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Abstract
Constrained multivariate analysis is a common tool for linking ecological communities to environment. The follow-up is 
the development of the double-constrained correspondence analysis (dc-CA), integrating traits as species-related predictors. 
Further, methods have been proposed to integrate information on phylogenetic relationships and space variability. We expand 
this framework, proposing a dc-CA-based algorithm for decomposing variation in community structure and testing the simple 
and conditional effects of four sets of predictors: environment characteristics and space configuration as predictors related to 
sites, while traits and niche (dis)similarities as species-related predictors. In our approach, ecological niches differ from traits 
in that the latter are distinguished by and characterize the individual level, while niches are measured on the species level, 
and when compared, they are characteristics of communities and should be used as separate predictors. The novelties of this 
approach are the introduction of new niche parameters, niche dissimilarities, synthetic niche-based diversity which we related 
to environmental features, the development of an algorithm for the full variation decomposition and testing of the commu-
nity–environment–niche–traits–space (CENTS) space by dc-CAs with and without covariates, and new types of diagrams for 
the results. Applying these methods to a dataset on freshwater mollusks, we learned that niche predictors may be as important 
as traits in explaining community structure and are not redundant, overweighting the environmental and spatial predictors. 
Our algorithm opens new pathways for developing integrative methods linking life, environment, and other predictors, both 
in theoretical and practical applications, including assessment of human impact on habitats and ecological systems.
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Introduction

Describing, explaining, and modeling relationships between 
communities and their environment is the core of many 
modern ecological studies, aiming at answering a wide 
range of questions. From a methodological perspective, 
the number of datasets or matrices used in such studies 
has steadily increased (Legendre and Legendre 2012; ter 
Braak et al. 2018). The community matrix (C), usually a 

site-by-species table, and the unconstrained ordination 
analysis was expanded by adding a second table with envi-
ronmental features (E) (Fig. 1a), used as predictors in con-
strained ordination (direct gradient) analysis. The addition 
of a third matrix, with functional traits (T) (Fig. 1b), aiming 
at testing hypotheses on how biological characteristics of 
species determine their responses to habitat features, was 
proposed, and methods of analysis were developed by sev-
eral authors (Dolédec et al. 1996; Legendre et al. 1997; Dray 
and Legendre 2008; Lepš 2013; ter Braak et al. 2018; Peng 
et al. 2021; Pinho et al. 2021). This key approach evaluates 
processes, functions, and services of ecosystems (Céréghino 
et al. 2018; Sterk et al. 2013).

Until recently, correspondence analysis with linear 
external constraints on both rows and columns (Legendre 
and Legendre 2012) lacked full mathematical treatment 
and readily available algorithms and software. ter Braak 
et al. (2018) provided an explicitly defined mathematical 
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algorithm for double-constrained correspondence analysis 
(dc-CA) and its linear counterpart, the double-constrained 
principal components analysis (dc-PCA), which are embed-
ded in the software Canoco since version 5.10 (ter Braak and 
Šmilauer 2018). An R function for dc-CA was presented by 
ter Braak et al. (2018), with examples in Peng et al. (2021) 
and Pinho et al. (2021).

Another component in explaining the variability in com-
munity structure is space. One method to extract spatial 
patterns, which can be used as space predictors (S), from 
available spatial coordinates is the distance-based Moran 
eigenvector maps (db-MEM) (Borcard and Legendre 2002), 
formerly known as principal coordinates of neighbor matri-
ces (PCNM), improved by Dray et  al. (2006). Further, 
incorporating distances from phylogenetic trees became a 
standard routine to account for the so-called patristic rela-
tionships when investigating responses of species and their 
traits to environment gradients (Desdevises et al. 2003; de 
Bello et al. 2005, 2017; Pavoine et al. 2011).

Few methods have been developed so far that have taken 
an integrative approach to the analysis of the four datasets 
related to predictors of community assembly, and most of 
them include traits, phylogeny, environment, and space, 
relating them in various ways. Some of them aim to find 
spatial patterns in the components of trait diversity attribut-
able to phylogenetic effects and environmental effects in the 
geographical space (Diniz-Filho et al. 2007). Others remove 
the phylogenetic signal in traits and the spatial information 
in environmental variables to associate ‘phylogenetic-free’ 
traits with ‘space-free’ environment, looking at the unique 
effects of environment and traits on species composition 
(Kühn et al. 2009). One of the oldest multivariate meth-
ods for trait–environment analysis, the RLQ, is also a three 
table-related problem (R stands for environment, L for com-
munity, and Q for traits matrices) aiming at estimating the 
parameters, by maximizing the covariance, in a fourth-cor-
ner matrix that crosses the habitat characteristics with the 
traits of species (Dray and Legendre 2008; Legendre and 

Fig. 1   Diagram illustrating methodological evolution (from a to d) 
of integrating datasets to analyze relationships between communi-
ties and their predictors; (c) and (d) synthesize the gap that our article 

aims to fill: defining and analyzing the CENTS (community–environ-
ment–niche–traits–space) space by variation decomposition in dou-
ble-constrained multivariate analyses (VADOC diagrams)
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Legendre 2012). The RLQ is based on co-inertia analysis 
(Dray et al. 2003) and uses no regression (ter Braak et al. 
2018). Pavoine et al. (2011) developed a statistical approach 
based on RLQ, which analyzes environmental filtering in 
an explicit geographic and phylogenetic context. However, 
although the abstract and some figures may suggest that 
variation partitioning was performed, RLQ is not suited for 
that goal because it is covariance based and does not use 
the same scale to measure variance in the different analyses 
(Peng et al. 2021). Also, RLQ requires a scaling method to 
make the predictor matrices better comparable and neither 
tests nor explicitly selects traits or environment predictors. 
In contrast, with dc-CA one can test and select both traits 
and environmental variables. In addition, dc-CA is scale 
invariant, so that no scaling method needs to be selected. It 
also allows variation partitioning, because it is regression 
based and its explained variance is in terms of inertia of the 
abundance table. Peng et al. (2021) suggested the possibility 
of variation decomposition in dc-CA, and Pinho et al. (2021) 
partitioned the trait-structured variation (in our approach, 
this being the blue part in Fig. 1) in neotropical forest com-
position using dc-CA, showing the unique and shared effects 
of climate and geographic position. This approach can be 
used analogously to decompose the environmentally struc-
tured variation (the green part in Fig. 1) based on two sets of 
predictors related to species by transposing the community 
matrix. Here, we propose an algorithm for decomposing the 
total variation in community composition (and not only the 
trait- or environmentally structured variation) into the parts 
attributable to four sets of predictors, i.e., two related to 
sites (environment and space) and two related to species 
(functional traits and ecological niche).

The concept of ecological niche is considered of para-
mount importance in understanding life–environment 
relationships (Krebs 2014) while being also subject to 
a wide array of concepts and measurements, but some-
times affected by ambiguity or equivocal use (Peterson 
and Soberón 2012; Soberón et  al. 2017; Melo-Merino 
et al. 2020). In multivariate analyses, niches were mostly 
defined by functional traits (Violle and Jiang 2009; Kear-
ney et al. 2010). Thus, traits and niches have been used 
interchangeably, or traits have been considered a proxy 
for assessing niches and included as such in constrained 
analyses. In our approach, we consider that niches, espe-
cially their overlap (or similarity), should be used sepa-
rately from traits because they relate to different aspects 
concerning the species and communities. The differ-
ence in the species niches characterizes the outcome of 
their phylogeny, adaptations, and relationships with both 
biotic and abiotic factors. This synthetic information is 
contained in the niche dissimilarity matrix and cannot be 
sufficiently represented by individual (and often related) 
traits. We consider that another difference is that traits are 

distinguished and measured on the individual level, but 
niches can be characterized only at the species level and 
can be understood when comparing populations (species), 
revealing their meaning at the community level.

This paper defines and methodologically highlights the 
CENTS space, the acronym coming from Community—
Environment—Niche—(functional) Traits—Space (Fig. 1). 
The first objective was to define, measure, and partition the 
CENTS space (Fig. 1d). Because spatial variability may not 
always be of interest, we also considered the CENT space 
(Fig. 1c) and, without a second set of species predictors, 
the CEST space. We propose an algorithm that combines 
three existing and widely used methods, the canonical cor-
respondence analysis (CCA) or its linear counterpart, the 
redundancy analysis (RDA), dc-CA or its linear counter-
part, dc-PCA, and the variation partitioning (VP) procedure 
(Borcard et al. 1992; ter Braak et al. 2018; ter Braak and 
Šmilauer 2018). The algorithm aims to disentangle and 
quantify the overlapping effects of E–S and T–N variable 
groups on C. Analyzing the CENTS space will considerably 
strengthen and link the fields of functional and structural 
ecology, thereby generating new insights and leading to a 
better understanding and quantification of the mechanisms 
underlying species–trait–environment patterns. In addition, 
the algorithm we developed may be used for other predictor 
data tables, such as a table with ecological indicator val-
ues or with phylogenetic relationships, and it also may be 
extended to include more than two data tables for sites or 
species.

Our second objective was to summarize how species 
relate to resources and their availability in the environment, 
synthesize this information in a standardized way, and use 
these novel measures to apply the algorithm mentioned 
above, including an N data table, measuring the ecological 
niche features of the species. For this goal, we proposed a 
new standardized metric of niche complementarity (dissimi-
larity) for both categorical and continuous resources, which 
also account for the availability of resources in the environ-
ment. We used this metric to define and measure the species’ 
uniqueness and one more aspect of the community diversity, 
the niche-based diversity (ND). We explored relationships 
between diversity measures and environment predictors, 
highlighting the use of ND in human impact assessment.

Materials and methods

Algorithm for variation decomposition and testing 
of CENT and CENTS space

To explain and decompose the variation in species composi-
tion, the algorithm uses the following tables:
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	 i.	 C, the sites-by-species (occurrence, abundance or 
dominance) table, representing community structure. 
To study whether traits (or niche or both) can explain 
variation in species composition, one also needs the 
transpose of C, denoted by C’.

		    All the other data tables considered in our algorithm 
include predictors (explanatory variables):

	 ii.	 E, the sites-by-environmental variables data table with 
values of environment descriptors of interest for each 
site in C.

	 iii.	 T, the species-by-traits data table with values of func-
tional traits of each species in table C. Categorical 
traits can be expanded to sets of dummy (1/0) vari-
ables if needed. If the traits are a mix of distinct types 
(e.g., numeric, nominal, multi-choice, circular), the 
matrix T can be replaced by a species-by-species 
matrix of distances, for instance, using the Gower 
distance.

	 iv.	 N, a species-by-niche metrics table or a species-by-
species table that describes the ecological niches of 
species. In other studies, N may contain tolerances to 
environment factors, bioindicator responses, or other 
features (except for traits). The niche overlap met-
rics may be based on any categorical or continuous 
resources (details in the section on niche measures).

	 v.	 S, a table describing the spatial configuration of the 
sites. It is based on coordinates or other variables indi-
cating the position of the sites (e.g., latitude, longi-
tude, altitude, depth), which are subject to a db-MEM 
analysis with forward selection (FWS) of predictors. 
In other studies, if S is a rectangular matrix and cer-
tain spatial descriptors (e.g., altitude) are of interest, 
it might be used as such.

Using these five data tables, we propose an algorithm for 
linking them and exploring their relationships. C plays the 
central role (of response variables), and there are two groups 
of predictors: group 1, comprising E + S, which apply to 
sites, being related indirectly to species through their dis-
tribution in sites, and group 2, comprising T + N, directly 
related to species and indirectly to sites through the structure 
of the communities they shelter.

In our algorithm, we used dc-CA because C is a com-
positional table and the length of the gradient was greater 
than 3, but when the axes are shorter, or the data are not 
compositional, the linear form (dc-PCA) might be used 
instead.

To apply dc-CA, the data sources that are not yet rectan-
gular matrices (units by variables), such as (dis)similarity 
matrices, need first to be preprocessed to become rectan-
gular. For this, the principal coordinates analysis (PCO) is 
used. Also, as dc-CA is a regression method, the number of 
row and column predictor variables should be kept small 
compared to the number of sites and species, respectively. 
To limit the number of predictors, we propose to use FWS 
of variables. In our algorithm, all variables within each 
group are denoted by the subscript (Eall, Sall, Tall, and Nall), 
while the selected variables by FWS, are referred to without 
subscript.

Table 1 shows the preliminary steps needed when space 
predictors are included (CENTS space), the niche data is a 
(dis)similarity matrix, the number of environmental vari-
ables is large compared to the number of sites, and the num-
ber of traits is large compared to the number of species. 
When this is not the case, these preliminary steps (or some 
of them) are skipped.

Table 1   Preliminary steps for selecting variables and preparing the data for the algorithm of double-constrained analysis with variation partition-
ing

E environmental variables, S space variables, T traits, N niche variables, C community composition matrix, PCO principal coordinates analysis, 
dbMEM distance-based Moran Eigenvector Maps, DHS matrix of the standardized measure of niche dissimilarity between species, Coord geo-
graphical coordinates, VP variation partitioning procedure, FWS forward selection procedure, dc-CA double-constrained correspondence analy-
sis. Subscript all indicates that all predictors of a group are included in the analysis. Terms with no subscript refer to the variables selected dur-
ing FWS

Step Method Response 
variables

Predictors group 1 (E, S) Predictors 
group 2 (T, 
N)

Output and meaning

1 PCO DHS Nall, i.e., PCO scores for the niche
2 VP dbMEM FWS C Eall and Coord Sall, i.e., spatial db-MEM eigenvectors (PCO scores), selection of 

S and E, and testing their simple effects
3 dc-CA FWS C Eall Tall Selection of T and verification of selection (or reaching consen-

sus) for E
4 dc-CA FWS C Eall Nall Selection of N and verification of selection (or reaching consen-

sus) for E
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Estimating and testing the variation parts

Traditional direct ordination method (canonical ordination 
analysis) with one set of predictors (e.g., E) decomposed 
the green part in Fig. 1a into two parts: variation in species 
composition (C) explained by the environmental predictors 
(CE) and residual variation (variation of C not explained 
by E). The last is calculated by the difference between the 
total variation or all eigenvalues in C, assessed by a corre-
spondence analysis of C (CA C), from which the explained 
variance (the canonical eigenvalues) obtained in the CCA 
of C constrained by E is subtracted. If two groups of predic-
tors are used (tables with explanatory variables), either for 
species, for sites, or both (Fig. 1b shows the dc-CA parts 
of explained variance in C, using T and E as predictors), 
with the residual variation this gives four parts. Besides the 
explained variance assessment, the effects of the predic-
tors—simple, conditional (unique), and shared—are also 
tested for their significance, against the null hypothesis that 
their effect is random. We have used the Monte Carlo per-
mutation test, with 999 unrestricted permutations. Analo-
gously, there are eight parts in CENT space analysis, which 
we coded with letters from a’ to h’ (Fig. 1c), but only some 
parts (or sum of parts) could be tested. The full decomposi-
tion of CENTS space gives 16 variation parts coded with 
letters from a to q (Fig. 1d).

In the following text, we refer to double-constrained anal-
yses by their name (e.g., dc-CA C ~), where ~ is followed 
by the tables with the selected predictors. The symbol × is 
used to separate two groups of predictors, the first related 
to sites (E or S or both) and the second to species (T or N 
or both), while + indicates the use of variables belonging to 
both data tables in the group. Predictors from a table used 
as covariates are denoted by placing table abbreviation after 
the | (i.e., vertical line) symbol. For instance, the expression 
dc-CA C ~ (E + S) × (T|N) means that a double-constrained 
analysis is performed on the species-by-sites data table (C), 
with sites constrained by variables from combined E and S, 
and species constrained by T, while variables in N table act 
as covariates for the effects of T.

The decomposition of the community space using dc-CA 
is based on the idea that the canonical (double-constrained) 
eigenvalues resulting from this analysis represent the inter-
section between the effects of the environment (i.e., E + S) 
and traits (i.e., T + N) on species composition. In the VP, 
the explained variation is decomposed in the two condi-
tional effects of the two predictors (or, more often, groups 
of predictors) and their overlap. Simple effects can be meas-
ured and tested using dc-CAs without covariates, while the 
conditional effects can be measured and tested using the 
analyses with covariates. For instance, when considering 
only the CENT space, analyses dc-CA C ~ (E) × (T), dc-CA 
C ~ (E) × (N), dc-CA C ~ (E) × (T + N) are used to separate 

the variation explained by T and N, when C is also con-
strained by E, and to test the simple effects. The explained 
variation in dc-CA C ~ (E) × (T + N) is the total explained 
variation (given by the sum of the conditional effect of T, N, 
and the shared variation), i.e., e’ + f’ + h’ (Fig. 1c). In dc-CA 
C ~ (E) × (T), the explained variation is the simple effect of 
T (conditional effect of T and the overlap, i.e., e’ + h’), and 
similarly, in dc-CA C ~ (E) × (N), it is the simple effect of 
N (conditional effect of N and the overlap, i.e., f’ + h’). The 
significance for each of the simple effects is given by the 
double-constrained test on all ordination axes performed 
during the analyses without covariates. When only one 
dominant gradient is expected in the data, the significance 
of the test on the first axis will be considered. To test the 
conditional effects, we use dc-CA C ~ (E) × (T|N) (giving 
the conditional effect of T and its significance, i.e., e’) and 
dc-CA C ~ (E) × (N|T) (giving the conditional effect of N and 
its significance, i.e., f’). The overlap (h’) cannot be tested 
(Table 2).

To measure all the elements of the community space 
and to test all the parts that may be tested, we not only 
need the synthetic results of the dc-CAs, but also the 
results of the two CCA (or RDA in dc-PCA) testing the 
constraints either on sites (with E or S or both as predic-
tors, i.e., the canonical eigenvalues for site-related predic-
tors only) or on species (with T or N or both as predictors, 
i.e., the canonical eigenvalues for species-related predic-
tors only). These also allow the additional testing of some 
CENT (and CENTS) element sums. The variation parts of 
the community space can be calculated from various com-
binations of dc-CAs with covariates and without covari-
ates, used in turn. The unadjusted percentages of explained 
variation (R2) will then be calculated by dividing the vari-
ous variation parts by the total variation in the community 
composition, extracted from the species-by-sites table in 
the unconstrained CA (or PCA). The adjusted R2 can also 
be calculated (Peres-Neto et al. 2006; for details concern-
ing dc-CA see ter Braak and Šmilauer 2018 and the online 
support site for Canoco 5.1).

We present the application of our algorithm using Canoco 
5.12 software (ter Braak and Šmilauer 2018). At present, 
this resource has certain advantages over other softwares. It 
performs dc-CA with and without covariates, with optional 
forward selection of predictors, testing unique and shared 
effects, performs dimensionality tests, and illustrates results 
by double-constrained ordination diagrams. In addition, for a 
double-constrained analysis, Canoco also presents the inter-
mediate results, i.e., of the two CCAs (or PCAs), testing the 
constraints on sites and separately on species. We also pro-
pose an alternative, Canoco independent algorithm, without 
covariates and CCAs included as separate steps, given in the 
Online Resource. This algorithm was inspired by the R-code 
for dc-CA variation partitioning in Pinho et al. (2021).
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The algorithm for the decomposition of CENT space and 
testing its variation parts are explicitly given in Table 2, 
and the algorithm for CENTS is shown in Table  3. In 
some studies, ecological niche data are not available or 
of no research interest; therefore in the Online Resource, 
we provide the algorithm for CEST (community–environ-
ment–space–traits), with and without covariates, and illus-
trates the results using a novel graphical display, because the 
classical Venn diagrams proved to be inefficient. We call the 
visualization of these variation partitioning results VADOC 
diagrams (a term derived from ‘variation partitioning in dou-
ble-constrained ordination analyses with multiple predictor 
tables diagrams’). In every algorithm, step 0 represents the 
unconstrained correspondence analysis of C (CA C), which 
returns the total variation in the response variables table, 
meaning the total eigenvalues.

The algorithm for decomposition of the CENTS space 
(Table 3) comprises five steps (1–5) in addition to step 0. 
In the first two steps, the variation in the community con-
strained by the unique effects of E and S (with S covariate 
in step 1 and E covariate in step 2) is decomposed. Step 
3 decomposes the variation in the community constrained 
both by E and S, while in the last steps, the community is 
constrained either by E (step 4) or S (step 5). Each step has 
five substeps (#.1–#.5), homologous with the five steps (any 
or each denoted by #). Thus, the first two substeps are repre-
sented by dc-CAs in which the unique effects of T and N (T 
in substep #.1 and N in substep #.2) are included. Substep #.3 
are dc-CAs with T + N as species-related predictors, while in 

the last two substeps T (substep #.4) and N (substep #.5) are 
included separately. For the calculation of CENTS elements, 
one needs only 9 of the total 25 substeps (in Table 3 one of 
the possible combinations of subsets is given), but the rest 
are needed to test various variation parts. For CENT space, 
one step with five substeps is needed (1.1’–1.5’), with only 
three substeps used to calculate variation parts (Table 2).

The formulas for calculating the variation parts involve 
the sum of canonical eigenvalues (coded as ceg) of the con-
strained analysis of predictor tables enclosed in brackets []. 
When only one group of predictors is used, the analysis is 
a CCA, and if both groups are present (separated by ×), the 
eigenvalues refer to the dc-CA. For instance, b’ = ceg[E]-
ceg[(E) × (T + N)] (step 1.3’ in Table 2) means that the vari-
ation fraction termed b’ in the CENT (Fig. 1c) is given by 
the subtraction of the sum of canonical eigenvalues of the 
double-constrained analysis involving E and (T + N) as pre-
dictors (dc-CA C ~ E × (T + N)), from the sum of canoni-
cal eigenvalues of the community constrained by the envi-
ronmental variables (CCA C ~ E). Although the variation 
parts may be calculated and tested using several different 
combinations of analyses, only one is given in the proposed 
algorithm to avoid redundancy.

Niche metrics

To explain the structure and functions of communities, inde-
pendently of their species’ traits, to link the five matrices 
described in Fig. 1d and describe the niches’ properties in 

Table 2   Algorithm for variation 
partitioning of CENT space 
relating communities (C) to the 
environment (E), traits (T), and 
ecological niches (N)

The tilde ~ stands for canonical ordination analysis, followed by the predictors placed in round brackets, 
separated by the × symbol, for discriminating between predictors related to sites (E) and those linked to 
species (T or N or both). The total variation (all eigenvalues, coded as All-eg) is given by the correspond-
ence analysis of C (CA C). Canonical eigenvalues are coded as ceg, and the predictors used are enclosed in 
brackets []. Vertical bar | separates the covariates (to the right of it), the lowercase letters correspond to the 
variation parts given in Fig. 1c. Significance tests are related to the variation parts given in braces {} for 
the CCA and {}dc (with superscript) for the dc-CA, also using the formerly mentioned letters

Step Analysis Estimates Significance tests (p)

0 CA C Total variation = All_eg
1.1’ dc-CA C ~ (E) × (T|N) e’ = ceg[(E) × (T|N)]

c’ = ceg[T|N] − e’
{b’ + e’ + f’ + h’}
{c’ + e’}
{e’}dc

1.2’ dc-CA C ~ (E) × (N|T) f’ = ceg[(E) × (N|T)]
d’ = ceg[N|T] − f’

{d’ + f’}
{f’}dc

1.3’ dc-CA C ~ (E) × (T + N) h’ = ceg[(E) × (T + N)] − e’ − f’
b’ = ceg[E] − ceg[(E) × (T + N)]
g’ = ceg[T + N] − ceg[(E) × (T 

+ N)] − c’ − d’
a’ = All_eg − b’ − c’ − d’ − e’ − 

f’ − g’ − h’

{c’ + d’ + e’ + f’ + g’ + h’}
{e’ + f’ + h’}dc

1.4’ dc-CA C ~ (E) × (T) {c’ + e’ + g’ + h’}
{e’ + h’}dc

1.5’ dc-CA C ~ (E) × (N) {d’ + f’ + g’ + h’}
{f’ + h’}dc
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terms of dissimilarities, differences, and diversity, we also 
developed some new niche metrics. These are based on 
a niche overlap index we developed earlier (Sîrbu 2006), 

which includes both the resource use by species and their 
availability in the environment and varies between 0 (com-
pletely distinct niches) and 1 (identical niches). Since, for 

Table 3   Algorithm for variation partitioning of CENTS space relating communities (C) to the environment (E), space (S), traits (T), and eco-
logical niches (N)

The tilde ~ stands for canonical ordination analysis, followed by the predictors placed in round brackets, separated by the × symbol, for discrimi-
nating between predictors related to sites (E or S or both) and those linked to species (T or N or both). The total variation (all eigenvalues, coded 
as All-eg) is given by the correspondence analysis of C (CA C). Canonical eigenvalues are coded as ceg, and the predictors used are enclosed in 
brackets []. Vertical bar | separates the covariates (to the right of it), the lowercase letters correspond to the variation parts given in Fig. 1d. Sig-
nificance tests are related to the variation parts given in braces {} for the CCA and {}dc (with superscript) for the dc-CA, also using the formerly 
mentioned letters

Step Analysis Estimates Significance tests (p)

0 CA C Total variation = All_eg
1.1 dc-CA C ~ (E|S) × (T|N) e = ceg[(E|S) × (T|N)] {b + e + f + h}

{c + e + k + p}
{e}dc

1.2 dc-CA C ~ (E|S) × (N|T) f = ceg[(E|S) × (N|T)] {d + f + l + n}
{f}dc

1.3 dc-CA C ~ (E|S) × (T + N) b = ceg[E|S] − ceg[(E|S) × (T + N)]
h = ceg[E|S] − b − e − f

{c + d + e + f + g + h + k + l + m + n + p + q}
{e + f + h}dc

1.4 dc-CA C ~ (E|S) × (T) {c + e + g + h + k + m + p + q}
{e + h}dc

1.5 dc-CA C ~ (E|S) × (N) {d + f + g + h + l + m + n + q}
{f + h}dc

2.1 dc-CA C ~ (S|E) × (T|N) k = ceg[(S|E) × (T|N)] {i + k + l + m}
{k}dc

2.2 dc-CA C ~ (S|E) × (N|T) l = ceg[(S|E) × (N|T)] {l}dc

2.3 dc-CA C ~ (S|E) × (T + N) i = ceg[S|E] − ceg[(S|E) × (T + N)]
m = ceg[S|E] − i − k − l

{k + l + m}dc

2.4 dc-CA C ~ (S|E) × (T) {k + m}dc

2.5 dc-CA C ~ (S|E) × (N) {l + m}dc

3.1 dc-CA C ~ (E + S) × (T|N) c = ceg[T|N] − ceg[(E + S) × (T|N)]
p = ceg[T|N] − c − e − k

{b + e + f + h + i + j + k + l + m + n + p + q}
{e + k + p}dc

3.2 dc-CA C ~ (E + S) × (N|T) d = ceg[N|T] − ceg[(E + S) × (N|T)]
n = ceg[N|T] − d − f − l

{f + l + n}dc

3.3 dc-CA C ~ (E + S) × (T + N) j = ceg[E + S − ceg[(E + S) × (T + N)] − b − i
g = ceg[T + N] − ceg[(E + S) × (T + N)] − c − d
q = ceg[(E + S) × (T + N)] − e − f − h − k − l − 

m − n − p − q
a = All_eig − b − c − d − e − f − g − h − i − j − k 

− l − m − n − p − q

{e + f + h + k + l + m + n + p + q}dc

3.4 dc-CA C ~ (E + S) × (T) {e + h + k + m + p + q}dc

3.5 dc-CA C ~ (E + S) × (N) {f + h + l + m + n + q}dc

4.1 dc-CA C ~ (E) × (T|N) {b + e + f + h + j + n + p + q}
{e + p}dc

4.2 dc-CA C ~ (E) × (N|T) {f + n}dc

4.3 dc-CA C ~ (E) × (T + N) {e + f + h + n + p + q}dc

4.4 dc-CA C ~ (E) × (T) {e + h + p + q}dc

4.5 dc-CA C ~ (E) × (N) {f + h + n + q}dc

5.1 dc-CA C ~ (S) × (T|N) {i + j + k + l + m + n + p + q}
{k + p}dc

5.2 dc-CA C ~ (S) × (N|T) {l + n}dc

5.3 dc-CA C ~ (S) × (T + N) {k + l + m + n + p + q}dc

5.4 dc-CA C ~ (S) × (T) {k + m + p + q}dc

5.5 dc-CA C ~ (S) × (N) {l + m + n + q}dc
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our purposes, we found no suitable measure in the literature 
for fulfilling these requirements, we defined the HSij, as the 
standardized niche overlap or similarity index (H is in honor 
of Hurlbert, while S stands for Smith) between the species 
i and j:

where i and j are indices of summation from 1 to s (number 
of species in the community), k is the index of summation 
from 1 to n (number of resources exploited), pik is the pro-
portion of the species i using resource k, and ak is the pro-
portion of resources in the environment. In Sîrbu (2006), ak 
represents the fraction of habitat category k within the total 
number of surveyed habitats.

In its original definition, HS was applied with cat-
egorical resources (e.g., habitat types, food items) or for 
gradients expressed as discrete series (e.g., time, season, 
counts of resource). For resources varying continuously 
along gradients (e.g., weight of food, caloric equivalent, 
tolerances to physical or chemical parameters of soil or 
water), the challenge of assessing the availability (the offer 
of the environment) and their use (requirements of the 
species) can be addressed with cubic spline interpolation 
functions and integral calculus (see the Online Resource). 
This is a novel methodological contribution proposed by 
us for ecological niches measured and compared along 
continuous resources.

HS serves as the basis for other measures and is applied 
in different methods.

We define the standardized measure of niche dissimilarity 
between species i and j as:

where DHSi,i = 0. DHS gives a symmetrical matrix of niche 
dissimilarities, having 0 on the main diagonal. We used 
this metric to further relate the sites-by-species values (C) 
to niche dissimilarities. For this purpose, we made a PCO 
analysis on the DHS matrix, saved the species scores on the 
coordinates axes (defining the Nall data table), and used an 
FWS procedure within a dc-CA for selecting those axes’ 
scores that best predicted the species composition while 
accounting also for their response to environmental vari-
ables. The result was the N matrix that entered the algorithm 
along with E, S, and T, for defining, measuring, and testing 
the CENT and CENTS spaces.

Another measure used as a synthetic parameter for com-
munity analysis was the mean amount of total difference 
between the niche of each species and all the others. We 
define MSDHSi as the mean niche difference or dissimi-
larity between species i and the other species within the 

(1)HSi,j =

∑

k ak
√

pi,kpj,k
�

�
∑

k akpi,k
��
∑

k akpj,k
�

(2)DHSi,j = 1 − HSi,j

community, this being also a measure of the species unique-
ness (sensu Ricotta et al. 2016):

For illustrative purposes, we used MSDHS as a trait, in a 
dc-CA, for linking communities to the environment.

We define the ecological niche-based diversity measure 
FDen as:

where qh,i is the relative abundance of species i in the sam-
ple or site h. This is a modified variant of the Rao quadratic 
entropy measure (Rao 1982), which considers DHS. Because 
the product results in small values, and to standardize the 
range, we introduced a new variant (FDsa) and further used 
in our applications the standardized ecological niche-based 
diversity measure FDsb that ranges between 0 and 1:

We compared the proposed ND indices with several 
measures of taxonomic diversity (TD): the number of spe-
cies (s), Hill’s (N2) diversity measure (Hill 1973 ap. ter 
Braak and Šmilauer 2018), Shannon (H) entropy meas-
ure, and Pielou’s evenness index (J), which relates H to the 
logarithm of species number (Krebs 2014; ter Braak and 
Šmilauer 2018). To assess FD we used the standardized ver-
sion (Šmilauer and Lepš 2014; ter Braak and Šmilauer 2018) 
of Rao functional diversity, but computed it only on those 
traits selected by forward selection (FWS) in the dc-CA. We 
performed a PCO on traits using Gower distance and then 
calculating Rao diversity (FD(Rao)) on those scores (PCOs) 
and the sites-by-species (C) table (Laliberté and Legendre 
2010). We suggested and applied several methods to com-
pare these measures and test their possible redundancy. We 
used our dataset for comparative purposes to show different 
ways to display these facets of diversity. We performed an 
RDA with all the described diversity metrics as response 
variables and E as predictors to plot and compare TD, FD, 
and ND. For this analysis, we constructed t value biplots (ter 
Braak and Šmilauer 2018) to evaluate the significance of the 
response of these diversity measures to each of the selected 
E. We performed a dc-CA with all the selected space and 
species predictors and plotted FD(Rao), FDen, and FDsb 
on the double-constrained space separately. We constructed 

(3)MSDHSi =

∑
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a dendrogram based on the Pearson correlation coefficients 
using an average agglomerative method to compare all the 
diversity measures used in the analyses.

Case study: freshwater mollusk communities 
from the middle Olt River

To illustrate the application of the measures and methods 
described here, we used our data on the habitats’ dimension 
of ecological niches (Sîrbu 2006) and the data from a study 
on freshwater mollusk community conducted in the middle 
Olt River basin, Romania. These data concern 23 species of 
freshwater mollusks from 20 sites. We conducted sampling 
and data analysis between March and July 2020. The area 
of reference is a river sector 83 km long, situated in the 
middle Olt River, which comprises a series of six reservoirs 
built in the second half of the twentieth century. The area 
extends from the town of Făgăraș (45.8512° N, 24.9733° E) 
to the Carpathian gorges (45.5317° N, 24.2721° E). The 
study aimed to explore responses of native communities to 
human pressure (hydro-technical works and others), and it 
will be published in extenso elsewhere.

For the dc-CA and other unimodal analyses, response 
data (weights in g) were log-transformed (by the relation 
y’ = log(1 + y)) and standardized by sample total; thus, the 
final response variables were the relative dominance of spe-
cies in terms of wet weight.

The selected E were flow (denoted Flow), an ordinal vari-
able ranging from 1 (stagnant water, usually near the dams 
of the reservoirs) to 6 (rapid, turbulent flow in the gorges), 
an estimation of human impact (Impact), ranging from 1 
(close to the natural condition of the river) to 6 (stagnant 
waters near the dams in the reservoir, with artificial banks 
and large parts of the substrate covered in concrete or other 
artificial materials), and the variable measuring the distance 
from the sampling station to the nearest dam downstream 
(Dis_dam, in m).

T were also selected by FWS in the dc-CA analysis. We 
selected maximal shell size of mollusks (SizeM), an ordinal 
variable ranging from (1) < 2.5 to (6) > 100 mm, and feeding 
type (FeedT), a factor with the levels: scraper (SCR), scraper 
and sediment feeder (SS), sediment feeder (SED), scraper 
and filter feeder (SF), filter feeder (F), sediment and filter, or 
suspension and deposit feeders (SEDF). The values for the 
traits were based on the works of Falkner et al. (2001), Glöer 
(2019), Killeen et al. (2004), Piechocki and Wawrzyniak-
Wydrowska (2016), and Sîrbu and Benedek (2018).

To calculate the niche metrics, we used a dataset of spe-
cies-by-habitat categories obtained during an earlier survey 
conducted between 1996 and 2003 (Sîrbu 2006). We used 
28 types of habitats as resource descriptors. We considered 
the ratios of species occurrence in each of these categories 
as measures of resource use and the proportions of habitat 

categories within all the 405 surveyed habitats for assessing 
the resource availability in the research area.

We used PTC Mathcad 14 and  PTC Mathcad Prime 
5.0.0.0 (Parametric Technology Corporation) to calculate 
niche metrics and Canoco 5.12 (ter Braak and Šmilauer 
2018) for the multivariate analyses and data visualization. 
We computed correlations between diversity indices using 
Hmisc package in R (Harrell 2020) and built the dendrogram 
in R version 3.6.1 (R Core Team 2019).

Results

CENT(S) variation partitioning for the mollusk 
dataset

In our proposed algorithm for decomposition of the 
explained variation in C, the selection of dc-CA steps 
(Table  2 for CENT and Table  3 for CENTS analyses) 
depends on the questions asked in the particular study. In 
our case study, for illustration and discussion, we performed 
all the analyses and calculated all the variation parts (Fig. 2 
for the CENT analysis, Fig. 3 for the CENTS analysis) and 
tested all the possible parts (or sums of parts) (Table 4). We 
present the VADOC diagrams in the two variants, the second 
(Fig. 3) being adapted based on a suggestion made by ter 
Braak (pers. comm.).

The total variation in the community composition was 
2.52 (sum of all eigenvalues), all predictors explaining 
68%. The remaining 32% was the residual variation (a), 
which cannot be explained by any of the selected predic-
tors. Simple effects (variance in community composition 
explained by groups of predictors) were all significant (p 
on all axes < 0.05), similar and higher in T (explained vari-
ation is 40.5%) and N (34.8%), followed by E (30.8%) and 
S (11.5%). The strongest conditional (unique) effects were 
those of T and N (14.7% for T and 13.9% for N), compared 
to those of E (4.9%) and S (3.9%). Also, the lack of overlap 
between N and T in the absence of environmental and spatial 
predictors (their shared effect being null) clearly indicates 
that niche and traits, at least in our study, are anything but 
redundant, and adding niche data is beneficial for the model 
and for understanding the underlying mechanisms of com-
munities structural and functional responses. In our study, if 
the niche data are removed, the unexplained variation in C 
rises from about one-third (32%) to about half (45.9%). This 
variation is also an argument in favor of using independent 
data on resource use of species in community ecology.

Niche‑based diversity indices

MSDHS, used as a functional trait in a dc-CA with E, 
explained 7.25% of the variation (6.58% adjusted) in the 
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species–environment relationship, its effect being significant 
(p = 0.006 on all axes). This result shows that, if needed, 
some niche metrics can be used as a proxy for traits, in this 
case showing how distinctness of niches relates to environ-
ment predictors.

In the RDA with TD, FD, and ND as response vari-
ables and E as predictors, the adjusted explained varia-
tion in the diversity measures was 34.4%, and the axes 

were significant (pseudo-F on all axes = 4.3, p = 0.013). 
The simple effect was significant for all three environ-
mental variables, and it was strongest for Impact (43.3%, 
p = 0.006). However, conditional effects of Flow and the 
distance to the nearest downstream placed dam were not 
significant, showing their redundancy with the human 
pressure in explaining the mollusk diversity in our study 
area. FDsb and, marginally, s had a significant response 
(positive in this case) to Impact (Fig. 4).

In the dendrogram of diversity measures (Fig. 5), the 
two ND were not grouped, in contrast to the TD of hetero-
geneity (N2, H, and J). FDen joined at a greater distance 
the TD group, while FDsb was closely linked to s, and 
these two were further linked to FD(Rao). This way of 
illustrating relationships might help distinguish the mean-
ing of the three different types of diversities (taxonomic, 
functional, and niche based) and also argues against their 
redundancy.

Another way to visualize the relationships of ND with 
the other variables is to build a dc-CA diagram with E, T, 
N, and S, and in that space to project one of these measures 
by either a loess function or by a GLM or GAM (the last two 
methods also allowing for testing the model significance), 
resulting in a contour plot with the isolines in the double-
constrained space. We illustrated the variation of FDsb using 
a loess function (Fig. 6), the coefficient of determination 
being R2 = 51.8%. FDsb increased toward the average values 
of the environmental predictors (the intersection of axes) 
and decreased with Impact and Flow. By contrast, the FDen 
increased along the first double-constrained axis, showing a 
negative relationship with Impact, and the classical FD(Rao) 

Fig. 2   VADOC diagram 
showing decomposition of 
the variation in community 
composition explained by 
environment, traits, and niches. 
Letters b’ to h’ represent the 
parts of variation explained 
by different combinations of 
predictor groups, h’ is the 
CENT (acronym from commu-
nity–environment–niche–traits) 
overlap space, and a’ represents 
the residual variation that the 
selected predictors cannot 
explain. The figures represent 
the components of variation in 
the mollusk communities in our 
case study, given both as the 
absolute variation explained and 
as percents of the total variation 
in community composition. 20 
communities and 3 samples 
from each site (60 samples in 
total) were analyzed

E
E∩S

S
No(E+S)

0

5

10

15

20

25

30

N N∩T T No(N+T)
E 2.45 11.22 7.76 4.91
E∩S 0.63 5.44 0 0
S 1.18 0.36 1.63 3.9
No(E+S) 13.9 0 14.66 31.96

Ex
pl

ai
ne

d 
va

ria
�o

n 
(%

)

Fig. 3   Another type of VADOC diagram, showing decomposition of 
the variation in community composition (C) explained by environ-
ment (E), space (S), traits (T), and niches (N). The figures represent 
the components of variation in the mollusk communities in our case 
study, given in percents of the total variation in community composi-
tion (all eigenvalues = total variation in C = 2.52). Predictors are iden-
tified by letters in caps, ∩ means the shared effects of two predictors, 
while No stands for none of the predictors included in parentheses. 20 
communities and 3 samples from each site (60 samples in total) were 
analyzed
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showed a linear increase with the reduction of Flow and the 
increase of Impact (figures not shown here).

Discussion

To expand the methodological framework of life–environ-
ment analyses, we modified the original three-table dc-CA 
method to introduce a five-table ordination algorithm 
(Fig. 1). Our approach combines, for the first time, the vari-
ability associated with the environment and locations where 
a species occurs and the variability associated with the traits 
and ecological niche of species within sites, incorporating 

niche predictors, separately and independently from traits. It 
also allows the decomposition of the variation in community 
composition, something that has been also done recently 
for the CEST space (Pinho et al. 2021). We show additional 
procedures for variation decomposition and testing in a five-
matrix system, namely the CENTS space. In addition, vari-
ous parts of the variation were tested and illustrated by a 
novel visualizing technique, the VADOC diagrams, which 
we present in two variants.

Our study reveals that evolutionary and adaptive signals 
may be of prevailing importance, compared to environmental 
and geographical predictors (the last categories being used 
more frequently), in explaining the quantitative structure of 

Table 4   Significance test results for the variation partitioning analyses

Codes of the explained variation parts are given in Fig. 2 for CENT and Fig. 3 for CENTS analyses

Step dc-CA analysis Significance tests (p all axes) from CCA​ Significance test (p all) from dc-CA

I CENT SPACE
1.1’ C ~ (E) × (T|N) {b’ + e’ + f’ + h’} = 0.001

{c’ + e’} = 0.058
{e’} = 0.004

1.2’ C ~ (E) × (N|T) {d’ + f’} = 0.061 {f’} = 0.382
1.3’ C ~ (E) × (T + N) {c’ + d’ + e’ + f’ + g’ + h’} = 0.005 {e’ + f’ + h’} = 0.001
1.4’ C ~ (E) × (T) {c’ + e’ + g’ + h’} = 0.024 {e’ + h’} = 0.01
1.5’ C ~ (E) × (N) {d’ + f’ + g’ + h’} = 0.001 {f’ + h’} = 0.001
II CENTS SPACE
1.1 C ~ (E|S) × (T|N) {b + e + h + f} = 0.001

{c + e + k + p} = 0.058
{e} = 0.004

1.2 C ~ (E|S) × (N|T) {d + f + l + n} = 0.061 {f} = 0.54
1.3 C ~ (E|S) × (T + N) {c + d + e + f + g + h + k + l + m + n + p + q} = 0.005 {e + f + h} = 0.001
1.4 C ~ (E|S) × (T) {c + e + g + h + k + m + p + q} = 0.024 {e + h} = 0.001
1.5 C ~ (E|S) × (N) {d + f + g + h + l + m + n + q} = 0.001 {f + h} = 0.001
2.1 C ~ (S|E) × (T|N) {i + k + l + m} = 0.088 {k} = 0.343
2.2 C ~ (S|E) × (N|T) {l} = 0.271
2.3 C ~ (S|E) × (T + N) {k + l + m} = 0.192
2.4 C ~ (S|E) × (T) {k + m} = 0.231
2.5 C ~ (S|E) × (N) {l + m} = 0.158
3.1 C ~ (E + S) × (T|N) {e + k + p} = 0.002
3.2 C ~ (E + S) × (N|T) {f + l + n} = 0.326
3.3 C ~ (E + S) × (T + N) {b + e + f + h + i + j + k + l + m + n + p + q} = 0.001 {e + f + h + k + l + m + n + p + q} = 0.001
3.4 C ~ (E + S) × (T) {e + h + k + m + p + q} = 0.001
3.5 C ~ (E + S) × (N) {f + h + l + m + n + q} = 0.001
4.1 C ~ (E) × (T|N) {b + e + f + h + j + n + p + q} = 0.001 {e + p} = 0.004
4.2 C ~ (E) × (N|T) {f + n} = 0.385
4.3 C ~ (E) × (T + N) {e + f + h + n + p + q} = 0.001
4.4 C ~ (E) × (T) {e + h + p + q} = 0.001
4.5 C ~ (E) × (N) {f + h + n + q} = 0.001
5.1 C ~ (S) × (T|N) {i + j + k + l + m + n + p + q} = 0.036 {k + p} = 0.3
5.2 C ~ (S) × (N|T) {l + n} = 0.141
5.3 C ~ (S) × (T + N) {k + l + m + n + p + q} = 0.009
5.4 C ~ (S) × (T) {k + m + p + q} = 0.014
5.5 C ~ (S) × (N) {l + m + n + q} = 0.006
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ecological communities. Using niche measures separately 
from traits might bring new insights into community assem-
bly and reveal the adaptative features acquired by species 
during their evolution. Although usually used interchangea-
bly, we argue that niche and traits descriptors can and should 
be treated as independent sources of information, and on a 
practical level, as different matrices in double-constrained 
analyses. Traits are characteristics identified mostly on the 
individual level, while niche metrics are features revealed on 
the species level, adding meaning and expanding the use of 
integrative methodology applied in ecology.

Peng et al. (2021) found dc-CA useful in assessing links 
between multiple stressors and ecosystem health, something 
we also emphasize by expanding its use and addressing the 
possibility to assess pressures, for instance, by measuring 
the significance and intensity of the relationship between 
the niche-based diversity and human impact.

Looking at spatial patterns may be important because 
the spatial distribution of species is directly influenced by 

Fig. 4   t-Value biplot (Van Dobben circles) showing the relationships 
between human pressures (Impact, as predictor) and the diversity 
measures (as response variables): number of species (s), N2—Hill’s 
diversity measure, H—Shannon entropy measure, FD(Rao)—Rao’s 
measure of functional diversity, FDsb—standardized niche-based 
diversity measure. The pink circle indicates the area of significant 
positive response of diversity measures to impact, and the blue circle 
the area of significant negative response. This is an attribute plot of 
the RDA between the diversity measures and the impact, distance to 
the dam and the flow as predictors; their simple effects are all sig-
nificant, while the conditional effect is significant only for the Impact 
(R2 = 43.31%, P-adj = 0.006). 20 communities and 3 samples from 
each site (60 samples in total) were analyzed

Fig. 5   Dendrogram on the complement of Pearson correlation coeffi-
cients between diversity measures, built by the average agglomerative 
linkage method (diversity measures: FDsb standardized niche-based 
diversity, s number of species, FDRao Rao functional diversity, H 
Shannon entropy, N2 Hill’s diversity, J Pielou’s evenness index, FDen 
ecological niche-based diversity measure). 20 communities and 3 
samples from each site (60 samples in total) were analyzed

Fig. 6   Double-constrained correspondence analysis (dc-CA) with 
all selected predictors and traits, with FDsb niche-based standard-
ized diversity plotted by loess functions. Impact intensity of human 
impact, Flow flow, Dis_dam distance to the nearest dam downstream, 
SizeM maximal shell size of mollusks, SCR scraper, SEDF sediment 
and filter feeder, SF scraper and filter feeder, SS scraper and sediment 
feeder, PC2PCNM the second spatial eigenvector, selected from db-
MEM, PCO1, PCO3, and PCO7 first, third, and seventh PCOs’ axes 
scores selected by forward selection from the axes resulting in princi-
pal coordinates analysis (PCO) on niche dissimilarities (the original 
DHS matrix). 20 communities and 3 samples from each site (60 sam-
ples in total) were analyzed
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environmental variables, while functional traits are expected 
to be indirectly related to space through their relationship 
with the environment (Pavoine et al. 2011). Therefore, if 
spatial signals are found in the traits but these are not cor-
related with the environment, some key environmental pro-
cesses (present or past) might have been overlooked.

In their paper on trait–environment relationships of ben-
thic macroinvertebrate communities sampled from the Dan-
ube River, Peng et al. (2021) chose not to separate the spatial 
component from the environmental one because, in their 
river dataset, most variables were highly correlated with the 
distance from the source, with the feeble possibility to sepa-
rate their effects. In our study case, although the dataset also 
comes from sampling sites along a river, we chose to include 
the spatial predictors because the impact of anthropic activi-
ties, mainly dam building, alters the natural succession of 
environmental conditions along the river.

The environmental filtering hypothesis predicts that 
within a community, the environment selects species with 
similar traits (Grime 2006). Environmental filtering is 
thought to be a major mechanism structuring communities. 
However, our ability to accurately infer filtering based on 
community composition data was recently questioned by 
Tucker and Cadotte (2013), as competition can give rise to 
the same patterns as those caused by environmental filter-
ing. Although distinguishing and testing the causes behind 
community assembly need manipulative studies of com-
munities, including in the analyses of community structure, 
the ecological niche alongside species traits in correlation 
with the environment (and space) could help us understand 
the ecological and evolutionary processes that lead to cer-
tain species composition. In our approach to community 
assembly, we consider, and our study shows, that reducing 
ecological niches to an attribute characterized or derived 
from functional traits (Violle and Jiang 2009; Kearney et al. 
2010) depletes the study of relationships between communi-
ties and their environment of an essential multivariate space 
of explanatory factors. Comparing the species through their 
niches may add new insight into evolutionary and adaptive 
constraints that link the structure and functions of ecological 
systems. Many studies have revealed that constrained analy-
ses that relate groups of interacting populations to external 
factors (ter Braak and Šmilauer 2018; Šmilauer and Lepš 
2014) need to be completed by adding information on space 
variability (Dray et al. 2006, 2012; Peres-Neto and Legendre 
2010; Sharma et al. 2011), functional traits (Dolédec et al. 
1996; Dray and Legendre 2008; Céréghino et al. 2018; ter 
Braak et al. 2018; Xu et al. 2019), and phylogenetic rela-
tionships (Desdevises et al. 2003; de Bello et al. 2005), to 
build and test a framework for understanding the underly-
ing mechanisms of the responses of ecological systems to 
environmental changes, the laws that govern processes and 
offered services, and to predict their trajectories. We do not 

provide new methodology, but use existing knowledge and 
methods to step forward. Considering that traits and niche 
metrics characterize different ecological levels, introducing 
the niche in multivariate analyses aiming at linking com-
munities to their environment means also testing for (dis)
similarities between species concerning the use and parti-
tioning of resources, adaptations, and interactions, i.e., for 
the intersection between their evolution and ecology.

If niche parameters are not available or desired, N can 
be a table of ecological indicator values for species, such 
as Ellenberg values in vascular plants, Grime’s CRS plant 
strategies, or saprobity values in diatoms (e.g., ter Braak 
1987; ter Braak and van Dam 1989). This possibility extends 
the potential ecological area of application of the paper (ter 
Braak, pers. comm.).

The MSDHS characterizes the mean difference between 
the niche of a species and all the others. This niche-based 
index represents a novel measure of the species-facet level of 
redundancy (Ricotta et al. 2016) and can be used to evaluate 
derived measures, such as the mean functional dissimilarity 
or vulnerability. Further, MSDHS should be used for char-
acterizing the community level of niche-based redundancy 
and the uniqueness of the functions associated with each 
species (functional uniqueness) by adapting the measures 
described by Ricotta et al. (2016). The derived measures 
should replace the functional dissimilarities with the niche 
dissimilarities, as described in Eqs. 4–6. MSDHS may also 
enter new analyses (of multiple regression, for instance) as 
a synthetic response variable or, as shown before, to be con-
sidered as a trait within a dc-CA. De Cáceres et al. (2011) 
provide a framework for calculating resource niche metrics 
(space resource) using the distance-based PCO approach. 
Instead, we have chosen a direct ordination method, but all 
the metrics introduced by De Cáceres et al. (2011) can be 
easily calculated on the indices and used in the methods we 
have presented here.

Assessing FD in ecological communities is very promis-
ing for studying the response of diversity to environmental 
gradients and the effects of diversity on ecosystem function-
ing (Lepš et al. 2006) as well as on ecosystem functions and 
services (de Bello et al. 2010, 2016; Cadotte et al. 2011; 
Boersma et al. 2016; Carmona et al. 2016). Defining and 
measuring relationships between the different types of diver-
sity is a complex task (Mouchet et al. 2010; de Bello et al. 
2010, 2016; Pavoine and Bonsall 2011; Lepš 2013; Car-
mona et al. 2016). We have shown that both FDen and FDsb 
(as measures of ND) are not redundant with other diversity 
measures, including FD(Rao), but explain in a complemen-
tary manner the responses of communities to environmental 
gradients. Thus, they should not be used as a proxy for each 
other, at least not a priori. In our case study, FDsb proved 
to be more sensitive to human impact than other diversity 
measures, suggesting that ND could be a valuable tool in 
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environmental monitoring and ecological management and 
as an indicator when evaluating success in conservation 
projects.

There is a growing interest in using FD for developing 
new methods for environmental monitoring and human 
impact evaluation and mitigation (Cianciaruso et al. 2009; 
Laliberté and Legendre 2010; Cadotte et al. 2011; Boersma 
et al. 2016) and for life cycle assessment (Ahmed et al. 
2018). We agree with all these and add that ND measures 
should be used in the future, since they show the same pos-
sibilities and are not redundant with the classical FD meas-
ures. Although relying on (and inspired by) the Rao entropy 
measure, their levels of reference and meaning are different.

The methods presented here are useful when applied to 
tables with high variability of data (biological and environ-
mental). For this reason, we selected for illustrative purposes 
data from a heterogeneous river sector, where the structure 
of the mollusk communities reflects the diversity of habitats 
(ranging from flowing to stagnant waters in the reservoirs), 
environmental conditions, and sources of human impact. 
The study group is also heterogeneous, including gastropods 
and bivalves of different origins (natives, native invasive, 
allochthonous invasive) with various traits.

Expanding further the framework

As Pavoine et al. (2011) suggested for their method using 
RLQ, our algorithm can also be extended to address other 
key issues in ecology, such as the interspecific relationships 
between plants and herbivores or pollinators. In this case, the 
traits and niche of herbivores or pollinators will be related to 
the traits and niche of plants, with the possibility of account-
ing for the direct effect of environment and space on plants 
and their indirect effect on herbivores.

Phylogeny is considered another source of variation and 
explanation in the relationship between species and envi-
ronment regardless of whether traits are included or not 
in the analysis (Desdevises et al. 2003; Šmilauerova and 
Šmilauer 2007; Pavoine and Bonsall 2011; de Bello et al. 
2017; Xu et al. 2019). Our integrative approach could be 
further expanded, including the sixth matrix of patristic dis-
tances or genetic distances, depending on the available data 
and research questions. This expansion could be done by 
combining our algorithm with that proposed by Desdevises 
et al. (2003) and using specific tests and related methods 
(Campbell et al. 2011).

In effect, the same principles and methods of variation 
partitioning of two predictor tables might be used for three 
or more tables. Our 2 × 2 variation partitioning algorithm in 
dc-CA can be extended to a 3 × 3 algorithm by adding, for 
instance, invasive species as site descriptors and phylogeny 
as species descriptors. Further, this extension could be gen-
eralized into an (n × k) variation partitioning, where n tables 

are related to the sites and k to the species. Besides, our 
illustration of results may be used directly to interpret both 
simple and conditional effects of various kinds of predictors 
on the community structure, relying on the ability to test 
the fractions of explained variance. Besides, if a non-trivial 
experimental design is involved, the permutation scheme in 
dc-CA can be easily adapted to suit and reflect the sampling 
protocol.

In dc-CA, the number of both environmental variables 
(space predictors included) and traits (niche predictors 
included) needs to be significantly smaller than the number 
of cases and species (ter Braak and Šmilauer 2018). There-
fore, our algorithm is not suitable for datasets with many 
predictors and few cases (sites and species). An alternative 
may be to replace the dc-CA with a double-asymmetrical co-
correspondence analysis (CoCA, which considers unimodal 
responses to underlying gradients) or its linear counterpart, 
the co-inertia analysis (CoIA), which can be used with many 
predictors and few objects (cases or samples). Although non-
symmetrical CoCA can be done by existing R packages and 
functions, the double-asymmetrical CoCA and CoIA still 
have to be developed.

Another possible expansion is to step outside the two-
dimensional table of the double-constrained method and 
adopt a multi-level approach, such as an n-dimensional 
constrained analysis. By this expansion, we propose the 
theoretical and methodological development toward an 
‘omni-spaces explanatory ecology of communities’: by this, 
meaning the consideration and use of an unlimited number 
and types of explanatory data tables, constraining either sites 
or species (rows and columns), in any number of response 
data sets (multiple interacting or linked communities).

Unlike environmental variables and traits, which have a 
straightforward meaning, the significance and underlying 
mechanisms of niche overlap may vary greatly, depending 
on how the niche is defined and what data are used to evalu-
ate it. Here, we have illustrated a relatively simple case study 
where we included the use and partitioning of habitat types, 
related mainly to life–environment interactions. When food 
resources or interspecific relationships are considered, the 
focus will be on biotic processes. In complex studies, con-
sidering different aspects of the niche, several niche overlap 
matrices can be combined, calculating the centroids, the 
mean, or another measure of central tendency of the simi-
larities for each pair of species.

Conclusions

Including ecological niche metrics, especially niche dis-
similarities, in the CENTS model, as a separate data table, 
adds the functional interaction between the species to the 
model that accounts for distribution, space variability, 
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environmental predictors, and biological traits, and some-
times also for phylogenetic relationships. This can lead to 
new theoretical and applied research objectives. We have 
shown that one can use an existing three-table ordination 
method to analyze relationships among five or more datasets. 
Maybe the future will show that for challenging the complex 
environmental issues related to overpopulation, resource 
exploitation, degradation of habitats, invasive species, pol-
lution, and loss of ecological functions, new methods have 
to be developed for linking more datasets from different 
informational spaces. The multivariate approach is already 
mature; new needs arise by linking and integrating multi-
spaces, each of them being a system of multivariate datasets 
linked within and among the spaces. Searching for solutions 
to such complex issues will no longer result in predicting a 
structure or a group of functions, but tracing and modeling 
complex trajectories of ecological systems simultaneously 
along time, space, and other gradients. This will also mean 
a complex and multidisciplinary approach and the develop-
ment of new mathematical tools for assisting the needs of 
ecological research. In this frame, we completed only a small 
step but showed the urge to move forward.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00442-​021-​05006-6.

Acknowledgements  This paper was written within the project 
financed by Lucian Blaga University of Sibiu Research Grants LBUS-
IRG-2017-03. We express our gratitude to those who have guided and 
supported our work: Jan Lepš and Stéphane Dray in the first stages, 
Robert K. Rose, who commented on the first draft and assisted with 
English usage, Petr Šmilauer and Cajo ter Braak during the entire 
development of the paper, the latter also sharing ideas and unpublished 
materials. Special regards to the handling editor Bryan L. Brown who 
had the wisdom and patience for supporting our work during the dif-
ficult transition from the first version of the manuscript to the present 
shape while acting also as a professional adviser. We are also thankful 
to the Editor in Chief Joel Trexler, to the Editorial Assistant Jessica 
Sanchez and to Rini Sharon Jeyaraj for their support during the review 
process, and to the anonymous referees who helped improve the paper. 
Legal permit for field surveys was provided by the Sibiu subsidiary of 
the National Agency for Protected Natural Areas in Romania, to which 
we also express sincere regards.

Author contribution statement  IS and AMB contributed equally to this 
work; IS elaborated the ideas, concepts, niche measures and statistical 
graphics, IS and AMB conceived the research, developed the algo-
rithms, analyzed the data, and wrote the revisions, AMB and IS wrote 
the original draft, IS and MS collected and processed the data from the 
field. All authors commented on previous versions of the manuscript 
and read and approved the final manuscript.

Funding  This study was funded by Lucian Blaga University of Sibiu 
research grants LBUS-IRG-2017-03.

Availability of data and material  The datasets used and/or analyzed 
during the current study are available from the corresponding author 
on reasonable request and will be soon available on a digital repository.

Code availability  The statistical software R is freeware and Canoco is 
licensed, and its license is the personal property of the corresponding 
author. Mathcad is licensed, and we used a Mathcad Education – Uni-
versity Edition Subscription license in 2020.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Ethics approval  All applicable institutional and national guidelines 
for the care and use of animals were followed, as well as those of the 
EU Council Directive 86/609/EEC on experimental use of animals. 
Legal permits for field work in protected areas were provided by the 
Sibiu subsidiary of the National Agency for Protected Natural Areas 
in Romania.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Ahmed DA, van Bodegom, Tukker A (2018) Evaluation and selection 
of functional diversity metrics with recommendations for their 
use in life cycle assessments. Int J Life Cycle Assess 24:485–500. 
https://​doi.​org/​10.​1007/​s11367-​018-​1470-8

Boersma KS, Dee LE, Miller SJ, Bogan MT, Lytle DA, Gitelman AI 
(2016) Linking multdimensional functional diversity to quantita-
tive methods: a graphical hypothesis-evaluation framework. Ecol-
ogy 97:583–593. https://​doi.​org/​10.​1890/​15-​0688

Borcard D, Legendre P (2002) All-scale spatial analysis of ecological 
data by means of principal coordinates of neighbour matrices. 
Ecol Model 153:51–68

Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial 
component of ecological variation. Ecology 73:1045–1055

Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: 
functional diversity and the maintenance of ecological processes 
and services. J Appl Ecol 48:1079–1087. https://​doi.​org/​10.​1111/j.​
1365-​2664.​2011.​02048.x

Campbell V, Legendre P, Lapointe FJ (2011) The performance of 
the congruence among distance matrices (CADM) test in phy-
logenetic analysis. Evol Biol 11:64. https://​doi.​org/​10.​1186/​
1471-​2148-​11-​64

Carmona CP, de Bello F, Mason NWH, Lepš J (2016) Traits without 
borders: integrating functional diversity across scales. Trends Ecol 
Evol 31:382–394. https://​doi.​org/​10.​1016/j.​tree.​2016.​02.​003

Céréghino R, Pillar VD, Srivastava DS, de Omena PM, MacDonald 
AAM, Barberis IM, Corbara B, Guzman LM, Leroy C, Bautista 

https://doi.org/10.1007/s00442-021-05006-6
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11367-018-1470-8
https://doi.org/10.1890/15-0688
https://doi.org/10.1111/j.1365-2664.2011.02048.x
https://doi.org/10.1111/j.1365-2664.2011.02048.x
https://doi.org/10.1186/1471-2148-11-64
https://doi.org/10.1186/1471-2148-11-64
https://doi.org/10.1016/j.tree.2016.02.003


58	 Oecologia (2021) 197:43–59

1 3

FO, Romero GQ, Trzcinski MK, Kratina P, Debastiani VJ, Gon-
çalves AZ, Marino NAC, Farjalla VF, Richardson BA, Richardson 
MJ, Dézerald O, Gilbert B, Petermann J, Talaga S, Piccoli GCO, 
Jocqué M, Montero G (2018) Constraints on the functional trait 
space of aquatic invertebrates in bromeliads. Funct Ecol 32:2435–
2447. https://​doi.​org/​10.​1111/​1365-​2435.​13141

Cianciaruso MV, Batalha MA, Gaston KJ, Petchey OL (2009) Includ-
ing intraspecific variability in functional diversity. Ecology 90:81–
89. https://​doi.​org/​10.​1890/​07-​1864.1

de Bello F, Berg MP, Dias ATC, Diniz-Filho JAF, Götzenberger L, 
Hortal J, Ladle RJ, Lepš J (2005) On the need for phylogenetic 
‘corrections’ in functional trait-based approaches. Folia Geobot 
50:349–357. https://​doi.​org/​10.​1007/​s12224-​015-​9228-6

de Bello F, Lavergne S, Meynard CN, Lepš J, Thuiller W (2010) The 
partitioning of diversity: showing Theseus a way out of the laby-
rinth. J Veg Sci 21:992–1000. https://​doi.​org/​10.​1111/j.​1654-​
1103.​2010.​01195.x

de Bello F, Carmona CP, Lepš J, Szava-Kovats R, Pärtel M (2016) 
Functional diversity through the mean trait dissimilarity: resolving 
shortcomings with existing paradigms and algorithms. Oecologia 
180:933–940. https://​doi.​org/​10.​1007/​s00442-​016-​3546-0

de Bello F, Šmilauer P, Diniz-Filho JAF, Carmona CP, Lososová Z, 
Herben T, Götzenberger L (2017) Decoupling phylogenetic and 
functional diversity to reveal hidden signals in community assem-
bly. Methods Ecol Evol 8:1200–1211. https://​doi.​org/​10.​1111/​
2041-​210X.​12735

De Cáceres M, Sol D, Lapiedra O, Legendre P (2011) A framework for 
estimating niche metrics using the resemblance between qualita-
tive resources. Oikos 120:1341–1350. https://​doi.​org/​10.​1111/j.​
1600-​0706.​2011.​19679.x

Desdevises Y, Legendre P, Azouzi L, Morand S (2003) Qunatifying 
phylogenetically structured variation. Evolution 57:2647–2652. 
https://​doi.​org/​10.​1111/j.​0014-​3820.​2003.​tb015​08.x

Diniz-Filho JAF, Bini LM, Rodriguez MA, Rangel TFLVB, Hawkins 
BA (2007) Seeing the forest for the trees: partitioning ecological 
and phylogenetic components of Bergmann’s rule in European 
Carnivora. Ecography 30:598–608. https://​doi.​org/​10.​1111/j.​2007.​
0906-​7590.​04988.x

Dolédec S, Chessel D, ter Braak CJF, Champely S (1996) Matching 
species traits to environmental variables: a new three-table ordina-
tion method. Environ Ecol Stat 3:143–166

Dray S, Legendre P (2008) Testing the species traits-environment rela-
tionships: the fourth- corner problem revisited. Ecology 89:3400–
3412. https://​doi.​org/​10.​1890/​08-​0349.1

Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the 
linking of ecological tables. Ecology 84:3078–3089

Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a com-
prehensive framework for principal coordinate analysis of neigh-
bor matrices (PCNM). Ecol Model 196:483–493. https://​doi.​org/​
10.​1016/j.​ecolm​odel.​2006.​02.​015

Dray S, Pélissier R, Couternon P, Fortin MJ, Legendre P, Peres-Neto 
PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour 
AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, 
Wagner HH (2012) Community ecology in the age of multivariate 
multiscale spatial analysis. Ecol Monogr 82(3):257–275. https://​
doi.​org/​10.​1890/​11-​1183.1

Falkner G, Obdrlík P, Castella E, Speight MCD (2001) Shelled Gas-
tropoda of Western Europe. Verlag der Friedrich-Held-Gesells-
chaft, München

Glöer P (2019) The freshwater Gastropods of the West-Palearctis. Vol-
ume I, Fresh- and brackish waters except spring and subterranean 
snails. Identification key, Anatomy, Ecology, Distribution. Neus-
tadt/Holstein, www.​mucho​wdruck.​de

Grime JP (2006) Trait convergence and trait divergence in herbaceous 
plant communities: mechanisms and consequences. J Veg Sci 
17:255–260. https://​doi.​org/​10.​1111/j.​1654-​1103.​2006.​tb024​44.x

Kearney M, Simpson SJ, Raubenheimer D, Helmuth B (2010) Model-
ling the ecological niche from functional traits. Philos Trans R Soc 
B 365:3469–3483. https://​doi.​org/​10.​1098/​rstb.​2010.​0034

Killeen IJ, Aldridge DC, Oliver PG (2004) Freshwater Bivalves of Brit-
ain and Ireland. Occasional Publication 82, Field Studies Council 
and AIDGAP: Preston Mountford, UK

Krebs C (2014) Ecological methodology. Niche measures and resource 
preferences, chap 14, 3rd edn, pp 597–653. www.​zoolo​gy.​ubc.​ca/​
~krebs/​downl​oads/​krebs_​chapt​er_​14_​2017.​pdf

Kühn I, Nobis MP, Durka W (2009) Combining spatial and phyloge-
netic eigenvector filtering in trait analysis. Global Ecol Biogeogr 
481:745–758. https://​doi.​org/​10.​1111/j.​1466-​8238.​2009.​00481.x

Laliberté E, Legendre P (2010) A distance-based framework for meas-
uring functional diversity from multiple traits. Ecology 91:299–
305. https://​doi.​org/​10.​1890/​08-​2244.1

Legendre P, Legendre L (2012) Numerical ecology, Third English. 
Elsevier, Oxford

Legendre P, Garzin R, Harmelin-Vivien M (1997) Relating behav-
iour to habitat: solutions to the fourth corner problem. Ecology 
78:547–562

Lepš J (2013) Diversity and ecosystem function. In: van der Maarel 
M, Franklin J (eds) Vegetation ecology, Second. Wiley Blackwell, 
Hoboken, pp 308–346. https://​doi.​org/​10.​1002/​97811​18452​592

Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and inter-
preting functional diversity of natural communities: practical con-
siderations matter. Preslia 78:481–501

Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A (2020) Ecological 
niche models and species distribution models in marine environ-
ments: a literature review and spatial analysis of evidence. Ecol 
Model. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2019.​108837 (Article 
108837)

Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional 
diversity measures: an overview of their redundancy and their 
ability to discriminate community assembly rules. Funct Ecol 
24:867–876. https://​doi.​org/​10.​1111/j.​1365-​2435.​2010.​01695.x

Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain 
community assembly: a unified approach. Biol Rev 86:792–812. 
https://​doi.​org/​10.​1111/j.​1469-​185X.​2010.​00171.x

Pavoine S, Vela E, Gachet S, de Bélair G, Bonsall M (2011) Linking 
patterns in phylogeny, traits, abiotic variables and space: a novel 
approach to linking environmental filtering and plant community 
assembly. J Ecol 99:165–175. https://​doi.​org/​10.​1111/j.​1365-​
2745.​2010.​01743.x

Peng FJ, ter Braak CJF, Rico A, den Brink PJV (2021) Double con-
strained ordination for assessing biological trait responses to 
multiple stressors: a case study with benthic macroinvertebrate 
communities. Sci Total Environ 754:142171. https://​doi.​org/​10.​
1016/j.​scito​tenv.​2020.​142171

Peres-Neto PR, Legendre P (2010) Estimating and controlling for spa-
tial structure in the study of ecological communities. Glob Ecol 
Biogeogr 19:174–184. https://​doi.​org/​10.​1111/j.​1466-​8238.​2009.​
00506.x

Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation par-
titioning of species data matrices: estimation and comparison of 
fractions. Ecol 87:2614–2625

Peterson AT, Soberón J (2012) Species distribution modeling and eco-
logical niche modeling: getting the concepts right. Nat Conserv 
10:102–107. https://​doi.​org/​10.​4322/​natcon.​2012.​019

Piechocki A, Wawrzyniak-Wydrowska B (2016) Guide to freshwater 
and Marine Mollusca of Poland. Bogucki Wydawnictwo Nau-
kowe, Poznań

Pinho et al (2021) Functional biogeography of Neotropical moist for-
ests: trait-climate relationships and assembly patterns of tree com-
munities. Glob Ecol Biogeogr 30:1430–1446. https://​doi.​org/​10.​
1111/​geb.​13309

https://doi.org/10.1111/1365-2435.13141
https://doi.org/10.1890/07-1864.1
https://doi.org/10.1007/s12224-015-9228-6
https://doi.org/10.1111/j.1654-1103.2010.01195.x
https://doi.org/10.1111/j.1654-1103.2010.01195.x
https://doi.org/10.1007/s00442-016-3546-0
https://doi.org/10.1111/2041-210X.12735
https://doi.org/10.1111/2041-210X.12735
https://doi.org/10.1111/j.1600-0706.2011.19679.x
https://doi.org/10.1111/j.1600-0706.2011.19679.x
https://doi.org/10.1111/j.0014-3820.2003.tb01508.x
https://doi.org/10.1111/j.2007.0906-7590.04988.x
https://doi.org/10.1111/j.2007.0906-7590.04988.x
https://doi.org/10.1890/08-0349.1
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1890/11-1183.1
https://doi.org/10.1890/11-1183.1
http://www.muchowdruck.de
https://doi.org/10.1111/j.1654-1103.2006.tb02444.x
https://doi.org/10.1098/rstb.2010.0034
http://www.zoology.ubc.ca/~krebs/downloads/krebs_chapter_14_2017.pdf
http://www.zoology.ubc.ca/~krebs/downloads/krebs_chapter_14_2017.pdf
https://doi.org/10.1111/j.1466-8238.2009.00481.x
https://doi.org/10.1890/08-2244.1
https://doi.org/10.1002/9781118452592
https://doi.org/10.1016/j.ecolmodel.2019.108837
https://doi.org/10.1111/j.1365-2435.2010.01695.x
https://doi.org/10.1111/j.1469-185X.2010.00171.x
https://doi.org/10.1111/j.1365-2745.2010.01743.x
https://doi.org/10.1111/j.1365-2745.2010.01743.x
https://doi.org/10.1016/j.scitotenv.2020.142171
https://doi.org/10.1016/j.scitotenv.2020.142171
https://doi.org/10.1111/j.1466-8238.2009.00506.x
https://doi.org/10.1111/j.1466-8238.2009.00506.x
https://doi.org/10.4322/natcon.2012.019
https://doi.org/10.1111/geb.13309
https://doi.org/10.1111/geb.13309


59Oecologia (2021) 197:43–59	

1 3

Rao CR (1982) Diversity and dissimilarity coefficients: a unified 
approach. Theor Popul Biol 21:24–43. https://​doi.​org/​10.​1016/​
0040-​5809(82)​90004-1

Ricotta C, de Bello F, Moretti M, Caccianiga M, Cerabolini BEL, 
Pavoine S (2016) Measuring the functional redundancy of bio-
logical communities: a quantitative guide. Methods Ecol Evol 
7:1386–1395. https://​doi.​org/​10.​1111/​2041-​210X.​12604

Sharma S, Legendre P, De Cáceres M, Boisclair D (2011) The role 
of environmental and spatial processes in structuring native and 
non-native fish communities across thousands of lakes. Ecography 
34:762–771. https://​doi.​org/​10.​1111/j.​1600-​0587.​2010.​06811.x

Sîrbu I (2006) Aspects concerning the distribution and ecology of the 
freshwater molluscs from the Romanian Inner Carpathian Basin. 
Heldia 6:115–134

Sîrbu I, Benedek AM (2018) Trends in Unionidae (Mollusca, Bivalvia) 
communities in Romania: an analysis of environmental gradients 
and temporal changes. Hydrobiologia 810:295–314. https://​doi.​
org/​10.​1007/​s10750-​017-​3173-8

Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using 
Canoco 5, 2nd edn. Cambridge University Press, Cambridge

Šmilauerova M, Šmilauer P (2007) What youngsters say about 
adults: seedling roots reflect clonal traits of adult plants. J Ecol 
95:406–413

Soberón J, Osorio-Olvera L, Peterson T (2017) Diferencias concep-
tuales entre modelacion de nichos y modelacion de areas de 
distribucion. Revista Mexicana De Biodiversidad 88:437–441. 
https://​doi.​org/​10.​1016/j.​rmb.​2017.​03.​011

Sterk M, Gort G, Klimkowska A, van Ruijven J, van Teeffelen AJA, 
Wamelink GWW (2013) Assess ecosystem resilience: Linking 
response and effect traits to environmental variability. Ecol Indic 
30:21–27. https://​doi.​org/​10.​1016/j.​ecoli​nd.​2013.​02.​001

ter Braak CJF (1987) Unimodal models to relate species to environ-
ment. Agricultural Mathematics Group, Wageningen. http://​ede-
pot.​wur.​nl/​201452

ter Braak CJF, Šmilauer P (2018) Canoco reference manual and user’s 
guide: software for ordination (version 5.10). Microcomputer 
Power, Ithaca

ter Braak CJF, van Dam H (1989) Inferring pH from diatoms: a com-
parison of old and new calibration methods. Hydrobiologia 
178:209–223. https://​doi.​org/​10.​1007/​BF000​06028

ter Braak CJF, Šmilauer P, Dray S (2018) Algorithms and biplots for 
double constrained correspondence analysis. Environ Ecol Stat 
25:171–197. https://​doi.​org/​10.​1007/​s10651-​017-​0395-x

Tucker CM, Cadotte MW (2013) Unifying measures of biodiversity: 
understanding when richness and phylogenetic diversity should 
be congruent. Divers Distrib 19:845–854. https://​doi.​org/​10.​1111/​
ddi.​12087

Violle C, Jiang L (2009) Towards a trait-based quantification of species 
niche. J Plant Ecol 2:87–93. https://​doi.​org/​10.​1093/​jpe/​rtp007

Xu J, Dang H, Wang M, Chai Y, Guo Y, Chen Y, Zhang C, Yue M 
(2019) Is phylogeny more useful than functional traits for assess-
ing diversity patterns under community assembly processes? For-
ests. https://​doi.​org/​10.​3390/​f1012​1159 (Article 1159)

Software

Canoco 5.12 is registered software and can be aquired from Microcom-
puter Power, 111 Clover Lane Ithaca, NY 14850 USA. https://​
www.​micro​compu​terpo​wer.​com

Harrell Jr FE with contributions from Dupont C. and many others 
(2019) Hmisc: Harrell Miscellaneous. R package version 4.2–0. 
https://​CRAN.R-​proje​ct.​org/​packa​ge=​Hmisc

PTC Mathcad 14 and Mathcad Prime 5.0 are registered software devel-
oped by the Parametric Technology Corporation. https://​www.​ptc.​
com/​en/​produ​cts/​mathc​ad.​ https://​www.​mathc​ad.​com/

R Core Team (2019) R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. URL https://​www.R-​proje​ct.​org/

Support site: http://​www.​canoc​o5.​com/

https://doi.org/10.1016/0040-5809(82)90004-1
https://doi.org/10.1016/0040-5809(82)90004-1
https://doi.org/10.1111/2041-210X.12604
https://doi.org/10.1111/j.1600-0587.2010.06811.x
https://doi.org/10.1007/s10750-017-3173-8
https://doi.org/10.1007/s10750-017-3173-8
https://doi.org/10.1016/j.rmb.2017.03.011
https://doi.org/10.1016/j.ecolind.2013.02.001
http://edepot.wur.nl/201452
http://edepot.wur.nl/201452
https://doi.org/10.1007/BF00006028
https://doi.org/10.1007/s10651-017-0395-x
https://doi.org/10.1111/ddi.12087
https://doi.org/10.1111/ddi.12087
https://doi.org/10.1093/jpe/rtp007
https://doi.org/10.3390/f10121159
https://www.microcomputerpower.com
https://www.microcomputerpower.com
https://CRAN.R-project.org/package=Hmisc
https://www.ptc.com/en/products/mathcad
https://www.ptc.com/en/products/mathcad
https://www.R-project.org/
http://www.canoco5.com/

	Variation partitioning in double-constrained multivariate analyses: linking communities, environment, space, functional traits, and ecological niches
	Abstract
	Introduction
	Materials and methods
	Algorithm for variation decomposition and testing of CENT and CENTS space
	Estimating and testing the variation parts
	Niche metrics
	Case study: freshwater mollusk communities from the middle Olt River

	Results
	CENT(S) variation partitioning for the mollusk dataset
	Niche-based diversity indices

	Discussion
	Expanding further the framework

	Conclusions
	Acknowledgements 
	References




