and analyzed with different methods, including visual, semi-

quantitative, radiomics, and ML with automatic classification in pre-

dicting the final clinical diagnosis of DLB versus AD.

2 METHODS

2.1 Study population

From November 2018 to February 2022, a total of 96 consecutive

patients (median age 72.3, range 55–92; 42 female) referred to the

University of Chieti-Pescara Neurological Department for cognitive
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impairment (Montreal Cognitive Assessment [MoCA]; mean ± SD:

18.76± 5.2) underwent brain PET-CTwith FDG-PET scan.

From this large clinical cohort, we retrospectively selected patients

according to the following inclusion criteria: (1) brain FDG-PET for

functional assessment; (2) clinical diagnosis of probable DLB accord-

ing to revised diagnostic criteria,6 and for comparison, probable

AD based on the National Institute on Aging and the Alzheimer’s

Association (NIA-AA) and the European Federation of Neurological

Societies/European Neurological Society (ENS-EFNS) criteria28; (3)

minimumduration of neurological and neuropsychological follow-up of

12months after the first clinical evaluation.

All selected patients were evaluated for neurological and internal

diseases (i.e., hypertension and diabetesmellitus). Laboratory analyses

excluded secondary cognitive disorders, and patients with ascertained

neurological diseases other than DLB and psychiatric diseases were

excluded.

All selected patients underwent neurological examination, neu-

ropsychological tests (MoCA) and magnetic resonance imaging (MRI),

for morphological brain assessment and to exclude the presence of

brain tumors or of major cortical atrophy.

The standard of reference was final diagnosis of DLB/AD, defined

retrospectively by a multidisciplinary team (MDT) including expe-

rienced dementia specialists, neuropsychologists, radiologists, and

nuclear medicine physicians of University of Chieti-Pescara, after a

clinical follow-up of a minimum of 12 months after the first neuro-

logical evaluation. The final clinical diagnosis was also based on the

biomarkers available for each patient.

Before the FDG-PET procedure, written informed consent was

obtained from all patients, and their data were treated in accordance

with the local privacy rules and regulations. In the informed consent,

the patients signed to accept that their data could be used for scientific

purposes. This study was approved by the local Chieti-Pescara Ethic

Committee (approval number 13, 06/27/2019). The present study was

in accordance with the ethical standards as laid down in the 1964Dec-

laration of Helsinki and its later amendments or comparable ethical

standards.

2.2 Acquisition protocol of brain FDG PET-CT

Patients underwent an FDG brain scan using a PET-CT Discovery MI

DR scanner (GE Healthcare; 3.27 mm thickness; 5.55 mm in-plane full-

width half maximum [FWHM]). The FDG-PET acquisition procedures

were conformed to the European Association of Nuclear Medicine

guidelines.29

The patient, fasted for at least 6 hours, was positioned supine in

a quiet and soft light condition for about 15 minutes before FDG

administration. Blood glucose level was checked prior to administra-

tion, and it was <160 mg/dL (<8.9 nmol/L) in all patients. The scan

was obtained over 15 minutes, starting 45 minutes after intravenous

injection of 125–250MBq (typically 185MBq). All images were recon-

structed using an ordered subset-expectation maximization (OSEM)

algorithm, and the CT scan (120 kV) was used for attenuation cor-

RESEARCH INCONTEXT

1. Systematic review: to date, 18F-Fluoro-deoxyglucose–

positron emission tomography (FDG-PET) is a supportive

biomarker for dementia with Lewy bodies (DLB) diag-

nosis, and different PET signs have been described.

Advanced FDG-PET analysis methods, including radio-

mics andmachine learning, were recently developed.

2. Interpretation: Our findings support the high diagnos-

tic performance of FDG-PET in predicting DLB versus

Alzheimer’s disease (AD) by using both visual and semi-

quantitative analyses. Our results showed that DLB PET

signs were significantly more frequent in DLB at visual

PET analysis (accuracy of 86.9%), whereas, at semi-

quantitative analysis, right precuneus, superior parietal,

lateral occipital, and primary visual cortices showed sig-

nificantly reduced uptake in DLB.

3. Future directions: FDG-PET is a valuable and helpful

tool for differentiating DLB from other clinical entities,

such as AD. FDG-PET reading techniques as visual and

semi-quantitative analyses show the highest diagnostic

accuracy.

rection. Each reconstructed image was inspected visually to check for

major artifacts.

The images were visually and semi-quantitatively analyzed. In addi-

tion, radiomics and ML techniques were applied to perform a more

detailed analysis of the images.

2.3 Visual analysis of FDG PET-CT images

18FDG PET-CT brain transverse, sagittal, and coronal images were

assessed separately by two nuclear medicine physicians with more

than 15 years of experience in PET and Single photon emission com-

puter tomography (SPECT) neuroimaging (M.V.M. and F.C.). The two

specialists were informed about the potentially pathological condi-

tions of the patients but blinded to the neurological evaluations. The

GE scale was used to normalize the images with a uniform uptake

threshold, using the basal ganglia and the cerebellum as a reference to

background regions.

Data interpretation took into consideration global changes and

regional decreases in FDG uptake. The images were classified as nor-

mal, indicative for DLB or indicative for AD, according to the most

typical hypometabolic pattern in neurodegenerative diseases.23 Par-

ticularly, an examwas considered as normal in the case of homogenous

and symmetric tracer uptake in cortical areas of both hemispheres.

Patients whose cortical areas showed reduced glucose metabolism in

the regions including the lateral/medial occipital cortex, temporopari-

etal cortex, and frontal cortex, along with a relative preservation
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of the mid/posterior cingulate region, were classified as DLB-like

metabolic pattern. In addition, we noted the presence of a series of

features or signs described as in association with DLB, namely: (1)

the presence/absence of hypometabolism in the occipital lobes6; (2)

the presence of CIS, consisting of the sparing of the posterior cin-

gulate relative to the precuneus and cuneus30; (3) the presence of

OTS, resulting from sparing of medial occipital lobe (primary visual

cortex) relative to the lateral occipital lobe (associative visual cor-

tex) in sagittal projections17; and (4) the presence of AS, consisting

of the relative preservation of amygdala metabolism.18 Patients with

hypometabolism in the posterior cingulate, the precuneus, the parietal

cortical territories, and the medial and lateral temporal cortex were

classified as AD-like metabolic pattern.

2.4 Semi-quantitative analysis of FDG PET-CT
images

The FDG-PET imageswere semi-quantitatively analyzed at the individ-

ual level. Semi-quantitative analysis was performed on a commercially

available fully-automated post-processing software (Cortex ID SUITE,

GE Healthcare, Chicago, IL, USA).24,31 All scans, spatially realigned

and normalized, were sampled at 16,000 predefined cortical locations.

Individualmaps of hypometabolismwere generated using 3D-SSP, pro-

viding stereotactic surface projection displays.32 Standardized uptake

values were obtained for 25 regions of interest (ROIs) and normalized

to the pons. The regions were prefrontal lateral left (L) and right (R),

prefrontal medial L and R, sensorimotor L and R, anterior cingulate L

and R, posterior cingulate L and R, precuneus L and R, parietal superior

L andR, parietal inferior L andR, occipital lateral L andR, primary visual

L and R, temporal lateral L and R, temporal mesial L and R, and whole

cerebellum. Individual patient’sROIZ-scoreswere calculated from294

healthy sex- and age-matched controls,33 with a Z-score← 2.0 as cut-

off for significant hypometabolism (Z-score = [mean database-mean

subject]/SD database).

Furthermore, the DLB hallmark signs were semi-quantitatively cal-

culated on PET count-rate data according to the following ROI-based

methods: (1) CIS ratio, consisting of the ratio of the median value of

counts in the posterior cingulate to cuneus plus precuneus; (2) OTS

ratio, consisting of the ratio of themedian value of counts in themedial

occipital cortex to the lateral occipital cortex; and (3) AS ratio (right and

left) consisting of the ratio of the median value of counts in the medial

temporal cortex to the lateral temporal cortex.

2.5 Radiomic features and machine-learning
analysis: Image pre-processing and volume of interest
selection

All reconstructed volumes were analyzed using Statistical Paramet-

ric Mapping 8 (SPM, Wellcome Department of Cognitive Neurol-

ogy, University College London, UK). To place images in the stan-

dard Montreal Neurological Institute neuroanatomic space (MNI;

http://www.bic.mni.mcgill.ca), an FDG template was used as reference.

The SPM8normalization algorithmwas employed to register FDG-PET

images with the template, using the following setting: a 12-parameter

affine transformation, a nonlinear frequency cutoff of 25 mm, and 16

nonlinear iterations and a nonlinear regularization switched at 1. A tri-

linear interpolation was applied during the final re-slicing. Each scan

was visually checked after spatial normalization for shape artifacts.

The dimensions of output volumes were the following: x = −90:91,

y = −126:91, and z = −72:109 from the anterior commissure, with

a 2 × 2 × 2 mm3 isotropic voxel. Spatially normalized images were

subsequently intensity normalized to correct for differences in total

brain counts between scans using global mean scaling method by scal-

ing the images to the average FDG uptake value in the whole brain.

Volume of interests (VOIs) for all normalized images were selected

from the digital atlas resulting from an automatic anatomic segmenta-

tion of the spatially normalized, single subject, high-resolution T1MRI

data set provided by the MNI (Automated Anatomical Labeling—AAL

of Activations in SPM),34 for a total of 116 labels through the brain. In

order to better compare the results between the ML analysis and the

semi-quantitative analysis with CortexID (consisting in 25 ROIs), we

summed contiguous SPM-VOIs to obtain larger areas overlapping with

CortexID-derived ROIs, resulting in a final number of 39 VOIs: basal

ganglia left (L) and right (R), calcarine L and R, central region L and R,

cerebellumLandR, anterior cingulate L andR, posterior cingulate L and

R, frontobasal L and R, fusiform L and R, insula L and R, occipital lateral

L and R, occipital mesial L and R, parietal inferior L and R, parietal supe-

rior L and R, precuneus L and R, prefrontal lateral L and R, prefrontal

medial L and R, temporal lateral L and R, temporal mesial L and R, tha-

lamus L and R, and vermis. Each selected VOI included up to nine brain

areas labeled (see Table S1).

The following parameters were calculated (1) Variance, calculated

as the average of the squared distances of each intensity value from

the mean value. Variance measures the spread of the intensity distri-

bution relative to the mean. Thus the variance represents how much

the intensity within the mask varies compared to the intensities in

other brain regions. (2) Skewness, which measures the asymmetry

of the value distribution with respect to the mean value. Depend-

ing on the concentration of this distribution, its value can be positive

or negative. (3) Energy, a measure of the magnitude of voxel val-

ues in an image. It sums the squares of these values to obtain the

final measure for the entire mask. (4) Kurtosis, a measure of the

“peakedness” of the value distribution within the image’s ROI. For

instance, a higher kurtosis value indicates that the values are con-

centrated primarily toward the tails rather than the mean, whereas

a lower kurtosis value indicates a concentration of values around

themean.

2.6 Extraction of radiomics features and machine
learning analysis

The machine learning analysis was developed in Python 3.9, using

PyRadiomics for feature extraction35 and the combination of Boruta,36

http://www.bic.mni.mcgill.ca


MATTOLI ET AL. 5 of 12

as the feature selection algorithm, and Random forest, as the classifier

of themodel.37

PyRadiomics is an open-source package for the extraction of

radiomics features from medical imaging with the goal of establish-

ing a reference standard for radiomic analysis.35 The feature selection

methods developed in this study have selected only PyRadiomics’

“first-order features,” which are obtained by describing the distri-

bution of voxel intensities within the image region defined by the

mask through commonly used and basic metrics (https://pyradiomics.

readthedocs.io/en/latest). A total of fiveMLmodelswere implemented

using different combinations of FDG-PET and clinical features: (1) clin-

ical features, consisting of age, sex, education, MoCA, and symptoms

(i.e., visual hallucinations, cognitive fluctuations, rapid eye movement

(REM) sleep behavior disorder (RBD), parkinsonism, delirium, psy-

chiatric symptoms, language changes); (2) standard PET features,

consisting of DLB hallmark signs (either visually or semi-quantitatively

assessed) along with the Z-score values of each brain region extracted

by Cortex ID; (3) radiomics features, extracted by PyRadiomics from

FDG-PET images; (4) all PET features, consisting of the combination of

standardPET features (see above) and radiomics features; and (5) over-

all features, consisting of the combination of all the data available, that

is, all PET features (see above) and clinical features.

All fivemachine learningmodels were developed following a consis-

tentworkflow: (1) Thedata setwaspartitioned randomly into a training

set, which accounted for 70% of the data, and a testing set, compris-

ing the remaining 30%, to minimize selection bias; (2) dimensionality

reductionwas achieved using the Boruta algorithm to identify relevant

features for the analyses; and (3) classification tasks were conducted

employing the random Forest classifier, which was trained on the

training set. The model’s performance was evaluated subsequently on

the testing set using traditional statistical metrics, including accuracy,

specificity, sensitivity, precision for DLB, and precision for AD.

2.7 Statistical analysis

Final diagnosis from MDT consensus was used to divide patients into

two groups: AD group and DLB group. Main demographic, clinical, and

PET-derived data were compared between the two groups. Descrip-

tive statistics was used to describe main demographic, clinical, and

PET-derived data for all patients. The same variables were compared

between the twoMDT-derived diagnosis groups (AD and DLB). Quan-

titative variables are presented as the mean ± SD, and the Student’s

t-test was used for comparison. If the equal variance assumption

was violated, a Welch test was used instead of the Student’s t-test.

The chi-square test or, when more appropriate, the Fisher exact test

(two-sided), was used to compare the categorical variables.

When comparing differences between the AD and DLB groups

regarding semi-quantitative results derived from FDG-PET, namely,

Z-scores of different cerebral areas derived from the 3D-SSP, we

first examined all populations; then we excluded those PET exams

considered negative at nuclear medicine physicians’ examination.

For those cerebral areas that showed a significant difference of Z-

scores between the AD and DLB groups, we built receiver-operating

characteristic (ROC) and calculated the area under the curve (AUC) to

score their performance to classify patients between the two patholo-

gies and to identify the optimal Z-score cutoff value. Again, first,

we analyzed the entire cohort, including negative PETs, and then we

performed a subgroup analysis of positive PETs only.

Afterward, we analyzed FDG-PET diagnostic accuracy using MDT

final diagnosis as a gold standard reference. First, we assessed PET

diagnostic accuracy metrics for both AD and DLB in the entire pop-

ulation cohort. Namely, we diagnosed patients as affected by DLB or,

in a second analysis, by AD, based on PET. Therefore, negative PETs

were included in this analysis and evidently counted as negative exams

(either false negatives or true negatives). Finally, we excluded negative

PETs and measured diagnostic accuracy metrics for those cases where

PET had a pathological appearance and could contribute to the final

diagnosis.

The following metrics were assessed: sensitivity, specificity, accu-

racy, positive predictive value (PPV), and negative predictive value

(NPV). Jamovi version 2.3.24 open R-based software was used for

statistical analysis. P-values < 0.05 were considered statistically

significant.

3 RESULTS

3.1 Population

Sixty-one patients met the inclusion criteria (mean age 74.9 ± 7.81

years, range 57-92; 24 female; education 9.34 ± 4 years, range 1–18).

Median follow-up from theFDG-PET to the final clinical evaluationwas

16.8± 6.2months.

According to the final clinical diagnosis (MDT), 34 of 61 (55.7%)

and 27 of 61 (44.3%) of patients had a final clinical diagnosis of DLB

and AD, respectively. No significant difference was found in the demo-

graphic, education, and cognitive characteristics between the two

patient groups, as shown in Table 1.

TABLE 1 Demographic, education, and clinical features in all
patients according to final clinical diagnosis (MDT).

DLB AD p

Participants (n) 34 27

Age (years) 76.56 (8.09) 72.89 (7.07) 0.07

Sex (M/F) 21/13 16/11 0.8

Education (years) 8.76 (3.7) 10.07 (4.3) 0.2

MoCA 20.09 (5.54) 19.43 (4.49) 0.62

Visual hallucinations 14 (41.2%) 2 (7.4%) 0.003

Cognitive fluctuations 28 (82.3%) 10 (37%) <0.001

RBD 21 (61.8%) 1 (3.7%) <0.001

Parkinsonism 22 (64.7%) 8 (29.6%) 0.006

Delirium 8 (23.5%) 3 (11.1%) 0.2

Psychiatric symptoms 17 (50.0%) 11 (40.7%) 0.5

Note: Data are shown as number (%) or mean (SD).

https://pyradiomics.readthedocs.io/en/latest
https://pyradiomics.readthedocs.io/en/latest
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DLB final diagnosis was supported by electroencephalography

(EEG; dominant pre-alpha rhythm with high dominant frequency

variability10) and by Dopamine transporter (DAT)-SPECT with 123I-

FP-CIT for dopaminergic evaluation, which was performed in 25

of 34 (73.5%) DLB patients, all of them showing a reduction of

striatum uptake.38 All patients with an AD final diagnosis were
18F-flutemeltamol PET-CT positive for cerebral amyloid deposition.

Furthermore, 5 of 26 patients with a final clinical diagnosis of AD

underwent 123I-FP-CIT, all with negative result; 10 of 34 patientswith

a final clinical diagnosis ofDLBhad an18F-flutemeltamol PET-CT scan,

all with a negative result. MoCA: Montreal cognitive assessement;

RBD: REM sleep behaviour disorder.

When comparing final clinical diagnosis (MDT) with the presence of

clinical features in all patients (i.e., visual hallucinations, cognitive fluc-

tuations, RBD, parkinsonism, delirium, psychiatric symptoms, Table 1),

patients with a final clinical diagnosis of DLB had more frequent visual

hallucinations (p = 0.003), cognitive fluctuations (p < 0.001), RBD

(p < 0.001), and parkinsonism (p = 0.006) compared with patients

with AD.

3.2 Visual analysis of FDG PET-CT images

According to visual evaluation, FDG-PETwas considered positive in 54

of 61 patients (88.5%) and negative in 7 of 61 patients (11.4%).

Among the 54 patients with positive FDG-PET scans, a DLB-

like metabolic pattern was identified in 26 (48.15%), whereas the

readers identified the AD-like metabolic pattern in 28 patients

(51.85%).

Two patients with AD-likemetabolic patterns were eventually diag-

nosed as DLB at MDT consensus. No one with a DLB-like metabolic

pattern was finally diagnosed as AD at MDT consensus. Regarding the

negative FDG-PET scans (n = 7), six PET-negative patients were diag-

nosed as DLB and one PET-negative patient as AD, according to the

final clinical diagnosis (MDT).

Therefore, the overall concordance between the FDG-PET

hypometabolic pattern (DLB-like and AD-like) and the final clini-

cal diagnosis (MDT) was 26 of 34 (76.5%) for DLB and 26 of 27 (96.3%)

for AD patients. At visual analysis, patients with a final clinical diagno-

sis of DLB showed the presence of occipital hypometabolism, CIS, OTS,

and AS more frequently than the group of AD patients (p < 0.001), as

shown in Table 2.

The sensitivity, specificity, diagnostic accuracy, PPV, and NPV of the

hypometabolic pattern at FDG-PET, and theDLBhallmark signs, that is,

occipital hypometabolism, CIS, OTS, and AS, according to final clinical

diagnosis (MDT) were shown in Table 3.

3.3 Semi-quantitative analysis of FDG PET-CT
images

Considering all patients (n= 61), univariate analysis returned only one

area where the Z-score was significantly different between AD and

TABLE 2 Visually assessed DLB hallmark signs, that is, occipital
hypometabolism, cingulate island sign, occipital tunnel sign, and
amygdala sign, in the two patients’ groups according to final clinical
diagnosis (MDT).

DLB AD p

Participants (n) 34 27

Occipital hypometabolism 27 (79.4%) 6 (22.2%) <0.001

CIS 22 (64.7%) 1 (3.7%) <0.001

OTS 22 (64.7%) 1 (3.7%) <0.001

AS 20 (58.8%) 3 (11.1%) <0.001

Note: Data are shown as number (%).

Abbreviations: AS, amygdala sign; CIS, cingulate island sign; OTS, occipital

tunnel sign.

DLB, such as the left mesial temporal cortex (p = 0.027), with a lower

Z-score in AD patients.

Once excluding the seven patients with negative FDG-PET, and con-

sidering only the positive FDG-PET scans (n = 54), univariate analysis

returned seven areas with significantly lower Z-scores in DLB com-

paredwith AD (Table 4), including the precuneus R (p= 0.006), parietal

superior R (p=0.025), parietal superior L (p=0.045), occipital lateral R

(p=<0.001), occipital lateral L (p=0.027), primary visual R (p=0.001),

and Primary visual L (p= 0.017).

As shown in Figure 1 and Table 4, ROC curve analysis confirmed a

good accuracy for each of the above areas.

3.4 Radiomic features and machine learning
analysis

Based on the SPM-based segmentation process described previously,

39 brain areas were selected for radiomics features extraction andML

classification. Relevant clinical and functional FDG-PET variables were

selectedby a feature selection algorithm (Boruta) andused to build five

MLmodels, as shown in Table 5.

Regarding the clinical features model, the feature selection algo-

rithm (Boruta) selected the following features: cognitive fluctuation,

RBD, and age. According to the random Forest classification analy-

sis, the classification accuracy for these selected clinical features was

63.1%.

Regarding the standard PET features (visual + 3D-SSP) model, the

feature selection algorithm (Boruta) selected the following features:

occipital hypometabolism, CIS, OTS, anterior cingulate R, precuneus R,

precuneus L, parietal superior L, occipital lateral R, and temporalmesial

L. According to the randomForest classification analysis, the classifica-

tion accuracy for these selected FDG-PET features was 84.3%. When

this model was run with the DLB signs semi-quantitatively evaluated

(e.g., CIS ratio, OTS ratio, AS right, and left ratio), the diagnostic accu-

racy was lower (73.6% vs 84.3%). Therefore, model 4 all PET features

(standard PET features+ radiomics features), and model 5 overall fea-

tures (all PET features + clinical features) were built using visual DLB

signs (e.g., occipital hypometabolism, CIS, OTS, and AS).



MATTOLI ET AL. 7 of 12

TABLE 3 Diagnostic performance of FDG-PET hypometabolic pattern (DLB-like pattern vs AD-like pattern), and the DLB hallmark signs (i.e.,
occipital hypometabolism, cingulate island sign, occipital tunnel sign, and amygdala sign) in the diagnosis of DLB according to final clinical diagnosis
(MDT).

Hypometabolic

pattern

Occipital

hypometabolism CIS OTS AS

Sensitivity 76.5% 79.4% 64.7% 64.7% 58.8%

Specificity 100% 77.8% 96.3% 96.3% 88.9%

Diagnostic accuracy 86.9% 78.7% 78.7% 78.7% 72.1%

Positive predictive value 100% 81.8% 95.7% 95.7% 87.0%

Negative predictive value 77.1% 75.0% 68.4% 68.4% 63.2%

Note: DLB-like metabolic pattern: hypometabolism in lateral/medial occipital cortex, temporoparietal cortex, and frontal cortex, along with a relative preser-

vation of the mid/posterior cingulate region; AD-like metabolic pattern: hypometabolism in the precuneus/posterior cingulate, parietal cortical territories,

andmedial and lateral temporal cortex.

Abbreviations: AS, amygdala sign; CIS, cingulate island sign; OTS, occipital tunnel sign.

TABLE 4 Brain areas with a significant difference inmean Z-score values at semi-quantitative analysis with 3D-SSP (Cortex ID).

ROC curve analysis

Brain areas MDT diagnosis N Z-score p Cut-point AUC

Precuneus R AD 26 −2.180 (1.076) 0.006 −2.79 0.727

DLB 28 −3.146 (1.393)

Parietal superior R AD 26 −2.129 (1.026) 0.025 −2.81 0.707

DLB 28 −2.897 (1.380)

Parietal superior L AD 26 −1.832 (1.046) 0.045 −3.09 0.678

DLB 28 −2.636 (1.719)

Occipital lateral R AD 26 −1.140 (1.112) <0.001 −2.12 0.782

DLB 28 −2.352 (1.368)

Occipital lateral L AD 26 −1.401 (1.323) 0.027 −1.76 0.694

DLB 28 −2.361 (1.739)

Primary visual R AD 26 −0.151 (0.993) 0.001 −0.55 0.747

DLB 28 −1.188 (1.244)

Primary visual L AD 26 −0.277 (1.421) 0.017 −1.06 0.712

DLB 28 −1.199 (1.317)

Note: Z-score values are shown asmeans (SD). R: right; L: left; AUC: area under the curve.On the right-hand side of the table, the results of receiver-operating

characteristic (ROC) curve analysis with optimal Z-score cut-point value, along with AUC for the diagnosis of DLB are reported. Negative FDG-PET scans

were excluded.

Abbreviations: AD, Alzheimer’s Disease; DLB, Dementia with Lewy Bodies.

According to the feature selection algorithm (Boruta), four PET-

derived radiomics features were selected: energy prefrontal medial R,

kurtosis parietal superior L, variance fusiform R, and skewness vermis.

According to the random Forest classification analysis, the classifica-

tion accuracy for these selected radiomics features was 73.6%.

Regarding the all PET features (standard PET features + radiomics

features) model, the feature selection algorithm (Boruta) selected the

following functional features: occipital hypometabolism, OTS, ante-

rior cingulate R, precuneus R, occipital lateral R, kurtosis parietal Sup

L, skewness vermis, and variance fusiform R. According to the ran-

dom Forest classifier, the classification accuracy for these FDG-PET

features was 78.9%.

Regarding the overall features (all PET features+ clinical features)

model, the feature selection algorithm (Boruta) selected the follow-

ing features: cognitive fluctuation, RBD, occipital hypometabolism,CIS,

OTS, precuneus R, precuneus L, occipital lateral R, kurtosis parietal

sup L, skewness vermis, and variance fusiform R. According to the

random Forest classification analysis, the classification accuracy was

78.9%.

In Table 6, the classifier’s performance evaluated using common

statistical metrics on the testing sets of the five different data sets

is summarized. Specifically, it includes specificity, sensitivity, precision

for AD, precision for DLB, and accuracy in the diagnostic predic-

tion of final clinical diagnosis (MDT). Figure 2 shows the importance

of features for the random Forest classifier for the overall features

model (MLmodel 5). Table S2 compared features selected with Boruta

according to the participants included in the training set and testing

sets.
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F IGURE 1 Receiver-operating characteristic (ROC) curves of the accuracy of semi-quantitative analysis in the differential diagnosis between
dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD) in each brain area with a significant difference in Z-score from 3-dimensional
stereotactic surface projections (3D-SSP) (CortexID).

TABLE 5 Features selected by Boruta algorithm for each of the fivemachine learningmodels and corresponding diagnostic accuracy.

Clinical features

Standard PET features

(visual+ 3D-SSP) Radiomics features All PET features Overall features

Cognitive fluctuation Occipital

hypometabolism

Energy prefrontal

medial R

Occipital

hypometabolism

Cognitive fluctuation

RBD CIS Kurtosis parietal sup L OTS RBD

Age OTS Variance fusiform R Anterior cingulate R Occipital hypometabolism

Anterior cingulate R Skewness vermis Precuneus R CIS

Precuneus R Occipital lateral R OTS

Precuneus L Kurtosis parietal sup L Precuneus R

Parietal superior L Skewness vermis Precuneus L

Occipital lateral R Variance fusiform R Occipital lateral R

Temporal mesial L Kurtosis parietal sup L

Skewness vermis

Variance fusiform R

63.1% 84.3% 73.6% 78.9% 78.9%

Note: Standard PET features: occipital hypometabolism, cingulate island sign (CIS), occipital sign (OTS), amygdala sign (AS), the Z-score values of the brain
regions extracted by 3D-SSP (CortexID).

All PET features: the combination of standard PET features (see above) and radiomics features.

Overall features: the combination of all PET features (see above) and clinical features.

Abbreviations: 3-SSP, 3-dimensional stereotactic surface projections; PET, positron emission tomography; RBD, REM sleep behavour disorder.

4 DISCUSSION

Our study evaluates the diagnostic accuracy of brain FDG PET-CT

in the diagnosis of DLB versus AD in a single-center retrospective

cohort of patients affected by neurodegenerative dementia. Final

clinical diagnosis established by a multidisciplinary meeting after a

minimum follow-up of 12 months was used as the ground truth

label.39
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TABLE 6 Diagnostic performance of the fivemachine learningmodels, expressed as sensitivity, specificity, precision, and accuracy in the
prediction of final clinical diagnosis (MDT).

Machine Learningmodels Sensitivity Specificity Precision AD Precision DLB Accuracy

Clinical features 88% 40% 80% 57% 63.1%

Standard PET features (visual+ 3D-SSP) 77% 90% 82% 88% 84.3%

Radiomic features 88% 60% 86% 67% 73.6%

All PET features 77% 80% 80% 78% 78.9%

Overall features 88% 70% 88% 73% 78.9%

Abbreviations: 3-DSSP, 3- dimensional stereotactic surface projections; PET, Positron Emission Tomography.

F IGURE 2 Selected features from the random Forest classifier for
machine learningmodel 5 (overall features), describing the relevance
of each feature. OTS, Occipital Tunnel Sign; RBD, REM sleep behaviour
disorder; CIS, Cingulate Island Sign.

The evaluation of images was the most comprehensive/extensive

possible, including the basic and essential visual assessment, a Z-score-

based semi-quantitative assessment using a well-established software

implemented on the workstation (CortexID, 3D-SSP), and extracting

radiomics feature with PyRadiomics.

FiveMLmodelswere developed to evaluate the diagnostic accuracy

of the clinical features of patients (i.e., visual hallucination, cognitive

fluctuation, RBD, parkinsonism) and all the data extracted by the anal-

ysis of FDG-PET images, including the hallmarks at visual analysis (i.e.,

occipital hypometabolism, CIS, OTS, AS), the Z-score of all the brain

areas extracted by CortexID, and radiomics features, matching these

overall features in five different combinations.

Our results confirm that FDG-PET is a useful tool in the dif-

ferential diagnosis of DLB with its most frequent misdiagnosis, AD

dementia.

4.1 Visual analysis

At visual analysis, a typical hypometabolic pattern of DLB/AD was

detectable in most patients, with a normal brain FDG-PET scan in

slightly more than 10% of the population. This is in line with previous

literature, reporting high sensitivity in detecting typical and reliable

patterns of brain metabolic dysfunction, also in the early disease

phase.40,41

When a reduction of cerebral metabolism was evident at visual

analysis, FDG-PET showed a high diagnostic accuracy (96.3%) to dis-

criminate DLB fromAD according to hypometabolic pattern. However,

a relatively high number of false-negative FDG-PET were seen in

patients with clinical DLB diagnosis, with consequent slight reduction

of sensitivity for this group compared with AD group. Our findings

confirm a previous report showing a very high specificity and PPV

but a relatively low sensitivity of FDG - PET to diagnose DLB, when

evaluated by human expert readers , .39,42 Indeed, as suggested by

Perovnik et al.,42 lower sensitivity in combination with high speci-

ficity shows that expert readers need to recognize clear visual features

of the disease and in their study, when they made a final call, they

had fewer false-positive readings than their AI model. Of interest,

increasing diagnostic accuracy with longer clinical experience was

demonstrated.39

In our population, all functional FDG-PET signs showed a high and

significant association with clinically diagnosed DLB patients.

These data confirm the numerous previously published studies that

led to the inclusion of occipital hypometabolism and CIS among the

supporting biomarkers in the diagnostic DLB criteria.6

The new OTS sign has been described in the literature as a case

report,17 whereas AS was analyzed retrospectively in 49 patients.18 In

this study, the presence of the AS was assessed semi-quantitatively in

terms of standardized uptake value, and it was identified in 73.3%DLB

subjects compared with 21% AD. In our study, the AS at visual assess-

ment was less frequent in both the DLB group (58.8%) and the AD

group (11%). The different FDG-PET image evaluations between the

two studies, namely, a semi-quantitative approach inPillai’smanuscript

and a qualitative one in ourwork, could explain the different frequency

of AS.

We evaluated the presence of bothOTS and AS in a population with

DLB and, by comparison, in a group of patients with AD. In our popula-

tion these signs were associated significantly with DLB compared with

AD, with OTS having the best performance in terms of frequency and

showing a higher statistical significance than AS.

Furthermore, among all the considered signs, CIS and OTS

showed the same results. Indeed, both signs showed the highest
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association with DLB, despite being relatively less frequent than

occipital hypometabolism. These data should encourage the research

collectivity to take into consideration these new visual signs, especially

OTS, and to semi-quantitatively validate these signs in larger studies,

hopefully having histopathological findings as the gold standard for

DLB patients.

In clinical practice, FDG-PET scans are usually assessed visually by

nuclear medicine specialists and/or neurologists. When the imaging

readers are experts, the diagnostic accuracy of FDG-PET visual assess-

ment is quite high and sufficient to provide a reliable result.41 However,

visual assessment is still prone to errors and inter-rater variability,

especially when the readers are not experts and fully automated tools

for assessment of FDG-PETare required.39 Before these tools are inte-

grated in clinical practice, a head-to head comparison with expert’s

reading is warranted.42,43

4.2 Semi-quantitative analysis

At semi-quantitative analysis, when considering the overall population

(n = 61) and including PET-negative patients, only one region differed

significantly betweenDLB and AD patients, that is, the left mesial tem-

poral lobe, which had a significant lower Z-score in AD patients. This

relative preservation in mesial temporal lobe in DLB agrees with the

previous findings.44,45

On the other hand, when considering only PET-positive patients

(n = 54), four cortical brain areas showed a significantly lower Z-

score in DLB compared with AD patients, that is, the right precuneus,

bilateral superior parietal, lateral occipital, and primary visual cor-

tices. These results are in line with previous FDG-PET studies showing

that DLB patients have significant lower Z-scores in the cuneus,

precuneus, and parietal lobes, whereas patients with AD have a sig-

nificant higher occipital/temporal index compared to patients with

DLB.44,46 Moreover, semi-quantitative data seem in accordance with

the above qualitative hypometabolic patterns. Nonetheless, quite sur-

prisingly, no significant difference was found in posterior cingulate

cortex between DLB (mean Z-score −1.7 ± 1.5 on the right and

−1.69 ± 1.69 on the left) and AD (mean Z-score −1.98 ± 0.98 on the

right and −1.96 ± 1.14 on the left). This is in line with the findings of

Etminani et al. who showed that a significant hypometabolism in this

region is in common in all neurodegenerative dementia forms, includ-

ing AD, mild cognitive impairment (MCI)-AD, and DLB.39 Similarly,

other authors showed that using an ML-based AD (MAD) designa-

tion framework, all patients with dementia showed an AD-like pattern

when compared with non-dementia patients47,48. Indeed, CortexID

Z-score measures the deviation of a cortical area in a single sub-

ject from the mean of the same area in a cohort of healthy subjects.

Therefore, CIS results as a sign a more marked hypometabolism in

precuneus compared with posterior cingulate cortex at single patient

analysis. Moreover, we cannot exclude a co-pathology in some of our

cases.

4.3 Radiomic features and machine learning
models analysis

From the radiomic features extraction, four features resulted signifi-

cant: energy prefrontal medial R, kurtosis parietal superior L, variance

fusiform R, and skewness vermis.

In ML models, in accordance with the literature data, clinical fea-

tures showed the lowest diagnostic accuracy. PET-derived radiomic

features showed better diagnostic accuracy than clinical ones.

The best diagnostic performance of ML model 2 was obtained from

the integration of visual hallmark signs of DLB plus Z-scores, rather

than from a fully semi-quantitative ML model (semi-quantitative DLB

hallmark signs plus Z-score). Furthermore, this ML model, incorporat-

ing the integration of visual DLB signs and semi-quantitative Z-score

data, has achieved the strongest accuracy in differentiating AD from

DLB. This is in linewith previous data reporting an increased diagnostic

accuracywhen visual analysis is powered by semi-quantitative analysis

methods.49,50

However, differences exist between different semi-quantitative

methods, and this gain in accuracy could also be related to different

stages of the neurodegenerative pathology.15,50,51 Therefore, despite

the undoubtable potential of a pure quantitative radiomic approach,

the real-world usual approach where an expert reader is helped by

semi-quantitative methods still has the highest accuracy in making a

reliable differential diagnosis between the two pathologies.

When looking at the relative weight of single features in the over-

all features ML model, OTS shows a higher statistical yield, underlying

its potential role in clinical practice. Curiously, OTS and CIS weighted

differently despite showing identical frequency and performance on

conventional statistical analysis. This is due to the automatized process

that aims to reduce redundancy if selected features are linked in the

data set.

4.4 Limitations

A limitation of this study is the possibility of circularity considering that

the clinical reference diagnosis was supported and reinforced by dif-

ferent available diagnostic tests, consistentwith establisheddiagnostic

criteria, including FDG-PET. This could influence the diagnostic accu-

racy of hypometabolic patterns at visual analysis. However, to reduce

this possible bias in the AI analysis, we decided not to include the

hypometabolic pattern of FDG-PET in theML classifier models.

Another limitation of this study is the absence of pathological

validation diagnosis.

5 CONCLUSIONS

In conclusion, our study confirms that differential diagnosis between

AD and DLB is challenging when only clinical symptoms and signs are
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considered. FDG-PET is a helpful tool to differentiate between these

two, sometimes intermingled, clinical entities. Despite the potential

for an objective, imaging feature-based radiomic analysis, which could

potentially overcome the limitations of FDG-PET reading, especially

from less expert readers, real-world usual PET-reading techniques

as visual and semi-quantitative analyses still show the highest diag-

nostic accuracy. Indeed, the qualitative analysis of FDG-PET images,

based on the integration of DLB-specific pattern and functional signs,

is highly specific for DLB. Moreover, some brain areas are specifi-

cally affected and account for significant differences in metabolism at

semi-quantitative analysis between the two more common forms of

dementia.

Further studies with more consistent samples are needed to verify

the diagnostic accuracy of FDG-PET, even in the differential diagnosis

with other types of neurodegenerative dementia, possibly having post-

mortem pathologic diagnosis as the definitive reference standard.
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