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SUMMARY
Nitrogen-fixing microorganisms (NFMs) are important components of soil N sinks and are influenced by mul-
tiple environmental factors. We established a random forest model optimized by the distributed delayed par-
ticle swarm optimization (RODDPSO) algorithm to analyze the global NFM data. Soil pH, organic carbon (OC),
mean annual precipitation (MAP), altitude, and total phosphorus (TP) are factors with contributions greater
than 10% to NFMs. pH, OC, and MAP are the top three factors at the global scale. The tipping points of
pH and OC for the NFMs were 7.84 and 2.71%, respectively. The contribution of MAP first increased but
then decreasedwith peak value at 1,265.65mm.Under the scenario SSP 8.5, 12%of theNFMs increase occur
in Africa in 2100; 16%and 36%of the NFMs decrease in North America andOceania in 2100, respectively. Our
work created a global NFMs map and identified the critical tipping points.
INTRODUCTION

Nitrogen-fixing microorganisms (NFMs) in soils are critical con-

tributors to ecosystem functions since they bring atmospheric

N2 into the soil N cycle.1 Microbe-associated N fixation provides

approximately 0.9–1.3 3 1014 g N$y�1 in terrestrial areas of the

world.2 NFMs are directly associated with the soil nitrogen fixa-

tion process and further affect soil N storage and the fertility of

terrestrial ecosystems.3 Nitrogenase plays a crucial role in bio-

logical nitrogen fixation. Nitrogenase exists in molybdenum

(Mo)-dependent, vanadium (V)-dependent, and iron (Fe)-depen-

dent or heterometal-independent forms. Mo-dependent nitroge-

nase, encoded by the nif gene, is the most well-characterized

and most commonly occurring form of nitrogenase.4

Many factors are reported to affect soil N fixation efficiency

and its associated microbial community (e.g., climate, nutrients,

land use, agronomic activities, and natural environments).5–7

Most previous studies on NFMs have been laboratory or exper-

imental field studies. The results of these studies may exhibit

constrained applicability in real environments on a global

scale.3,8,9 Moreover, environmental changes have profound im-

plications for natural ecosystems andmay lead to their modifica-

tion, degradation, or collapse.10 Many species, such as plants

and plankton, have environmental tipping points.11,12 The exis-

tence of NFM tipping points means that small changes in envi-

ronmental factors can cause substantial and irreversible alter-
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ations of NFMs, and their impact on the soil nitrogen fixation

capacity deserves attention. However, whether the impact of

environmental factors is gradual or abrupt and whether the re-

sponses reveal multiple tipping points remain largely unknown

in the context of NFM abundance.

The machine learning approach is a data-driven model with a

high capability for learning complicated patterns13,14 that can be

used to determine important environmental factors and make

sound predictions of the relationships between the responses

to these factors.11,15 Then, the conditions and locations of the

tipping points may be identified. The identification of tipping

points affecting NFM abundance is urgently needed to maintain

soil function and mitigate climate change.

In this study, 1,659 microbial community samples were

collected from 595 locations worldwide (Figure S1). The relative

abundance of nitrogen-fixing microorganisms in the soil was

taken as the research object. Sixteen environmental factors

that may threaten soil NFMs according to previous articles

were selected as independent variables.16,17 The factors

included those related to climate (e.g., mean annual temperature

[MAT], mean annual precipitation [MAP], and aridity index [AI]),

soil properties (e.g., pH, soil total carbon [TC], soil organic car-

bon [OC], soil organicmatter [OM], soil total nitrogen [TN], soil to-

tal phosphorus [TP], available soil water [ASW], and texture),

agricultural management (e.g., use of N/P/K fertilizers), altitude,

and sampling depth. A random forest model optimized by the
ary 17, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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Figure 1. Basic distribution and workflow diagram of soil NFMs

(A) Abundance of NFMs in different habitats (contaminated soil n = 103, cropland n = 619; desert n = 60, forest n = 403, grassland n = 303, shrubland n = 75,

uncultivated land n = 46, wetland n = 50), different letters indicate significant differences between columns (p < 0.05); (B) abundance of NFMs in different aridity

classes (arid n = 74, semiarid n = 582, subhumid n = 152, and humid n = 851), aridity index (AI) < 0.2, semiarid 0.2<AI<0.5, dry subhumid 0.5<AI<0.65, and humid

0.65<AI, different letters indicate significant differences between columns (p < 0.05); (C) workflow for predicting the distribution pattern of soil microbial NFM

abundance on a global scale. The error bars represent the standard errors of the columns.
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distributed delayed particle swarm optimization (RODDPSO)

algorithm was established to analyze the above information. A

workflow for predicting the global distribution pattern of soil

NFM abundance is presented in Figure 1B. This work predicted

the current and future distributions and development of NFM

abundance in soil and identified the crucial factors and ecolog-

ical tipping points affecting NFM abundance. Our work provides

quantitative information for understanding soil nitrogen sinks

and mitigating climate change driven by microbes.

RESULTS AND DISCUSSION

Heterogeneous nitrogen-fixing microorganisms in the
global soil
NFMs are important components of soil N sinks.18 The global

distribution pattern of soil NFMs provides a foundation for the

predictive understanding of future soil nutrient storage and soil

fertility.1,19 A total of 1,659 datasets with soil microbial informa-

tion from 595 locations worldwideweremined and analyzed (Fig-

ure S1). After thoroughly considering themain influencing factors

of soil NFMs,19–21 data for 16 environmental factors were
2 iScience 28, 111634, January 17, 2025
collected, including data related to altitude, AI, MAT, MAP, pH,

TC, OM, OC, TN, TP, ASW, texture, sampling depth, and artificial

management status (i.e., use of N/P/K fertilizers).

According to data from published studies, the relative abun-

dance range of global soil NFMs is 0.09%–0.28%. Considering

that the rates of N2 fixation are positively correlated with the pop-

ulation of N2-fixingmicroorganisms (R2 = 0.85, p < 0.005),22 there

are obvious differences in N fixation efficiency in soils around the

world. The relative abundances of NFM in different habitats are

presented in Figure 1A. The abundance of NFM in wetlands is

slightly greater than that in other areas, whereas croplands and

deserts are habitats with lower NFM abundances. The NFM

abundance in wetlands and deserts may be influenced by soil

moisture and nutrient conditions in these habitats.23,24 The rela-

tively lower NFM abundance in croplands may be caused by

their inhibition by long-term fertilization, since fixing nitrogen is

known to be an energy-intensive process. Additional nitrogen

can suppress the development of N2-fixing microorganisms.25

The relative abundances of NFMs in different aridity classes

are similar, whereas semiarid areas have slightly lower NFM con-

tents (Figure 1B). In general, aridity has a negative influence on



Figure 2. Performance of the machine learning models

(A) R2 values of the training and testing sets of the six machine learning algorithms; (B) robustness evaluation of the random forest model; (C) uncertainty

assessment of the random forest model.
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soil diazotrophs.26 The competitive advantage of free-living N2-

fixing microorganisms in arid ecosystems may balance the

adverse conditions in arid regions.27 The combined effects of

these two patterns allow semiarid areas to become cold zones

for NFMs.

The abundance of NFMs was not strongly related to all 16

environmental factors; only altitude and pH had correlations

of �0.12 and �0.14 with NFM abundance (Figure S2), indicating

that the linear relationships between the environmental factors

and the NFMs were weak. Machine learning has a powerful abil-

ity to handle nonlinear problems. In the following sections, we

establish a machine learning approach to further predict NFM

abundance and perform feature analysis (Figure 1B).

Machine learning model building and critical factor
screening
The coefficient of determination (R2) values of the training and

testing sets of the different models are presented in Figure 2A.

The random forest model performed the best among the six

tested machine learning models, with a training set R2 of 0.97

and a testing set R2 of 0.78. The R2 values of the logistic regres-

sion, degree-2 polynomial margin, ridge regression, and LASSO

regression range from 0.4 to 0.7. The random forest and support

vector regression performed relatively well, although the R2 of

the training set and the testing set showed great differences (Fig-

ure 2A). This is due to overfitting caused by the model falling into

a local optimal solution. We propose a randomly occurring
distributed delayed particle swarm optimization (RODDPSO) al-

gorithm to overcome this problem.28 The random forest model

was chosen as the base model. The particle swarm optimization

(PSO) algorithm is an evolutionary computing technique that

seeks the optimal solution through collaboration and information

sharing among individuals in a population. To avoid the problem

of the PSO algorithm falling into local optima, this study intro-

duced a certain distributed time delay on the basis of the PSO

algorithm to increase the ability of the particles to escape from

local optima and overcome the problem of premature conver-

gence. In addition, RODDPSO was also used to achieve auto-

matic hyperparameter tuning of the model, which can effectively

improve the processing efficiency of the model.28 The R2 values

of the training and testing sets of the improved random forest

model were 0.98 and 0.80, respectively. The mean squared error

(MSE) was 0.0004. The mean absolute error (MAE) was 0.0144.

Figure 2B presents the robustness of the model. The R2 values

of all of the variables remain above 0.6 as the data size increases,

except for texture. Figure 2C presents the uncertainty of the

model. The change proportions of the three variables are less

than 10% as the data size increases. The results of the robust-

ness evaluation and uncertainty assessment indicate that our

model is stable.

Critical factor screening and tipping point identification
To assess the important factors associated with soil nitrogen-

fixing microorganisms, the SHAP values for 16 factors were
iScience 28, 111634, January 17, 2025 3



Figure 3. Quantitative contributions of critical environmental factors and their response to soil NFMs

(A) Quantitative contribution of critical environmental factors to soil NFM abundance in 2022; (B) response of global NFMs and SHAPs to pH; (C) response of

global NFMs and SHAPs toOC; (D) response of global NFMs and SHAPs toMAP; (E) response of global NFMs and SHAPs to altitude; (F) response of global NFMs

and SHAPs to TP. The black dashed lines and numbers in red font represent the identified tipping points; the purple line represents the smoothed trend fitted by

the generalized additive model (GAM), and the red lines are the fitted lines obtained from the segmented linear regression (SLR) model.
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calculated. The SHAP values estimate the contribution of each

factor to the model output.29 In our study, screening for critical

factors laid the foundation for tipping point analysis. An ecolog-

ical tipping point is a state or condition where aminor change in a

critical factor triggers another variable or phenomenon to un-

dergo an abrupt change or relationship reversal30 (Figure S3).

This information can become the premise of subsequent man-

agement. The mean SHAP values revealed that pH, OC, MAP,

altitude, and soil TP were the most important factors affecting

the soil NFMs (Figure 3A). These five factors are the factors

with contributions greater than 10% to the NFMs on a global

scale. The complete mean SHAP values of the different environ-

mental factors are shown in Figure S5A.

pH is a critical factor affecting NFMs; 7.84 was the global pH

tipping point we identified on the basis of the predicted global

NFM abundance and SHAP value. The differences in NFM abun-

dance on both sides of the pH tipping point were significant

(p < 0.01; Figure S5B). Soil pH plays an essential role in the diaz-

otrophic community. Some common diazotrophs, such as Bra-

dyrhizobium, are more abundant at acidic pH values (4.5–5.5),

whereas Azospirillum and Rhizobium increase in abundance
4 iScience 28, 111634, January 17, 2025
with increasing pH.31 As Bradyrhizobium species have wide

niches and are excellent survivors across diverse conditions,

high abundance in acidic soil is expected.32 Neutral pH

(6.5–7.5) is the optimal pH range for most soil microbes. Alkaline

soil has become a cold zone for nitrogen-fixing microorganisms.

The NFM abundance in areas with pH values higher than 7.84

was significantly different from that in other areas (p < 0.01;

Figure S5B).

Soil nutrients are considered important factors affecting biotic

nitrogen fixation. Our model selected soil OC and TP as critical

factors. The relative abundance of NFM increased with OC and

TP at the global scale (Figure 3CF). OC and TP in soil act as en-

ergy and ATP sources for diazotrophs since biological nitrogen

fixation is a highly energy-consuming process.33 The abundance

of NFM barely changed after the tipping points (2.7% and

0.351 g kg�1), indicating that the N fixers and the nonfixers in

the soil had reached a balance.34

The response pattern also revealed that the abundance of

NFMs did not change obviously with MAP (Figure 3D). However,

we identified three tipping points (153.54; 1,265.64; and

2,968.57 mm) that delineated the MAP SHAP values into three



Figure 4. The global distribution of NFM

abundance

(A) Prediction of the global distribution of NFM

abundance in 2022; (B) SHAP value distribution for

the NFM with latitude.
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precipitation intervals (Figure 3D). When the precipitation is less

than 153.53 mm, the contribution of MAP (SHAP value) to nitro-

gen-fixingmicroorganisms is high. Free-living nitrogen-fixingmi-

croorganisms have a competitive advantage in arid regions, and

free-living fixation is a substantial contributor to biotic nitrogen

fixation in areas with low precipitation.35,36 The contribution of

MAP to NFM abundance first increased but then decreased be-

tween 153.53 and 2,968.57 mm, and the peak value reached

approximately 1,265.65 mm (Figure 3D). Partial dependence

analysis also revealed that the response of the NFM to MAP pre-

sented a hump shape, with the highest value occurring at

1,200 mm (Figure S6C). This pattern is consistent with the

response of soil microorganisms to precipitation.37 The

threshold of MAP SHAP ranged from �0.003 to 0.015, which is

lower than that of the other factors (Figure S7). This may explain

why the response pattern does not apply to NFM abundance at

the global scale (Figure 3D). However, MAP has a broad influ-

ence globally and is the most important environmental factor

affecting 16% of territorial land (Figure S8). Therefore, we still

consider MAP as a critical environmental factor for NFMs, and

its tipping point is at 1,265.65 mm.

According to our research, areas at low altitudes have rela-

tively higher NFM abundance. The first altitude tipping point is

63.76 m, and the abundance of NFM remains unchanged after

reaching the second tipping point at 1,289.22 mm (Figure 3E).

The hot zone for altitude SHAP appeared in the coastal zone of

continents (Figure S9). Coastal ecosystems are important car-

bon sinks for the Earth and have sufficient soil moisture.38 The

abundance of NFMs along the coastline is the result of the com-

bined action of water and nutrients. NFMs also supplement

oligotrophic waters with nitrogen through nitrogen fixation,

harmonizing the distribution of nitrogen.39

Prediction of global NFMs under present and future
climate scenarios
On the basis of the abovementioned establishedmodel, the rela-

tive abundance of global microbial NFMs is presented in Fig-

ure 4A. The relative abundance range of global soil NFM was

0.06%–0.14% (Figure 4A). Latitude 50–80�N is a hot zone for

soil NFMs, with an average abundance of 0.104 ± 0.009% (Fig-

ure 4A). The high abundance of NFM is determined by the com-

bined effects of pH, MAP, and OC, which all have positive SHAP

values in this region (Figure 4B). High-latitude soil is character-

ized by acidic soil, low precipitation, and high OC, which make
iS
it the most favorable region for nitrogen-

fixing microorganisms. Some studies

indicate that free-living NFMs and NFMs

in soil crusts are important sources of ni-

trogen in cold areas.35,40 Latitude 30–

50�N is a cold zone for the soil NFMs,
with an average abundance of 0.090 ± 0.010% (Figure 4A).

This area has 50% of the soil pH higher than 7 and an average

precipitation of 500 mm. High altitude also has negative effects

on nitrogen-fixing microorganisms. The abundance of NFMs at

10–30�N and �30 to 10�N were 0.092 ± 0.008% and 0.091 ±

0.008%, respectively (Figure 4A). The NFMs in these two regions

are driven mainly by precipitation and pH, and hotspots occur

mainly in Asia and America. In the regions of 10–30�N and �30

to 10�N, the abundance of NFMs in Asia and the Americas are

0.099 ± 0.010% and 0.097 ± 0.009%, respectively. There are

no NFM hotspots in the same latitudinal zone of Africa or Oce-

ania. The MAP in Asia and the Americas within this latitude is be-

tween 1,000 and 1,500 mm, with a relatively high contribution

value (SHAP value) to the NFMs, whereas the MAP in Africa

and Oceania is less than 1,000 mm. Acidic soils also increased

the abundance of NFMs in Asia and America. The abundance

of NFMs at �10 to 10�N is 0.096 ± 0.010%, which is similar to

the global average NFM abundance of 0.096 ± 0.011%. Some

studies suggest that high nitrogen availability in tropical areas in-

hibits microbial nitrogen fixation.41 Highly weathered soil is also

prone to lacking Mo.42 However, our research revealed that

tropical regions are not cold spots for nitrogen-fixing microor-

ganisms. This may be due to the suitable MAP and OC

conditions.

pH and MAP are the environmental factors that affect the wid-

est latitudinal range (Figure 4B). pH, OC, and MAP were the

domain factors (highest SHAP values) for 58% of the terrestrial

soils (Figure S8). Double-variable partial dependence diagrams

show the combined effect of the two critical factor pairs

(Figures 5A–5C). The abundance of NFMs would clearly change

when both factors were near the tipping points. Therefore, when

any environmental factor reaches a tipping point, notable

changes in the NFMs occur, and this effect intensifies when

both factors coexist. The abundance of N-fixing microorganisms

is highest when both factors are within the optimal range. The

optimal ranges for pH, OC, and MAP are 6�7, 2�2.5%, and

1,000–1,200 mm, respectively. Figures 5D–5F show that the

effects of individual factors on NFMs can be additive. The inter-

action effects between pH and MAP and pH and OC were not

significant (p value for interaction >0.01), and only the interaction

effect between MAP and OC was significant (p value for interac-

tion <0.01). The range of the high interaction effect mainly occurs

in areas with 10%–22%OC and 1,000–2,800 mmMAP. The pro-

portion of this region on global land is less than 1%. Therefore,
cience 28, 111634, January 17, 2025 5



Figure 5. Double-variable partial dependence and interaction effects of domain factors

(A) Double-variable partial dependence diagram of pH and MAP; (B) double-variable partial dependence diagram of OC and MAP; (C) double-variable partial

dependence diagram of pH and OC; (D) interaction effect for pH and MAP; (E) interaction effect for OC and MAP; (F) interaction effect for pH and OC.

iScience
Article

ll
OPEN ACCESS
the main interactions among pH, OC, and MAP are independent

of the global scale.

Figure 6 shows the proportional changes in the NFMs fore-

casted from year 2021–2100 under the different climate sce-

narios. The change scales of the climate data were based on

the sustainable economy (SSP 2.6) and fossil-based economy

(SSP 8.5) scenarios in the CMIP6.43,44 Under SSP 2.6 and

SSP 8.5, 6.54% and 7.03%, respectively, of terrestrial soil

has obvious increases in NFMs (more than 5%) in year 2100.

The regions with obvious NFM decreases (more than 5%) ac-

counted for 5.78% and 8.98% of the terrestrial soil under

SSP 2.6 and SSP 8.5 in year 2100, respectively. The areas

with increases in Africa and Oceania are greater than 10% un-

der SSP 2.6 in year 2100. The areas with decreases in North

America and Oceania are 9% and 27%, respectively, under

SSP 2.6 in year 2100. The increase in area proportion under

SSP 8.5 is similar to that under SSP 2.6, whereas the decrease

in area proportion is larger than that under SSP 2.6 on every

continent. Under the SSP 8.5 scenario, 16% and 36% of the

NFMs in North America and Oceania, respectively, show a

decreasing pattern at year 2100.

Because there is no suitable soil property database that is

based on future climate models, current soil properties were

used for future predictions in our analysis. Laboratory experi-

ments have shown that elevated CO2 can cause a decrease in

soil pH.45 Global-scale soil acidification is induced by nitrogen

deposition and fertilizer.46,47 Soil acidification is beneficial for

the abundance of nitrogen-fixing microorganisms; however,

considering the impact of acidic soil on soil nutrient loss and

plant production,48,49 maintaining the soil pH under neutral

conditions is the best strategy. Soil OC is sensitive to climate
6 iScience 28, 111634, January 17, 2025
change, and soil respiration caused by warming leads to OC

loosening.50 The global SOC stock will decrease by 6.0%

under 1�C air warming despite stable carbon decomposition,

and increased plant litter can be supplied as a carbon

source.51 The loss of OC directly affects the abundance of

nitrogen-fixing microorganisms. Global warming can indirectly

have negative impacts on nitrogen-fixing microorganisms

through OC.

Conclusions
Elucidating the potential and trend of NFM abundance in soil is

important for understanding the soil N cycle and the ecological

functions of nitrogen. Through machine learning, pH, OC, and

MAP were identified as the key factors with high contributions

that affected the scope of soil NFMs at the global scale. Precip-

itation near tipping points may maximize the nitrogen fixation

ability of soil NFM. The migration of future climate zones led to

an increase in NFM abundance in Africa and a decrease in Oce-

ania. Adjusting soil properties is a more feasible way to increase

the soil microbial nitrogen fixation capacity. Owing to the tipping

point of pH, there is an obvious difference in the abundance of

NFM between alkaline and neutral/acidic soils. When soil OC ex-

ceeds 2.7%,OC is no longer a limiting factor for NFMs.Our study

provides quantitative information at the global scale to assist in

soil management.

Limitations of the study
We collected soil microbial data from related articles based on

16S rRNA sequencing technology; more soil metadata can be

pulled from soil metagenomes in further research. Because there

is no suitable soil property database that is based on future



Figure 6. Change proportions of the NFMs from year 2022 to 2100 under different climate scenarios

(A) Changes in the proportion of NFM abundance under SSP 2.6.

(B) Changes in the proportion of NFM abundance on different continents under SSP 2.6.

(C) Changes in the proportion of NFM abundance under SSP 8.5.

(D) Changes in the proportion of NFM abundance on different continents under SSP 8.5.
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climate models, current soil properties were used for future pre-

dictions in our analysis. The development of authoritative data-

bases on soil properties under future climate scenarios can

make predictions more accurate.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Python codes used in this study

are available at Figshare

This paper https://figshare.com/articles/dataset/

Environmental_Tipping_Points_for_

Global_Soil_Nitrogen_Fixation_

Microorganisms/25549570

Software and algorithms

Random forests regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

Logistic regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

Degree-2 polynomial margin regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

Ridge regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

LASSO regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

SHapley Additive exPlanations

(SHAP) model

Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

R software version 4.1.2 R software https://www.r-project.org/

Python version 3.8 Python Software https://www.python.org/

ArcGIS 10.7 ArcGIS Desktop https://desktop.arcgis.com/
METHOD DETAILS

Data collection
The data compilation focused on data from the literature related to soil microbial communities. Given that the second-generation

sequencing technology established in the year 2005 gradually matured and began to be applied in a variety of studies by the year

2010,52 the data we collected from relevant studies were published from January 2010 to December 2022. The keywords searched

in the Web of Science database were ‘‘soil,’’ ‘‘bacteri*’’ and ‘‘fung*’’, and the initial search returned 1,931,418 studies. The following

criteria were used to screen for appropriate studies: (1) the study was a field study, not a laboratory experimental study; (2) the

microbial composition at the phylum level was reported; and (3) the soil microbial community information was quantified via

high-throughput sequencing techniques. Ultimately, 285 articles (shown in Table S1) were selected, which made 1659 observations

from 595 locations worldwide (the sample locations are shown in Figure S1). Sixteen environmental variables, including altitude, AI,

MAT, MAP, pH, TC, OM, OC, TN, TP, ASW, texture, sampling depth and artificial management status (i.e., use of N/P/K fertilizers),

were recorded for analysis. The N/P/K fertilizer data were only collected during the experimental period. The historical fertilizer

data were not collected because of a lack of data. Different types of fertilizers, such as chemical fertilizers, organic fertilizers, and

straw, were converted into N/P/K contents and added together. Longitude and latitude data were also collected. In cases where

the studies did not report MAT or MAP, the values were derived from historical monthly weather data from the Database:

WorldClim (https://www.worldclim.org) database using site geographic location (i.e., latitude and longitude). The missing data per-

taining to the properties of global soils (e.g., pH, soil total C, soil organic matter, soil total N and soil total P) were filled in by retrieving

data from the Database: International Soil Reference and Information Center (ISRIC) World Soil Information Data Hub (http://www.

tpdc.ac.cn). The missing data for soil organic carbon, available soil water and texture were filled with data from the Database:

Harmonized World Soil Database (HWSD) (http://www./soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-

database-v12/en/). In cases where the studies did not report the latitude or longitude, the approximate latitude and longitude

were derived by geocoding the name of the location in Google Earth 7.0. For studies that did not report altitude, the values were

also derived from Google Earth 7.0 using site geographic location (i.e., latitude and longitude). The aridity index data were collected

from the Database: Global Aridity Index and Potential Evapotranspiration (ET0) Database, Version 3 (Global Aridity Index and

Potential Evapotranspiration (ET0) Climate Database v2 (figshare.com)). We considered that various climate and soil properties exist

in any given habitat and that further subdivision would lead to insufficient data. Therefore, we did not include habitat in the machine

learning model.
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Relative abundance of microbial NFMs in soil
The relative abundance of NFM was defined as the proportion of microbes with N fixation ability (shown in Table S2):

K =

Pn

i = 1

Bi � Nk

N
Pn

i = 1

Bi

(Equation 1)

whereNk is the number of NFMs in phylum i;N is the number of species in phylum i; Bi is the relative abundance of bacterial phylum i;

and n is the number of phyla.

Information about common soil microbial species (n = 851) was obtained from the RefSoil database.53 nifH was selected as the

marker gene since molybdenum (Mo)-dependent (Nif) is the most well-characterized and most commonly occurring form of nitroge-

nase worldwide.4 Microbial functional traits were derived from the Database: National Center for Biotechnology Information (NCBI)

(nih.gov). Functional microbes were defined as species with relevant genes or verified functions according to the published literature

Table S2).

Data preprocessing
Given that null and extreme data lead to unreliable conclusions and undermine the robustness of a model, the interquartile range

(IQR) criterion was adopted to exclude outliers.54 The IQR is defined as Q3-Q1, and (Q1, Q3) covers the middle 50% of the data

values. If the data are located in (Q1-1.5$IQR, Q3+1.5$IQR), then they are considered normal data. Otherwise, the data are recog-

nized as outliers. Before building the machine learning model, the synthetic minority oversampling technique (SMOTE) was used

to solve the problem of unbalanced positive and negative samples in the dataset.55 The positive samples were upsampled to obtain

a balanced dataset. Before upsampling the dataset, the training set and test set were divided by 5-fold cross-validation and only the

training set was upsampled. Consequently, the data dependence caused by upsampling and data division was eliminated, making

the results credible.

Machine learning regression and validation
A random forest model with the scikit-learn package (version 1.0.1) in Python (version 1.1.3) was used as the base model. Using

the randomly occurring distributed delayed particle swarm optimization (RODDPSO) algorithm,28 hyperparameter optimization and

loss function optimization were conducted for the random forest. The best max_features and n_estimators were 6 and 670,

respectively. The parameters c1i, c2i, c1f and c2f were set as 2.5, 0.5, 0.5 and 2.5, respectively. c1i and c2i represent the initial

values of the acceleration coefficients. c1f and c2f denote the final values of the cognitive acceleration coefficient c1 and the social

acceleration coefficient c2, respectively. Parameters ml and mg were set as 0.mL and mg represent the intensity factors of the

distributed time delay terms. The parameters wmax and wmin were set as 0.8 and 0.3, respectively. wmax and wmin represent

the maximum and minimum values of the inertia weight, respectively. The population size sizepop was 50. The iterative times max-

gen was 20.

Model robustness evaluation and uncertainty assessment
Themodels were based on the above preprocessed data. However, in the process of data cleaning, it is possible to remove data that

are useful but not robust after removing outlier data.56 Because chaos in models is sensitive to initial values, a trained model may not

maintain the same performance as a new dataset after data preprocessing. Thus, adversarial samples were introduced to test the

robustness of the models. The independent variables of the model are increased in a certain proportion to test the model’s tolerance

for data noise. To determine whether themodel R2 changes sharply with increasing data size, the independent variables of themodel

are increased in a certain proportion to test the uncertainty of the model and to determine the trend and confidence interval of the

dependent variable.

Model interpretability analysis
Because the model was based on a black box model, the process from input to output was not clear, and the importance function

made it difficult to reasonably explain the output and conclusion.57When evaluating the robustness of amodel, it is important to iden-

tify which factors lead to low robustness. All of the abovementioned factors make it necessary to ensure the interpretability of the

machine learning model. SHAPley Additive exPlanations (SHAPs) estimate the contribution of each feature by averaging over all

of the possible marginal contributions to a prediction task and constitute a unified framework for interpreting machine learning

models.29 The SHAP value model is a relatively versatile method of model interpretability that can be used not only for global inter-

pretation but also for local interpretation. The possible relationship between the predicted value given by the model and some fea-

tures can be explained by the SHAP value model.29

The SHAP value model is a method of post hoc model interpretation.29 Its core principle is to calculate the marginal contribution of

features to the model output and then explain the black box model at the global and local levels. It constructs an additive interpre-

tation model in which all features are regarded as contributors. For each prediction sample, the model generates a prediction value.
iScience 28, 111634, January 17, 2025 e2
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The SHAP value is the value assigned to each feature in the sample, and it can be defined as the average marginal contribution of

eigenvalues in all possible coalitions. The SHAP value calculation of a single feature eliminating cross effects is as follows:

Fi;i = fi �
X

jsi

Fi;j (Equation 2)

where Fi;i represents the contribution of a single feature; fi represents the solution of the SHAP value of the tree-based model; and

Fi;j represents the cross influence of two features.

The Python SHAP package was derived from the scikit-learn package (version 1.0.1). On the basis of the created and fitted model,

the SHAP package was used to construct an additive interpretation model, and the dataset X_train was used to calculate the SHAP

value.

Global prediction
The Scenario Model Intercomparison Project (ScenarioMIP), which is part of this project, provides multimodel climate projections

based on alternative scenarios of future emissions and land use changes.43 The established models were used to evaluate the dis-

tribution patterns of NFM abundance for the year 2021 and two predicted shared socioeconomic pathway climate scenarios (SSP2.6

and SSP8.5) for the year 2100. SSP2.6 represents a sustainability scenario, and SSP8.5 represents a fossil fuel development

scenario.

The monthly temperature and precipitation data for year 2021 were obtained from the Database: National Oceanic and Atmo-

spheric Administration (National Oceanic and Atmospheric Administration (noaa.gov)), with resolutions of 0.5� 3 0. 5�. The future

MAT and MAP data were obtained from the Database: Climate Model Intercomparison Project Phase 6 (CMIP6) at a 1 � 3 1 � res-
olution (cmip6 Data Search | cmip6 | ESGF-CoG (llnl.gov)). The current and future fertilizer data were derived from the Database:

Land-Use Harmonization (LUH2) project (Land Use Harmonization (umd.edu)). The resolution was 1 � 3 1 �. In the latitudinal range

of�30�–10�, C4 plants are dominant,58 so C4 plant fertilizer datawere used. C3 plant datawere employed for the other regions. Global

soil properties (pH, TC, OM, TN, and TP) with a 10 km resolution were obtained from the Database: Global Soil Dataset for Earth Sys-

temModeling (2014) (data.tpdc.ac.cn). The global data of soil organic carbon, available soil water and texture at a 1 � 3 1 � resolution
were derived from the Database: Harmonized World Soil Database HWSD (http://www./soils-portal/soil-survey/soil-maps-and-

databases/harmonized-world-soil-database-v12/en/). Because there is no suitable soil property database that is based on future

climate models, current soil properties were used for future predictions in our analysis. The data were resampled to a spatial reso-

lution of 1 � 3 1 �, and all terrestrial grid cells were input into the established models to obtain the global distribution pattern.

Identification of tipping points
Two types of tipping points (discontinuous and continuous) were identified and analyzed. Continuous tipping points indicate that the

relationship between independent and dependent variables changes significantly; discontinuous tipping points indicate that the

value of the dependent variable changes abruptly because of a small change in the independent variable.30 Two models were

used for regression analysis: a generalized additive model (GAM) and a segmented linear regression (SLR) model. The tipping point

of the GAMwas defined as the point with the second derivative as 0 in the continuous curve; the tipping point of the SLR was defined

as the overall change in the intercept and slope in the linear regression from before to after the tipping point.30 We used the

segmented and mgcv packages in R to fit the SLR and GAM regressions, respectively. The tipping points obtained from the model

with the best performance (highest R2) were used for further analysis. Because the SHAP values reflect the contribution of the inde-

pendent variable to the dependent variable and can represent the action of the independent variable alone, we also used the GAM

and SLR models to calculate the tipping points of the independent variables and the corresponding SHAP values. Only when the

tipping points came from raw data and the SHAP values were similar were they considered to be the actual tipping points.

QUANTIFICATION AND STATISTICAL ANALYSIS

All of the statistical analyses in this workwere conducted in R software (version 4.1.2) or Python 3.8.6. All of the global mapswere built

using ArcGIS 10.7. All confidence levels not otherwise specified were 0.95.
e3 iScience 28, 111634, January 17, 2025

https://www.noaa.gov/
http://llnl.gov
http://umd.edu
http://data.tpdc.ac.cn/zh-hans/
http://www./soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www./soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/

	ELS_ISCI111634_annotate_v28i1.pdf
	Environmental tipping points for global soil nitrogen-fixing microorganisms
	Introduction
	Results and discussion
	Heterogeneous nitrogen-fixing microorganisms in the global soil
	Machine learning model building and critical factor screening
	Critical factor screening and tipping point identification
	Prediction of global NFMs under present and future climate scenarios
	Conclusions
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Method details
	Data collection
	Relative abundance of microbial NFMs in soil
	Data preprocessing
	Machine learning regression and validation
	Model robustness evaluation and uncertainty assessment
	Model interpretability analysis
	Global prediction
	Identification of tipping points

	Quantification and statistical analysis




