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Abstract: In this exploratory study, mixed meals specifically formulated to differ in inflammatory
potential were tested to determine whether they could differentially impact circulating levels of in-
flammatory markers in adults above a healthy weight. Complete data were analyzed from 11 adults
(6 males and 5 females) aged 54–63 years with median BMI of 30.0 (27.1–31.6) kg/m2. In a crossover
study design, each participant consumed an isocaloric (2.2 MJ) meal with either a low (Anti-meal),
moderate (Neutr-meal), or high (Pro-meal) inflammatory potential. Fasting and postprandial blood
samples were analyzed for plasma levels of IL-6, IL-1β, TNF-α, IL-10, and metabolic makers. Post-
prandial plasma IL-6, IL-1β, TNF-α, and IL-10 incremental areas under the curve (iAUC) were not
different between the three meals (p > 0.05). There was a trend of an increase in IL-6 with time in all
three meals, but no changes were obvious for the other measured cytokines. The Pro-meal induced an
increased postprandial iAUC for triglycerides compared to the Anti-meal and Neutr-meal (p = 0.004
and p = 0.012, respectively). Single meals, regardless of their theoretical inflammatory potential, did
not substantially shift circulating inflammatory markers, suggesting that longer-term dietary patterns
are important rather than single dietary exposures in the pathology of metabolic conditions.

Keywords: inflammation; cytokines; obesity; cardiovascular disease; postprandial; dietary
inflammatory index

1. Introduction

Subclinical chronic inflammation is the underlying pathology of obesity-related chronic
diseases, including cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM),
which continue to be the leading causes of morbidity and mortality worldwide [1,2]. In-
flammation underpins natural decline in health with ageing [3–5], but increased adiposity
is also a key driver of inflammation, and an unhealthy diet is a major modifiable risk factor
that plays a central role in initiating the inflammatory cascade observed in obesity [6,7].
While the assessment of dietary patterns is essential for understanding the role of food
in the pathogenesis of chronic disease, the acute postprandial response is reflective of
metabolic health and can help us further understand the interplay between nutrients and
tissues [8]. Consumption of meals that reduce postprandial inflammation ultimately de-
crease overall inflammatory status and protect against chronic metabolic disease. This is
particularly important when investigating the inflammatory effects of food, with research
indicating a need to better understand how nutritional composition of meals can acutely
affect inflammatory markers independent of changes in adiposity [9].

Postprandial inflammation is partly mediated by insulin [10] and lipids [11], and this
stress response is usually modest, with homeostasis being rapidly restored. However, in
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metabolically compromised individuals, such as older people and those who are well above
a healthy weight, the postprandial inflammatory response may be further exaggerated
by prolonged hyperinsulinemia, hyperglycemia [12], and hyperlipidemia [13]. Repeated
consumption of meals that lead to adverse metabolic responses, chiefly those high in
saturated fat and added sugars, may contribute to subclinical chronic inflammation in the
long term [14,15].

In the state of subclinical chronic inflammation, fasting plasma levels of proinflam-
matory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukins (IL-1β, IL-6),
are increased, whereas anti-inflammatory cytokines, such as interleukin 10 (IL-10), are
decreased [8]. This inflammation leads to the inhibition of tissue insulin signaling, resulting
in dysregulated whole-body metabolism and elevated circulating levels of glucose and
lipids [16–18]. Thus, these classical markers of inflammation are routinely measured to
assess metabolic–inflammatory changes in postprandial meal studies. A number of these
cytokines have been shown to acutely respond (≥2 h and ≤8 h) to a meal stimulus, albeit
inconsistently [19]. Interleukin-6 is the only classical inflammatory marker known to con-
sistently increase with consumption of meals that induce metabolic stress (e.g., high-energy,
high-fat, and high-carbohydrate foods) [19–21]. Regardless, these markers are the most
frequently assessed inflammatory markers in postprandial studies to date [8].

The postprandial proinflammatory effects of food have been demonstrated after a
single high-fat meal [19,20], and while some studies have shown that the addition of specific
food compounds (such as dietary antioxidants and polyunsaturated fats) can blunt this
acute inflammatory response, the extent of this response has been inconsistent [22–26].
These inconsistences may be explained by the inability of existing research to account for
the complex nutritional matrix that exists at meal times. Few studies have examined the
postprandial inflammatory response of mixed meals with varying nutritional compositions
on circulating cytokines. One study compared an American Heart Association (AHA)
meal with a fast food style (FFS) meal [27]. The authors found there was a significant
attenuation of circulating IL-1β concentration following the AHA meal compared to the
FFS meal, but no differences were observed in levels of IL-6 or TNFα between the two
meals [27]. Milan et al. [28] compared postprandial IL-6, IL-1β, and TNF-α after a high-fat
McDonald’s restaurant meal and a low-fat Australian Guide to Healthy Eating meal in
young (20–25 years) and older (60–75 years) adults who were healthy. The authors reported
differences in inflammatory responses between age groups but not between meal types. It
was reported that older healthy adults had increased levels of monocyte chemoattractant
protein (MCP)-1 and IL-6 levels compared to younger adults. There is a paucity of studies
that assess acute postprandial inflammatory effects of mixed meals that differ by more than
the addition or removal of a single food or nutrient.

We aimed to determine whether mixed meals designed to vary in nutrient composition
and inflammatory potential were capable of differentially impacting circulating levels of
IL-6, IL-1β, TNF-α, and IL-10 in men and women at an increased risk of chronic metabolic
disease, namely older adults above a healthy weight. The test meals were purposefully
designed to be (a) an anti-inflammatory meal, (b) a typical healthy meal (neutral meal), or
(c) a highly processed meal (proinflammatory meal). These three meals were assessed for
inflammatory potential using the dietary inflammatory index (DII), which is a scoring tool
that categorizes an individual’s diet on a continuum from maximally anti-inflammatory
(score of −8.87) to maximally proinflammatory (score of +7.98) [29]. To the research team’s
knowledge, this is the first time the DII has been used to determine the inflammatory
potential of a single meal. We hypothesized that circulating inflammatory markers would be
attenuated during the postprandial period following consumption of the anti-inflammatory
meal compared to the neutral and proinflammatory meal.
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2. Materials and Methods
2.1. Study Participants

The study was conducted at the Be Active Sleep Eat (BASE) facility at Monash Uni-
versity, Australia, between November 2017 and October 2018. Participants were recruited
from the Melbourne metropolitan area via flyers and social media. Interested participants
completed an online screening questionnaire (Qualtrics® 2019, Provo, UT, USA) for as-
sessment of inclusion and exclusion criteria. Eligible participants were men aged ≥50
and ≤75 years or postmenopausal women with a body mass index (BMI) > 25 kg/m2.
Exclusion criteria were diagnosis of a chronic disease (such as CVD or T2DM); known aller-
gies/intolerances to the study foods; loss of >10% total body weight in the 6 months preced-
ing the study; smokers; history of drug or alcohol addiction; and use of anti-inflammatory
medications, such as aspirin, steroids, or nonsteroidal anti-inflammatory drugs. Eligible
participants were invited to the BASE facility to confirm eligibility with measurements in-
cluding height (Holtain stadiometer to 0.1 cm, Holtain Ltd., Crosswell, Pembrokeshire, UK),
weight (Seca scale 720 to 0.01 kg, Seca Group, Hamburg, Germany), and umbilical waist
circumference (Figure Finder stretch resistant tape, Novel Products, Rockton, IL, USA). All
measurements were taken in duplicate following standardized procedures and recorded to
the nearest 0.1 decimal place. Blood pressure was measured using a digital blood pressure
monitor (Welch Allyn ProBP 3400) on two occasions, a minimum of 5 min apart, with
the participant sitting. This study was conducted in accordance with the Declaration of
Helsinki. Ethics approval was granted through Monash University Human Research Ethics
Committee (MUHREC no. 8773). All participants provided written, informed consent prior
to commencement in the study.

2.2. Study Design and Procedures

This pilot trial was retrospectively registered with the Australian New Zealand Clinical
Trial Registry (ACTRN12620000525987, http://www.anzctr.org.au/) as a randomized,
controlled, crossover design. There were a total of three study days, each separated by
a one-week washout period (Figure 1). Participants were asked to abstain from alcohol
consumption and avoid vigorous exercise for 24 h prior to the study days. They were
also asked to consume a ready-made standardized meal that provided 3 MJ of energy
(carbohydrates total energy (E) 55%, protein E 30%, and fat E 20%) the night prior to
each study day. The standard meal comprised a Healthy Choice ravioli, a 50 g cheese
and cracker pack, and 200 mL of apple juice. After fasting for 12 h overnight (water
was permitted ad libitum), participants arrived at the test center by 9:00 a.m. Prior to
collecting baseline measures, participants were asked if they had experienced any cold- or
flu-like symptoms in the past seven days, and study days were rescheduled if required.
Anthropometric measurements were taken, and the study nurse then inserted an indwelling
catheter into the antecubital vein. Blood draws were obtained at baseline (fasting), and
breakfast was provided to participants, which included one of three experimental meals: a
proinflammatory meal (Pro-meal), a neutral meal (Neutr-meal), or an anti-inflammatory
meal (Anti-meal). Participants were supervised to ensure all of the meal was consumed
within 15 min. Participants were not permitted to consume any food or drink except water
(provided ad libitum) during the study session. After participants had consumed the meal,
blood was collected at 15, 30, 45, 60, 120, 180, 240, and 300 min. Plasma samples (for
glucose, insulin, and inflammatory markers) were collected in EDTA tubes (BD, Melbourne,
Australia) and immediately centrifuged at 1.5 RCF for 15 min at 4 ◦C. Serum samples (for
lipids) were collected in SST-II tubes (BD, Melbourne, Australia) and allowed to clot at
room temperature (30–60 min), then centrifuged at 1.3 RCF for 10 min at 22 ◦C. Plasma and
serum samples were aliquoted and frozen at −80 ◦C until analysis.

http://www.anzctr.org.au/
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Figure 1. Crossover study design. IPAQ: International Physical Activity Questionnaire.

2.3. Meal Development and Composition

The Pro-meal (a cheese and bacon croissant) was a highly processed meal obtained
from commercially available products. The Neutr-meal (a chicken, vegetable, red kidney
bean, and wholegrain pasta minestrone soup) was a typical healthy meal. The Anti-meal (a
spiced chicken and red kidney bean curry served with brown rice, flaxseeds, and citrus kefir
yoghurt) was an adaptation of the Neutr-meal specifically designed to optimize foods that
contain anti-inflammatory compounds, including, but not limited to, β-carotene, eugenol,
fiber, omega-3 fatty acids, vitamin A, vitamin E, and flavonoids.

All three meals were matched for energy content using FoodWorks nutrition software
(FoodWorks 2017, Xyris Software, Queensland, Australia). Each of the three meals provided
approximately 25% of an adult’s average daily energy intake (Table 1). The test meals were
assessed for inflammatory status using the DII [29], a tool routinely used in research that
categorizes an individual’s diet on a continuum from maximally anti-inflammatory (score
of −8.87) to maximally proinflammatory (score of +7.98). In this study, it was used to create
an inflammatory score for each test meal, with the results showing a score of +9.36 for the
Pro-meal, −2.76 for the Neutr-meal, and −6.24 for the Anti-meal (Figure S1, Tables S1–S3).
To the research team’s knowledge, this is the first time the DII has been used to determine
the inflammatory potential of a single meal (Figure S1). It should be noted that the DII
score generated for the Pro-meal sat outside of the theoretical bounds of −8.87 to +7.98.
However, this was a novel application, and the purpose of generating DII scores for each
meal was purely to emphasize their differences in inflammatory potential.
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Table 1. Meal composition and dietary inflammatory index scores.

Nutrient Pro-Meal 1 Neutr-Meal 2 Anti-Meal 3

Energy, kJ
kcal

2280
545

2150
514

2335
558

% Fat, % kJ 64 25 35
% Carbohydrate, % kJ 19 33 36

% Protein, % kJ 17 34 19
Fat, % kJ 39.3 14.5 21.9

Saturated fat, g 20.4 6.2 3.4
Monounsaturated fat, g 13.7 5.3 9.4
Polyunsaturated fat, g 2.50 1.46 7.18

Carbohydrate, g 25.2 42.8 53.1
Fibre, g 1.96 15.5 19.0

Protein, g 22.2 43.1 25.7
DII score 4 +9.36 −2.76 −6.24

1 Cheese and bacon croissant. 2 Comprised mixed vegetables, red kidney beans, wholegrain pasta, and lean
chicken breast cooked in a tomato-based stock and served with parmesan cheese. 3 Neutr-meal plus increased
quantity of extra virgin olive oil, garlic, onion, and pepper; addition of turmeric, cumin, ginger, cloves, rosemary,
thyme, saffron, silver beet, eggplant, tomato paste, and flaxseeds; and substitution of brown rice in place of
wholemeal pasta and natural yoghurt and kefir in place of parmesan cheese. 4 The test meals were assessed
for inflammatory status using the dietary inflammatory index (DII [29]), a tool routinely used in research that
categorizes an individual’s diet on a continuum from maximally anti-inflammatory (score of −8.87) to maximally
proinflammatory (score of +7.98). Abbreviations: Anti, anti-inflammatory; DII, dietary inflammatory index; Neutr,
neutral; Pro, proinflammatory.

2.4. Baseline Nutritional Intake and Physical Activity Levels

Prior to their first study day, participants completed a validated physical activity ques-
tionnaire (International Physical Activity Questionnaire or IPAQ) [27]. The IPAQ comprises
four items, namely leisure time, domestic and gardening activities, work-related activi-
ties, and transport-related activities. Total metabolic equivalent (MET)-minutes per week
were calculated by summing the total MET-min per week for walking, moderate-intensity
activity, and vigorous-intensity activity according to Guidelines for Data Processing and
Analysis of the IPAQ [28].

Self-reported food records were obtained for three days prior to the participants’ first
study day. A registered accredited practicing dietitian trained participants to weigh their
food and/or estimate serving sizes using common household measures (e.g., cups and
tablespoons) as well as record brand names and cooking methods. A detailed diet history
was also recorded by the study dietitian encompassing important dietary pattern data, such
as seasonal influences, frequency, and diversity of foods consumed. Collectively, the food
records and diet histories were analyzed by FoodWorks nutrition software (FoodWorks
2017, Xyris Software, Spring Hill, Qld, Australia).

2.5. Anthropometry, Body Composition, and Blood Pressure

During the first testing visit, participants’ body composition was determined by
a total body scan on the GE LUNAR iDXA narrow-angle dual-energy X-ray densito-
meter with SmartFAN™ (GE Medical, Software Lunar DPX enCORE 2012 version 14.0,
Madison, WI, USA).

At each visit, participants’ height, weight, umbilical waist circumference, and blood
pressure were measured as per screening procedures. Anthropometric measures were
monitored to ensure weight stability throughout the study period.

2.6. Inflammatory and Metabolic Markers

The plasma inflammatory markers IL-6, IL-1β, TNF-α, and IL-10 were measured on
site with MILLIPLEX® map assays (MILLIPLEX MAP Human High Sensitivity T-Cell
HSTCMAG-28SK; Merck Millipore, Billerica, MA, USA) using MAGPIX® with xPONENT®

software (Luminex Corporation, Texas, United States) according to the manufacturer’s
instructions. All samples were run in duplicate; if the duplicate values varied by >20%, the
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sample was reanalyzed. The intra-assay coefficient of variation (CV) was <10% for IL-6,
TNF-α, IL-1β, and IL-10. In-house controls were used across all plates to standardize results
between assays. Plasma CRP was analyzed at a hospital-certified pathology laboratory
(Monash Medical Centre, Clayton, Australia) according to standard commercial enzyme-
linked immunosorbent assay (ELISA) techniques.

Serum lipid concentrations were measured in house using Thermo Fisher Indiko clini-
cal chemistry analyzer (Thermo Fisher Scientific, Vantaa, Finland) by enzymatic colorimetric
methods using commercially available kits as per Thermo Fisher Scientific instructions
(total cholesterol, 981813; triglycerides, 981786; LDL cholesterol, 981656; HDL cholesterol,
981823). The multicalibrators sCal (981831) and HDL/LDL calibrator (981657) were used to
calibrate the analyzer, together with the control serums Nortrol (981043), Abtrol (981044),
Lipotrol (981653), and Lipotrol abnormal (981907). All samples were run in duplicate; any
sample with a coefficient of variation >10% was rerun. Intra-assay coefficient of variation
was <5% for all lipids. The between-assay coefficient of variation was <5%. Plasma insulin
and glucose were measured using standard enzyme-linked immunosorbent assay (ELISA)
techniques at a hospital-certified pathology laboratory.

2.7. Randomisation, Blinding, and Statistical Analysis

A total of 12 adults were recruited to participate in this pilot study. As this was a novel
protocol, there were no similar studies using energy-matched mixed meals with such vastly
different nutrient compositions upon which a priori power calculation could be performed.
The sequence for allocation to the order of meal type was generated using an electronic
random number generator and concealed in a password-protected folder. It was generated
by a researcher who was not involved in eligibility assessment; A.D. assigned participants
to the meal order. The researcher responsible for data collection (S.C.) knew in advance the
meal type allocation for each study day. Participants were not blinded to meal order in this
study because the nature of the intervention meals prevented blinding or masking.

Biochemical data are presented as incremental area under the curve (iAUC), the pre-
ferred method for describing the acute metabolic response to meals [29,30]. Inflammatory
markers and lipids were calculated over a five-hour period (0 to 300 min), whereas the
iAUC for glucose and insulin were assessed over a three-hour period (0 to 180 min). Incre-
mental AUC was calculated using the trapezoid rule, which ignores the area beneath the
baseline concentration.

Statistical analyses were performed using SPSS software package for Windows (version 24.0;
IBM Corporation, New York, NY, USA). Due to the small sample size, all data were treated
as nonparametric during statistical analysis and reported as median (IQR). Friedman
test followed by pairwise comparisons using Wilcoxon signed-rank test were used to
make comparisons between the three test meals for iAUC glucose, insulin, lipids, and
inflammatory markers. Wilcoxon signed-rank test was used to compare peak concentrations
with baseline concentrations for inflammatory markers. The Mann–Whitney U test was
used to compare measures between male and female participants. Data were visualized
using GraphPad Prism software program for Windows (version 8.0.0; GraphPad Software,
San Diego, CA, USA).

Due to missing samples during the Anti-meal challenge owing to complications with
cannulation, one participant was excluded from analysis. Statistical significance was
considered at p < 0.05.

3. Results
3.1. Participant Enrolment and Characteristics at Baseline

A flowchart for recruitment is detailed in Figure 2. A total of 12 participants completed
the study (n = 6 females, 6 males) with no attrition; however, one participant was removed
from the final analysis, so complete data from the remaining 11 participants were analyzed.
The median (IQR) age for the group (n = 11) was 61 (54–63) years and median BMI was 30.0
(27.1–31.6) kg/m2 (Table 2). All 11 participants were White. There were no changes in the
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participants’ BMI (kg/m2) (Anti-meal 30.0 (27.1–31.6) vs. Neutr-meal 30.1 (27.1–31.5) vs.
Pro-meal 29.7 (27.1–31.6), p = 0.739) or waist circumference (cm) (Anti-meal 101.0 (94.5–104)
vs. Neutr-meal 101.1 (94.0–105.0) vs. Pro-meal 101.5 (93.9–104.5), p = 0.081) during the
study period.
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Table 2. Baseline physical and biochemical characteristics of study participants 1.

Variable Total Population (n = 11) Male (n = 5) Female (n = 6) Male vs. Female
p-Value 2

Waist circumference, cm 101
(95–104)

101
(97–110)

98
(90–107) 0.465

Waist-to-hip ratio 0.92
(0.88–0.97)

0.94
(0.89–1.00)

0.89
(0.86–0.97) 0.462

Total body fat, % 37
(30–43)

30
(27–36)

42
(36–47) 0.028

Total visceral fat, g 1285
(1120–2168)

1285
(1179–2425)

1553
(766–2387) 0.715

Systolic blood pressure, mm Hg 125
(120–137)

125
(122–140)

127
(117–132) 0.409

Diastolic blood pressure, mm Hg 78
(76–85)

77
(74–86)

80
(75–86) 0.855

Plasma glucose, mmol/L 5.50
(5.25–6.00)

5.70
(5.50–6.20)

5.35
(5.05–5.73) 0.014

Plasma insulin, mIU/L 5.30
(3.85–10.35)

5.30
(3.20–10.50)

5.50
(3.88–9.40) 0.885

Insulin resistance (HOMA-IR) 1.25
(0.94–2.73)

1.25
(0.85–3.20)

1.20
(0.97–2.40) 0.828

Serum TC, mmol/L 6.04
(5.19–6.56)

5.46
(5.08–6.17)

6.18
(5.80–6.95) 0.023

Serum LDL, mmol/L 4.02
(3.48–4.55)

3.69
(3.29–4.29)

4.15
(3.70–4.57) 0.065

Serum HDL, mmol/L 1.23
(1.05–1.76)

1.06
(0.96–1.26)

1.41
(1.19–1.84) 0.004

Serum TC/HDL ratio 4.65
(3.18–5.22)

4.65
(3.12–5.05)

4.46
(3.14–5.31) 0.800

Serum TAG, mmol/L 1.44
(1.18–2.03)

1.40
(1.21–1.95)

1.56
(1.13–2.20) 0.745

Plasma CRP, mg/L 1.00
(0.70–1.90)

0.70
(0.50–2.75)

1.05
(0.85–1.70) 0.313

Plasma IL-6, pg/mL 1.36
(0.64–1.92)

0.64
(0.44–1.24)

1.64
(1.32–2.58) 0.001

Plasma IL-1β, pg/mL 0.38
(0.25–0.51)

0.28
(0.18–0.44)

0.48
(0.34–0.54) 0.019

Plasma TNF-α, pg/mL 3.00
(1.96–3.48)

2.08
(1.74–3.00)

3.35
(2.76–3.52) 0.014

Plasma IL-10, pg/mL 6.04
(3.98–10.15)

4.90
(3.66–8.02)

6.88
(4.67–13.58) 0.051

Comorbidities, n (%)
Hypertension

Hypercholesterolemia
6 (55)
3 (27)

4 (67)
1 (17)

2 (33)
2 (33)

-
-

Medication use, n (%)
Antihypertensive
Statins/fibrates
Anticoagulants

6 (55)
3 (27)
2 (18)

4 (67)
1 (17)
1 (17)

2 (33)
2 (33)
1 (17)

-
-
-

1 Values are median (IQR) unless otherwise specified. 2 Female and male baseline characteristics were compared
using the Mann–Whitney U test. Abbreviations: LDL, low-density lipoprotein cholesterol; HDL, high-density
lipoprotein cholesterol; TC, total cholesterol; TAG, triglycerides; IL-6, interleukin-6; IL-1β, interleukin-1β; TNF-α,
tumor necrosis factor-α; IL-10, interleukin-10.

Females had a significantly higher proportion of total body fat (p = 0.028) and higher
levels of fasting IL-6 (p = 0.008), IL-1β (p = 0.019), TNF-α (p = 0.014), total cholesterol
(p = 0.023), and HDL cholesterol (p = 0.004) compared to males. Males had significantly
higher levels of fasting glucose compared to females (p = 0.014). There were no significant
differences in total cholesterol/HDL ratio or total visceral fat (g) between sexes.

Baseline dietary analyses revealed that participants consumed low intake of fruits
(<1 serve/day) and vegetables (<4 serves/day) and high intake of refined grains (>50% of
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total grain intake) and saturated fat (13% total energy/day). The percentage energy intake from
total fat was significantly higher for females compared to males (p = 0.045), although there were
no significant differences observed between sexes for the other measured dietary parameters.
Overall, participants had a high level of physical activity (>2000 MET-min/week) (Table 3).

Table 3. Baseline dietary intake per day and physical activity levels of study participants 1.

Variable 2 Total Population (n = 11) Male (n = 5) Female (n = 6) p-Value 3

Energy, kJ 9169
(7230–10,448)

9169
(7413–10,503)

8903
(7212–10,502) 1.000

Protein, g
% energy

95.8
(87.2–117.2)

20.2
(18.2–21.0)

100.4
(96.5–123.9)

21.0
(18.6–22.5)

90.0
(79.6–109.6)

19.9
(14.6–21.1)

0.100
0.361

Fat, g
% energy

85.0
(76.2–116.8)

39.4
(37.0–40.9)

76.8
(68.3–112.8)

37.0
(31.3–39.7)

98.2
(77.1–127.3)

40.0
(39.3–45.2)

0.201
0.045

Saturated fat, g 31.2
(24.7–36.5)

24.7
(21.0–40.2)

32.6
(25.5–37.4) 0.584

MUFA, g 33.2
(29.8–52.4)

33.2
(27.6–48.1)

42.4
(31.6–56.8) 0.273

PUFA, g 14.7
(12.5–19.1)

14.2
(11.7–15.1)

17.3
(12.0–23.4) 0.361

Omega-3 fat, g 0.24
(0.13–0.75)

0.31
(0.18–0.74)

0.17
(0.12–1.17) 0.465

Omega-6 fat, g 12.3
(10.3–17.0)

11.4
(9.4–12.8)

15.2
(9.9–19.0) 0.201

Trans fat, g 1.17
(0.99–1.55)

1.05
(0.97–1.90)

1.24
(0.97–1.60) 0.855

Carbohydrate, g
% energy

194.9
(147.2–225.9)

34.0
(30.6–38.2)

208.3
(148.2–241.5)

34.0
(31.1–41.5)

190.4
(143.3–230.4)

36.0
(30.0–38.7)

0.715
0.855

Sugar, g 73.3
(49.8–87.7)

73.3
(53.1–92.9)

73.7
(48.8–87.4) 0.584

Fibre, g 25.2
(21.7–33.9)

25.2
(23.1–33.0)

25.4
(19.5–36.2) 0.715

Sodium, mg 2268.7
(1937.7–3056.0)

2268.7
(1783.3–3048.7)

2170.3
(1721.9–3744.7) 1.000

Vegetable serves 4 3.80
(3.10–3.93)

3.71
(3.13–3.82)

3.91
(2.90–5.37) 0.273

Fruit serves 4 0.74
(0.37–1.20)

0.74
(0.15–2.81)

0.66
(0.38–0.99) 0.855

Grain serves 4

Wholegrain serves
Refined grain serves

5.73
(5.18–6.97)

2.51
(0.95–4.06)

3.80
(2.56–6.00)

6.51
(5.44–7.88)

2.51
(1.34–3.38)

4.00
(2.14–6.43)

5.32
(5.06–7.78)

2.47
(0.84–4.66)

3.20
(2.20–5.06)

0.465
0.855
0.361

Total MET-min/week
n (%) inactive (IPAQ 1)

n (%) minimally active (IPAQ 2)
n (%) HEPA active (IPAQ 3)

2079 (1152–4586)
1 (9)
5 (45)
5 (45)

2079 (807–5340)
1 (17)
2 (33)
3 (50)

3018 (1563–5025)
0 (0)
3 (50)
3 (50)

0.855
-
-
-

1 Values are median (Q1–Q3) unless otherwise indicated. 2 Average per day. 3 Female and male baseline
characteristics were compared using the Mann–Whitney U test. 4 According to the Australian Guide to Healthy
Eating. Abbreviations: MET, metabolic equivalent; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated
fatty acids; HEPA, health enhancing physical activity (a high active category).



Nutrients 2022, 14, 1470 10 of 17

3.2. Plasma Inflammatory Markers

Postprandial curves for plasma inflammatory markers are shown in Figure 3, and iAUC
values are reported in Table 4. Fasting plasma IL-6, IL-1β, TNF-α, and IL-10 concentrations
were not significantly different between the three meal challenges (p > 0.05 for all) (Figure 3).
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Figure 3. Postprandial plasma (a) IL-6, (b) Il-1β, (c) TNF-α, and (d) IL-10 concentrations after
ingestion of Anti-meal, Neutr-meal, or Pro-meal. Data are presented as median ± IQR (n = 11),
Friedman test followed by pairwise comparisons using Wilcoxon signed-rank test comparing iAUC
between the test meals. * p < 0.05 and ~ p = 0.05 by Wilcoxon signed-rank test comparing peak with
baseline concentrations within test meals. Abbreviations: Anti, anti-inflammatory; Neutr, neutral;
Pro, proinflammatory.

Table 4. Postprandial plasma IL-6, IL-1β, TNF-α, and IL-10 measures for Anti-meal, Neutr-meal,
and Pro-meal.

Outcome 1 Anti-Meal Neutr-Meal Pro-Meal p-Value 2

IL-6 iAUC 70.8
(23.6–267.6)

59.2
(27.9–177.2)

78.8
(6.3–138.3) 0.695

IL-1β iAUC 9.6
(6.0–28.3)

13.4
(4.8–28.2)

6.9
(0.3–18.6) 0.695

TNF-α iAUC 114.6
(6.9–134.4)

66.9
(5.5–166.9)

72.7
(16.9–187.8) 0.761

IL-10 iAUC 177.0
(59.6–423.9)

201.6
(84.8–368.8)

149.3
(0–414.6) 0.761

1 Data are presented as median (IQR) (n = 11), and iAUC is represented in pg/mL·min. 2 Friedman test followed
by pairwise comparisons using Wilcoxon signed-rank test were used to make comparisons between the three test
meals. Abbreviations: Anti, anti-inflammatory; Neutr, neutral; Pro, proinflammatory; iAUC, incremental area
under the curve.
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There were no significant postprandial differences in iAUC for IL-6, IL-1β, IL-10, and
TNF-α between the three test meals (Table 4). The peak IL-6 concentrations at 240 min were
increased compared to fasting levels after the Neutr-meal (1.38 (0.48–2.1) vs. 2.14 (0.92–3.48),
p = 0.017) and Anti-meal (1.24 (0.68–2.44) vs. 2.10 (0.66–3.68), p = 0.016). The peak IL-1β
concentration at 180 min was increased compared to fasting levels after the Neutr-meal
(0.34 (0.28–0.52) vs. 0.46 (0.28–0.56), p = 0.011). The peak IL-10 concentration at 60 min
was increased compared to fasting levels after the Neutr-meal (6.04 (3.96–9.60) vs. 8.02
(4.06–15.74), p = 0.050).

There was a high degree of variability both within and between participants for all
measured inflammatory makers (Figure S2). There were no significant differences between
females and males in their postprandial response to the three test meals for all measured
inflammatory markers (p ≥ 0.05 for all) (Table S4).

3.3. Plasma Glucose, Insulin, and Serum Lipids

Postprandial curves for plasma glucose, insulin, and serum lipids are illustrated in
Figure 4, and iAUC values are reported in Table 5.
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Figure 4. Postprandial (a) plasma glucose, (b) plasma insulin, (c) serum triglycerides, and (d) serum
total cholesterol concentrations after ingestion of Anti-meal, Neutr-meal or Pro-meal. Data are
presented as median ± IQR (n = 11). # p < 0.05 by Friedman test followed by pairwise comparisons
using Wilcoxon signed-rank test comparing iAUC between test meals. Abbreviations: Anti, anti-
inflammatory; Neutr, neutral; Pro, proinflammatory.
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Table 5. Postprandial plasma glucose, insulin, and serum lipid measures for Anti-meal, Neutr-meal
and Pro-meal.

Outcome 1 Anti-Meal Neutr-Meal Pro-Meal p-Value 2

Glucose iAUC 24.6
(8.9–124.0)

40.8
(24.1–67.2)

23.3
(9.8–43.2) 0.336

Insulin iAUC 1693.5
(734.8–3258.6)

2170.5
(1759.5–4014.0)

2767.5
(1597.7–2984.6) 0.336

TAG iAUC 27.0
(9.0–52.6) a

63.7
(44.0–74.6) b

135.6
(50.0–156.1) c 0.009

TC iAUC 0
(0–0.64)

0
(0–0.44)

0
(0–0.50) 0.482

1 Data are presented as median (IQR) (n = 11), and iAUC is represented in mmol·min for glucose, TAG, and TC
and in mIU/L.min for insulin. 2 Friedman test followed by pairwise comparisons using Wilcoxon signed-rank
test were used to make comparisons between the three test meals. Unpaired letters abc indicates a significant
difference between meals. Abbreviations: Anti, anti-inflammatory; Neutr, neutral; Pro, proinflammatory, TAG,
triglycerides; TC, total cholesterol; iAUC, incremental area under the curve.

Fasting glucose, insulin, total cholesterol, and triglyceride concentrations were not
different between the three meal challenges (p ≥ 0.05 for all) (Figure 4).

The iAUC postprandial response for triglycerides was significantly different between
the three test meals, with the Anti-meal and Neutr-meal producing a lower response than
the Pro-meal (p = 0.004 and p = 0.012, respectively). There were no postprandial differences
in iAUC for glucose, insulin, or total cholesterol (p ≥ 0.05 for all) (Table 5).

Postprandial iAUC responses to the three test meals for glucose, insulin, total cholesterol,
and triglycerides were not different between females and males (p ≥ 0.05 for all) (Table S4).

4. Discussion

Despite the clear differences in nutrient composition and inflammatory potential of the
meals, there were no differences in the postprandial responses of the circulating cytokines
between the meals in older adults above a healthy weight. While glucose and insulin curves
were similar between the meals, the proinflammatory meal elicited an increased triglyceride
response in the participants, which is thought to be related to a postprandial inflammatory
response [11]. However, this study showed that increased circulating triglycerides and
differences in total amount and type of fat in the meals did not differentially impact the
classical markers of inflammation, even in participants who were more likely to exhibit
exaggerated postprandial cytokine responses due to their age and weight status [7,30].

The characterization of inflammatory response to meal composition that accounts for
the whole food matrix and is not only focused on individual nutrients, such as fat [31],
has increasing relevance for nutrition practice in older adults with obesity and increased
risk of CVD and T2DM [9]. While previous research has largely focused on the effects
of isolated nutrients, little is known about how the food matrix affects postprandial in-
flammation. For each nutrient, the bioaccessibility (fraction released during digestion),
bioavailability (fraction absorbed), bioconversion (fraction converted to its active form),
and bioactivity (actions within the body) are directly related to the food matrix [32]. It is
well established that postprandial changes in blood glucose, and therefore insulin, depend
on many factors, including interactions with fiber and polyphenols [33]. The addition of
fiber to a meal containing carbohydrates can delay gastric emptying, thereby reducing the
rate of intestinal glucose absorption [34], while dietary flavonoids blunt postprandial blood
glucose levels via enzyme and transporter inhibition [35]. As postprandial inflammation is
partly mediated by insulin [10] and lipids [11], other food components that impact these
factors will likely also affect any inflammatory response. The meals in the present study
were vastly different in composition. While the Anti-meal and Neutr-meal had a higher
total carbohydrate content than the Pro-meal (53.1, 42.8, and 25.2 g, respectively), they
also contained higher levels of fiber (19, 15.5, and 1.96 g, respectively) and polyphenols.
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Interactions occurring within the whole food matrix may explain why the only metabolic
marker that exhibited a difference during the postprandial period was triglyceride levels,
which were increased with consumption of the higher fat Pro-meal (containing ≥ 17 g more
than both the Anti-meal and Neutr-meal). Both prolonged hyperglycemia [12] and hyper-
lipidemia [13] are related to postprandial inflammation, and it is possible that differences
in the total fat load alone were not enough to generate discernible inflammatory responses
between the test meals in the present study.

As IL-6 is the only marker of inflammation consistently reported to increase after a
high-fat meal [19,20], it is the most commonly measured cytokine in postprandial research.
A review by Emerson et al. [19] reported that a single high-fat meal (≥30% fat, ≥500 kcal)
significantly increased levels of IL-6 in 32 of the 45 included studies. In healthy adults with
mean fasting CRP levels of 1.5 mg/L, IL-6 was reported to peak at 2.9 pg/mL six hours post
high-fat meal ingestion, which was more than a 100% increase from baseline levels [19]. A
recent large (n = 1002) study measured postprandial inflammation over two meals (breakfast
and lunch) using IL-6. This study reported increased IL-6 after breakfast and then a further
increase after lunch but showed no association of IL-6 levels with metabolic markers
such as glucose levels [21]. In the current study, Anti-meal and Neutr-meal produced a
significantly lowered triglyceride iAUC compared to Pro-meal, but there were no significant
differences in IL-6 iAUC between the three test meals. Changes in IL-6 over time may be
explained by the cannulation process rather than the metabolic response to food [36]. One
crossover study (postprandial period = 8 h) using a HFM challenge (39% fat) reported that
while circulating IL-6 concentrations increased by 3.49 pg/mL in participants who were
cannulated, only minimal changes in IL-6 were observed (0.36 pg/mL) in participants who
were not cannulated but had blood taken via a single-use needle (before and 8 h after the
meal) (p = 0.013) [37]. Furthermore, IL-6 is known to follow a circadian rhythm, where
it increases across the day after a nadir (trough) around breakfast time and then a zenith
(peak) around dinner time [38,39]. The peaks and troughs can reportedly differ by a few
hours between different study populations and are dependent on sleep patterns [39]; thus,
IL-6 is not a reliable marker to represent an inflammatory response to food.

To our knowledge, only one other crossover study (n = 11) by Devaraj et al. [27] investi-
gated postprandial (time = 8 h) effects on circulating IL-6, IL-1β, and TNF-α concentrations
using energy-matched meals with different macro- and micronutrient contents, hence
accounting for the complex nutritional matrix that exists at meal times. This study showed
a significant increase in postprandial IL-6 concentrations following both an American Heart
Association (AHA) meal (8.6% fat) and a fast food style (FFS) meal (50.1% fat), but there
was no difference between meals [27]. This is consistent with our study, which showed that
postprandial IL-6 concentrations increased irrespective of differences in total fat content
and are likely influenced by other factors. Similarly, consistent with the findings from our
study, Devaraj et al. showed no significant change in TNF-α concentrations over time or
with dietary treatment. Devaraj et al. did, however, demonstrate a significant increase in
IL-1β concentrations after the FFS meal but not the AHA meal. While our study showed
no difference in IL-1β response (iAUC) between the three test meals, comparison of peak
concentrations with baseline showed a significant increase from baseline levels after the
Neutr-meal but not the Anti-meal or Pro-meal. This unexpected response to the Neutr-meal
suggests that further investigation of postprandial responses to mixed meals, rather than
single nutrients such as fat, is needed.

It has been suggested that in healthy people, the compensatory anti-inflammatory
effects of IL-10 can counteract proinflammatory cytokine responses [40]. Previous studies
have reported that increased postprandial levels of IL-10 accompany increased proinflam-
matory cytokine responses to high-fat meals in healthy participants [41,42], indicating an
attempt by the body to oppose meal-induced inflammation. In the present study, postpran-
dial IL-10 levels did not differ between the meals, and conversely to previous literature,
no increases were measured in participants following the high-fat Pro-meal. However,
comparison of peak concentrations with baseline showed a borderline significant (p = 0.05)
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increase from baseline levels after the Neutr-meal, for which postprandial increases in IL-6
and IL-1β were also observed. Together, these data suggest that there may have been a
differential cytokine response between the three test meals, but a larger sample size would
be needed to confirm the results.

As this was a pilot study, it was likely not fully powered to detect significant changes
in outcome measures (IL-6, TNF-α, IL-1β, and IL-10), which is a key limitation to the
interpretation of these findings. However, the use of a crossover design meant that study
participants were their own controls, which is a strength to determine whether the meals
could differentially impact the circulation of inflammatory markers. We observed high
variation in expression levels of the inflammatory markers, not only between but also
within participants; thus, subclinical changes in response to nutrient flux would likely be
difficult to detect in small sample sizes that are typical of postprandial studies.

It is well established that impaired metabolic flexibility, characterized by exaggerated
responses in metabolic profiles following a meal challenge, is greater in individuals with
increased metabolic dysregulation [43–45]. The participants in the present study were
selected based on age and weight status to capture a group of individuals that were
more likely to be at risk of chronic metabolic conditions. However, despite high levels
of adiposity, a known mediator of inflammation [46,47], and generally unhealthy dietary
patterns, the participants had high levels of physical activity and were relatively healthy
based on other markers of chronic disease risk (including baseline inflammatory markers).
The relatively healthy status of the participants may have impacted their inflammatory
response to the meals.

Using circulating cytokines to investigate inflammatory changes to dietary stimulus
may be more valuable in longer-term dietary intervention studies. Future research should
consider markers of inflammation that are more sensitive and specific to nutrient flux, and it
is likely that a panel of markers will be needed to capture the complexity of nutrient-driven
stress responses. Mazidi et al. recently suggested glycoprotein acetylation (GlycA) as a
suitable candidate [21]. Increased levels of GlycA have been associated with inflammation
and chronic metabolic diseases [48–50], and Mazidi et al. showed that plasma levels
increased during the postprandial period and were correlated with postprandial glucose
and TG levels [21]. Markers of oxidative stress may also be useful candidates as they
are intrinsically linked to inflammation and chronic disease [51] and transiently increase
following energy-dense meals [52–54], likely due to macronutrient metabolism [55]. Other
measures might include high-throughput transcriptomics, proteomics, and metabolomics,
which are more sensitive in detecting subtle phenotypic changes [56,57].

5. Conclusions

We did not find evidence that consumption of single meals varying in nutrient com-
position and inflammatory potential differentially impact postprandial plasma levels of
IL-6, IL-1β, TNF-α, or IL-10 in older adults above a healthy weight. This research fur-
ther supports the need to look beyond the inflammatory effects of single nutrients, in
particular fat, and emphasizes the importance of accounting for the whole food matrix
when characterizing the postprandial inflammatory state. Examination of these classical
inflammatory markers in postprandial studies may not be sufficient to design meals and
diets that decrease overall inflammatory status to protect against chronic metabolic disease.
To translate research into practical nutrition recommendations, future research should
utilize mixed meals and employ sensitive measures of inflammatory status that capture the
subtle phenotypic changes elicited at meal times.
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