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ABSTRACT: Non-small cell lung carcinoma (NSCLC) is the most common
cancer globally. Phytochemicals and small molecule inhibitors significantly prevent
varying types of cancers, including NSCLC. These therapeutic molecules serve as
important sources for new drugs that interfere with cellular proliferation, apoptosis,
metastasis, and angiogenesis by regulating signaling pathways. These molecules
affect several cellular signaling cascades, including p53, NF-κB, STAT3, RAS,
MAPK/ERK, Wnt, and AKT/PI3K, and are thus implicated in the therapeutic
management of cancers. This review aims to describe the bioactive compounds and
small-molecule inhibitors, their anticancer action, and targeting cellular signaling
cascades in NSCLC. We highlighted the therapeutic potential of Epigallocatechin
gallate (EGCG), Perifosine, ABT-737, Thymoquinine, Quercetin, Venetoclax,
Gefitinib, and Genistein. These compounds are implicated in the therapeutic
management of NSCLC. This review further offers deeper mechanistic insights into
different signaling pathways that could be targeted for NSCLC therapy by phytochemicals and small-molecule inhibitors.

1. INTRODUCTION
Phytochemicals have been broadly documented and re-
searched for their numerous health benefits.1 These are
major bioactive compounds of fruits, grains, vegetables, and
other plant materials, decreasing the risk of diseases.2,3 Diets
enriched in plant foods are linked with a diminished risk of
multiple diseases, including cancers.4 Phytochemicals boost
our immune system and help in combating diseases.
Antioxidant phytochemicals are extensively found in cereal
grains, fruits, vegetables, and medicinal plants.5,6 Fruits such as
berries, grapes, guava, sweetsop, pomegranate, persimmon, and
plum are rich in antioxidants. Fruit wastes comprise high
phytochemicals such as catechin, cyanidin 3-glucoside, gallic
acid, epicatechin, kaempferol, and chlorogenic acid. Vegetables
have high antioxidant and phenolic components.7,8 Phyto-
chemicals possess various chemical entities, including poly-
phenols, steroidal saponins, flavonoids, organosulphur com-
pounds, and vitamins.9 Natural polyphenols are plentiful
antioxidants in human food diets, and radical scavenging
actions are associated with substituting hydroxyl groups of
phenolics.
Numerous phytochemicals have been recognized as

potential therapeutic agents. The bioavailability of diverse
compounds of interest at the targeting in the body location is a
significant challenge in determining the therapeutic efficacy of
the target drugs.10 Delivery of phytochemicals with a drug can

modify the action of glucuronidation or inhibit C-P450
clearance, increasing the bioavailability of active compounds
at the target site. Several phytochemicals are failed at
preclinical or clinical levels because these compounds are
either unbalanced in the gut or show poor bioavailability.10

There is a need for preclinical models that might imitate
systemic exposure to phytochemicals with significant pharma-
cokinetic alterations. A detailed preclinical and clinical
examination of the bioavailability of active compounds or
phytochemicals is necessary to understand their therapeutic
limitations. In addition, determining a compound delivery
system for achieving the best efficacy level of the agent on the
target organ is also necessary. Approval of phytochemicals in
the human system and bioavailability for targeting cells enable
their bioefficiency for protecting health.11

Cellular signaling pathways are complex signaling systems
that govern and manage key biological processes. Tumor cells
frequently show alteration in different cellular pathways as an
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effect of the complex communication of cell signaling,
including non-small cell lung carcinoma (NSCLC).12 The
RAS-RAF-MEK-ERK cascade controls cell survival and
proliferation of the NSCLC.13 PI3K-AKT signaling triggers
cell proliferation. Hence, the RAS−ERK signaling cascade is a
key downstream effector of oncogenic PI3K. Epidermal growth
factor receptor (EGFR) controls ERK and STAT3 path-
ways.14,15 ERK is activated via EGFR in a tumor that is linked
with the inhibition of apoptosis. EGFR stimulates cellular
signaling, including the MAPK, PI3K/AKT, and STAT3
pathways. RAS/MEK and PI3K pathways are connected with
cell proliferation and apoptosis.16,17 These pathways are
injured in tumor cells, which endorse the cancer cells’ growth
and block apoptosis.
Phytochemicals benefit multiple disease conditions by

regulating many cellular and molecular pathways, including
the regulation of inflammation, metabolic disorder, redox
potentials, and apoptosis. Polyphenols showed chemopreven-
tive action against carcinogenesis by affecting the mechanistic
target of rapamycin (mTOR)/AKT signaling.18 These might
obstruct the IκB kinase action, thus preventing translocation to
the nucleus, which NF-κB persuades the expression of genes
connected to apoptosis, metastasis, and invasion.19,20 Hence,
by preventing NF-κB activation, polyphenols repress the
expression of diverse cell survival and proliferative genes.21

Phytochemicals significantly stimulate cell death in several
cancers by preventing the activity of the JAK/STAT pathway
and activating apoptosis, which stimulates cell death by
preventing constituent activation of STAT3 and decreasing
regulating survivin and Mcl-1.22,23 Polyphenols have shown a
regulatory effect on MAPK signaling. Some phytochemicals
show dual control of this signaling pathway by preventing
activation of the MAPK pathway linked to influencing cell
proliferation and influencing MAPK-associated apoptosis.24

Signaling cascades have been studied for therapeutic
development. These cascades are suggested as promising

therapeutic targets for cancer therapy.12,25 A coordinated
down-regulation of ERK and AKT is crucial for initiating cell
death and anticancer action.26 Kinase inhibitors with enhanced
specificity and improved pharmacokinetics have been
implicated in designing anticancer agents.16,27,28 Hence,
inhibitors that target these signalings have numerous potential
utilizes, from cancer repression to proliferative diseases.16,29

Targeting EGFR with considering mutations suggested
promising benefits in developing drug-like molecules that
cause enhanced expression of pro-apoptotic proteins and
activate apoptosis.30 In addition, targeting MEK and PI3K with
mTOR is a better alternative than single agents for KRAS
mutants in NSCLC, suggesting a beneficial treatment approach
in future therapeutic development.31

This review provides a detailed overview of the therapeutic
potential of different phytochemicals and small-molecule
inhibitors in NSCLC. We further, focused molecular
mechanisms of the signaling molecules in NSCLC and
consequently targeted targets for potential therapeutic
implications. Additionally, we elucidated the possible ther-
apeutic use of phytochemicals and small-molecule inhibitors in
NSCLC.

2. BIOLOGICAL ACTIVITIES OF PHYTOCHEMICALS
Phytochemicals have antioxidant action, antimicrobial results,
modulation and detoxification enzymes, immune system
incentive, reduction of platelet aggregation, neuroprotective
effects, and anticancer properties.32 Phytochemicals possess
various health-promoting functions, including cancer fight.33

These molecules are responsible for preventing diseases.
Phytochemicals, as plant constituents with distinct bioactivities
toward biochemistry and metabolism, are being extensively
studied for their capability to provide health benefits.34 Plant
metabolites were studied on animal and human cells, exhibiting
exciting biological activities. They are beneficial in pharma-
ceutical applications, nutrition, and dietary supplements,

Figure 1. Natural compounds exhibit therapeutic actions. Phytochemicals show antitumor properties, principally antimutagenic, antioxidative,
anti-inflammatory, and apoptosis-stimulating properties, which might inhibit tumor growth.
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constantly deliberated as the source of food, diet, and medical
compounds.35

Furthermore, the pool of phytochemicals (natural com-
pounds) encloses an extensive range of ‘bioactive’ compounds.
Phytochemicals might detoxify substances that cause tumor
progression. They seem to neutralize free radicals, prevent

enzymes that stimulate carcinogens, and trigger enzymes.
Genistein inhibits the creation of new capillaries needed for
cancer growth and metastasis.36 However, considerable
research is ongoing on their tumor-preventing potentials.37

Phytochemicals prevent high blood pressure, diabetes, and
macular degeneration. They show antitumor properties,

Figure 2. Signaling cascades involved in cancer development and cell proliferation. Signaling pathways control cell proliferation, survival, and
differentiation by triggering the expression of multiple genes that are connected to tumor progression. Signal cascades initiate activation of the
downstream pathways, which consequently starts the transcription of genes. This figure is adapted from refs20,50,51 and drawn by using
ChemBioDraw.

Figure 3. Cancer-linked signaling pathways. Pathways regulate cell proliferation and survival by controlling the gene expression associated with
tumor development. These cascades control cell death (apoptosis) in various ways, blocking cell death from death receptors at several steps. This
figure is adapted from refs20,51,55 and drawn by using ChemBioDraw.
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principally antimutagenic, antioxidative, anti-inflammatory, and
cell death-stimulating properties, that might inhibit tumor
proliferation. Phytochemicals exhibit several therapeutic
actions by repressing the cell cycle, stimulating apoptosis,
and obstructing signaling cascade critical for cancer pro-
gression.38 Figure 1 illustrates the roles of phytochemicals in
clinical therapeutics.

3. REGULATION OF CELLULAR SIGNALING
MOLECULES IN NSCLC

Multiple signaling pathways are linked with several cancers,
including NSCLC.20 The RAS-stimulated signaling comprises
the MAPK pathway; RAS-rapidly accelerated fibrosarcoma
(RAF)-MEK-ERK pathways control cell survival and pro-
liferation in the NSCLC. MAPK signaling pathway affects
crucial functions in the carcinogenesis and treatment resistance
of NSCLC cells via endorsing proliferation or preventing
apoptosis of NSCLC cells.39,40 The RAS−ERK pathway is a
key downstream effector of oncogenic PI3K. ERK and STAT3
pathways are regulated and controlled by activating the EGFR
pathway.41,42 The RAS/MEK signal transduction pathway
controls cell progression and apoptosis.43,44 This pathway’s
mutation is commonly associated with human cancers.45 The
activation of Wnt signaling is connected with rising cancer
initiation potential. The Wnt pathway is significant in
developing NSCLC that found upregulated Wnt signaling.
Figure 2 illustrates the regulation of Wnt signaling genes in
lung cancer. These genes are regulated in the lungs of KRAS
transgenic mice. Hence, these signaling molecules regulate cell
survival and proliferation by regulating multiple gene
expression.2,20,46

RAS-ERK and PI3K-AKT cascades regulate apoptosis in
various ways, linked with cell cycle arrest and proliferation.
The active networks associated with the KRAS-Dep phenotype
in NSCLC.47 Hyperactivation of the signaling by oncogenic
mutations in the RAS-ERK and PI3K-AKT cascade perturbs
the balance of antiapoptotic signals, contributing to tumor cell

growth. AKT blocks many steps in cell death from death
receptors.48,49 Though, it phosphorylates FoxO3A, which leads
to their cytoplasmic sequestration, thus blocking the initiation
of death ligands and the Bim.
AKT activates the apoptosis inhibitor XIAP. Thus, AKT

controls NF-κB that triggers numerous survival factors, such as
Bcl-xL and Bcl-2.52 AKT-induced ubiquitylation and degrada-
tion of p53 suppress p53-induced apoptosis. AKT prevents
apoptosis in many tumors including NSCLCs. AKT confers
drug resistance via the inhibition of apoptosis, often the first-
line therapy for NSCLCs.53 Figure 3 shows that ERK
phosphorylates the NF-κB inhibitor IkBa and Bim that target
them for degradation. These signaling cascades control and
inhibit apoptosis in several ways.2,20,46

4. ANTICANCER EFFECTS OF PHYTOCHEMICALS
Phytochemicals repress the cancer progression and metastasis
through diverse mechanisms and protect the healthy cells from
carcinogens, dropping inflammation that might progress to
tumor development, stimulating apoptosis, and inducing
autophagy of the damaged cells. Phytochemicals derived
from medicinal plants are assumed to be a potential option
for the present antitumor drugs.54 Phytochemicals have been
used for antitumor activity in preclinical studies to clinical
trials.54

There is evidence concerning the cellular mechanisms by
which polyphenols control carcinogenesis, cancer cell growth
and death, inflammation, and angiogenesis. Phytochemicals
can modify the initiation of carcinogenesis progression through
defense against DNA injury. Suitable lifestyle alterations could
inhibit human tumors, and the diet involves around 35% of
tumor mortality.56 Polyphenols play a significant role in the
antitumor action of phytochemicals. Polyphenols, ellagitannins,
and epicatechin gallate exhibit anticancer functions.
Several plant-based anticancer agents are currently in clinical

use. Several phytochemicals have been checked for antitumor
action.57 Antioxidant phytochemicals might prevent cell

Figure 4. Phytochemicals inhibit signaling molecules and stimulate apoptosis. Rationale for targeting pathways via inhibitors for inhibiting
tumor proliferation. Multiple signaling regulates the action of apoptotic proteins via post-translational mechanisms. Targeting these signaling
cascades might stimulate apoptosis. This figure is adapted from refs20,55 and drawn by using ChemBioDraw.
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Table 1. Inhibitors/Phytochemicals and Small-Molecule Inhibitors of the Signaling Pathways for the Therapeutic Targeta

aSource: www.clinicaltrials.gov.
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proliferation and encourage tumor apoptosis, targeting tumor
stem cells to express its antitumor capability. It can exert
synergistic antitumor action with catechin against several
cancer cell lines. Genistein, quercetin, and resveratrol showed a
higher induction of quinone reductase. The antitumor
potential of quercetin in multiple cancers has been reported.58

Similarly, resveratrol exerted the antitumor act via
preventing cancer initiation, promotion, and development.
Polyphenols encourage cell death via binding to Bcl-2 or BclxL
or by changing the cellular microtubule cytoskeleton. Cocoa
polyphenols stimulate cell death by enhancing the expression
of caspase 3 and Bax while reducing Bcl-xL.
Phytochemicals control tissue cancer by regulating inflam-

mation, metastasis, angiogenesis, and invasion. Figure 4 shows
phytochemicals suppress cancer development through several
pathways.2,20,46 Polyphenols showed a regulatory effect on
MAPK signaling. Hence we dually control this signaling
pathway by preventing activation of the MAPK pathway linked
to influencing cell proliferation and persuading MAPK-
associated apoptosis.24 Increased TNF-α making may alleviate
cellular signaling, which might cause cells to undergoing
necrosis or apoptosis. Hence, TNFR1 arbitrated signaling
stimulates the activation of PI3K pathway that further
promotes caspase 8/3 and BH3 interacting-domain death
agonist (BID). This is pursued via the initiation of oxidative
stress, necrosis, and apoptosis.59,60 Cell scorch death may be
stimulated via the activation of caspase-4/5/11 through
lipopolysaccharide (LPS), which stimulates caspase-4/5/11
and eventually persuades cell scorch death.61,62 Therefore, they
defined cell scorch death as programmed cell necrosis
mediated by the Gasdermin family. Thus, targeting the
miRNAs via polyphenols was planned as a novel and potential
approach to antitumor chemotherapy. By preventing NF-κB
activation, polyphenols repress the expression of diverse cell
survival and proliferative genes.63,64 Phytochemicals signifi-
cantly stimulate cell death in several cancers by preventing the
activity of the JAK/STAT pathway and activating apoptosis,
which stimulates cell death by preventing constituent
activation of STAT3 and decreasing regulating survivin and
Mcl-1.23,65 Phytochemicals inhibit the translocation and
accretion of β-catenin in the nucleus by activating GSK3.24

5. TARGETING SIGNALING MOLECULES IN NSCLC
Several signaling cascades are identified as potential
therapeutic targets for lung cancer with the recognition of
modified targeting genes.66 The RAS/MEK/ERK and PI3K/
AKT/STAT3/NF-κB signalings are majorly involved in
NSCLC. These cascades are promising therapeutic targets
for tumor therapy. Targeting the EGFR pathway is an
attractive approach to developing personalized medicine in
NSCLC.30 EGFR activates cellular pathways, including AKT/
PI3K, STAT, and MAPK cascades, and leads to improved cell
proliferation. The RAS/ERK and NF-κB/PI3K/STAT3 signal-
ing cascades have been comprehensively studied for
therapeutic development. These cascades have been docu-
mented as promising therapeutic targets for tumor therapy.
EGFR mutation was recognized as a rational therapeutic
target.67

Figure 4 shows phytochemicals utilized for chemopreven-
tion. These phytochemicals efficiently repress cell proliferation,
control the cell cycle, induce apoptosis, and obstruct numerous
tumorigenic signaling cascades, including PI3K/AKT and
MAPK/RAS-Raf-MEK-ERK pathways.46 Additionally, they

could enhance DNA repair by the action of p21 and p53
gene results, like Bax, Bid, and Bak proteins that cause the
synthesis of caspases 3, 7, 8, and 9. Hence, the initiation of
apoptosis in cancer cells via the AKT/PI3K pathway is
detained via a wide range of phytochemicals.68,69 The flavonol
glucoside icanin promotes cell death by ROS-mediated injury
by inhibiting the STAT3 and PI3K/AKT cascades. Acting on
the NF-κB/PI3K/AKT recovers the sensitivity for cisplatin of
A549.70 Flavonoids act on cells by PI3K/AKT signaling and
must control cell death that activates caspase 9. Apoptosis
initiation and repression of the AKT/NF-κB were associated
with the regorafenib-inhibited progression of NSCLC.71

Apoptosis stimulation and EGFR inactivation are connected
to the regorafenib-increased anti-NSCLC effectiveness of
cisplatin.
Phytochemicals may prevent tumors by inhibiting the PI3K,

Raf, and ERK2 signaling pathways. EGFR is a major regulator
of carcinogenesis.72 EGFR signaling has the potential to
repress tumor proliferation. Inhibitors of these signaling
molecules are utilized for therapeutic targeting of various
tumors (Table 1). Several inhibitors have been revealed as
promising therapeutics for NSCLC.

6. THERAPEUTIC TARGETING OF CELLULAR
SIGNALING OF NSCLC

6.1. Therapeutic Effect of EGCG. The therapeutic effects
of EGCG were reported against multiple cancers. EGCG
controls proliferation in SCLC cells effectively and has some
effect on the limited number of NSCLC cells. Modulation of
signaling via EGCG may contribute to its chemopreventive
action. EGCG controls proliferation in diverse NSCLCs,2

which was established for blocking NF-κB activity in tumor
cells. EGCG blocks UVB-stimulated NF-κB activation. p50/
p65 targets cleavage by caspases during EGCG-stimulated
apoptosis. NF-κB is a potent target for cancer therapy. In the
JB6 mouse epidermal cell, EGCG blocked the MAPK
pathway.91

The treatment with EGCG for NHEK before UVB contact
was revealed to prevent UVB-induced H2O2 creation
associated with inhibiting the UVB-induced phosphorylation
of JNK, ERK1/2, and p38. EGCG inhibits cancer cells’ MAPK
pathway and AP-1 action.92 The deregulation of the MAPK
pathway is observed in multiple cancers. Alteration of MAPKs
via EGCG provides an attractive strategy for tumor therapy.
EGCG inhibits the PI3K pathways in the TRAMP model. It
diminishes proliferation, induces cell death, increases PTEN
expression, and decreases p-mTOR and p-AKT expres-
sion.55,93,94 It competently blocked hypoxia-induced factor 1
(HIF-1) assembly by preventing ERKs/AKT/PI3K pathways.
EGCG participated in apoptosis induction and the inhibition
of cell proliferation. EGCG may repress the expression of p-
AKT through PTEN for triggering AKT/PI3K signaling.95

The anticancer role of EGCG results from STAT3 pathway
inhibition. It blocks STAT3 activation, which led to down-
regulation of the targeting gene, produces of STAT3, including
Bcl-xL, Bcl-2, Mcl-1, cyclin D1, and VEGF. The inhibition of
the EGFR may involve the anticancer action of EGCG in lung
cancer.96 It modifies and prevents NF-κB, ERK1/2, and AKT-
mediated cascades, thus changing the Bcl-2 family protein ratio
and inducing cancer caspases. EGCG initiates apoptosis and
prevents EGFR, STAT3, and ERK pathways in tumors.78,97,98

The components of the Wnt pathway play a significant role in
lung cancer. However, Wnt 1 and Wnt 2 are more expressed in
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NSCLC, and their inhibition leads to apoptosis.99 It
diminished cell growth and proliferation through suppressed
ERK1/2, AKT/PI3K, STAT3, NF-κB, and Wnt pathways.2

EGCG exposure markedly diminished EGF-induced EGFR,
ERK1/2, and AKT activation.

6.2. Therapeutic Effect of Perifosine. Perifosine is an
alkyl phospholipid with a high oral bioavailability and excellent
antitumor activity. Perifosine blocks growth and stimulates cell
death in NSCLC cells. Induction of apoptosis is linked to the
downregulation of AKT, which perifosine stimulated apoptosis
in NSCLC cells.100 Perifosine could block the mTOR axis in
human lung cancers. Hence, perifosine considerably enhanced
type II light chain 3 and rising PARP cleavage that stimulates
autophagy and apoptosis.101,102 The down-regulation of the
NF-κB signaling involves the mechanism of action of
Perifosine. Co-treatment with Perifosine is promising to hinder
the progression of antimetabolite resistance because of NF-κB
activation in cancer.103 It is a potential new antitumor agent
that blocks the EGFR/MET-AKT axis in malignant pleural
mesothelioma.
A phase 1/2 clinical trial of perifosine in the management of

NSCLC has been performed to establish the maximum dose of
perifosine, which may be administered to contrast the
gastrointestinal toxicity of diverse dose schedules and to
achieve preliminary information on the response rate of
perifosine in NSCLC.102 Perifosine has shown anticancer
activity via the inhibition of AKT by preventing its recruitment
to the cell membrane. Perifosine has revealed a response in
phase I trials for advanced solid tumors.104,105 It is designed to
target cellular membranes. Its incidence persuades membrane
permeability, phospholipid metabolism, and mitogenic signal
transduction, resulting in cell differentiation and cell growth
inhibition in multiple tumor model systems.106

This drug blocks the MAPK signaling and modulates the
equilibria between the MAPK and pro-apoptotic stress-
activated protein kinase (SAPK/JNK) signaling. Its anti-AKT
activity increases the results of other treatment agents via
stimulating cell death and interfering with cell growth
signals.107 Perifosine induces expression of the death receptors
DR4 and DR5, increasing JNK and c-Jun levels and promoting
cell cycle arrest via induction of p21.100,108 A combination of
perifosine and TRAIL is more efficient in stimulating apoptosis
and preventing cancer growth than either agent alone. Hence,
clinical trials of perifosine in HNSCC had mixed results, in
terms of efficiency. Furthermore, perifosine enhanced the
antineoplastic action of cisplatin in several cancers, including
lung cancer cells, via stimulating the apoptotic pathways;109,110

hence, enhancing the cytotoxicity of cisplatin and demonstrat-
ing synergistic apoptosis induction in combination with
etoposide, UCN-1, and HDAC inhibitors.111

6.3. Therapeutic Effect of ABT-737. ABT-737, a novel
inhibitor of Bcl-2, shows antiapoptotic potential with a high
affinity for Bcl-xL. It improves the apoptotic results in small-
cell lung cancer.112 ABT-737 stimulates caspase-3, causing cell
death, which up-regulates the Noxa expression. However, the
inhibition of Noxa via small interfering RNA attenuates
apoptosis. It provokes the activation of caspase-3 and cleavage
of PARP and stimulates cell death. ABT-737 induces Bax/Bak-
mediated apoptosis, which might improve the radiosensitivity
of various solid tumors.113 Although it has promising effects, it
is known for clinical trials because of unfavorable pharmaco-
logical attributes, including thrombocytopenia. However,
numerous Bax-targeted antitumor agents are approved.

Multiple studies showed the promising effect of ABT-737 on
cellular signaling molecules. The radio-sensitizing action of
ABT-737 in preclinical studies suggested that clinical trials
utilizing this approach could be useful in K-RAS mutant
NSCLC.113 Bim polymorphism is strongly associated with a
poor clinical response in EGFR mutant NSCLC patients. ABT-
737 significantly enhances erlotinib-mediated apoptosis and
high responses to EGFR inhibitors in lung cancer patients. It
blocks PI3K/AKT in tumors. Hence inhibition of Bcl-xL and
Bcl-2 tremendously enhances AKT/PI3K inhibition-stimulated
cell death in tumors. The AKT and p53 signalings are checked
due to ABT-737 and naringenin in gastric cells. BEZ235 with
ABT-737 regulated tumor apoptosis.114 Targeting the ERK/
MAPK and AKT/PI3K signaling can alter the inequity
between anti- and pro-apoptotic molecules, which may
comprise an effective strategy for sensitizing tumors for
ABT-737. ABT-737-induced apoptosis demonstrated de-
creased cancer cell growth and stimulated c-Jun in high
regulation of Bim.115 Combined with sorafenib, it efficiently
inhibited STAT3 levels, and thus recommended targeting
STAT3-inducers of cell death, which might be a promising
novel approach for treating cancer cells.

6.4. Therapeutic Effects of Thymoquinone. Nigella
sativa has many precious ingredients that efficiently treat
different diseases. Thymoquinone (TQ) is a potent antitumor
bioactive compound in black seeds. TQ has shown
antioxidative, anti-inflammatory, and antitumor effects.116,117

TQ inhibits proliferation and angiogenesis and activates
apoptosis in NSCLC.118 It inhibited growth and diminished
cyclin D1 expression in NSCLC (A549 cells). It prevents cell
proliferation, induces apoptosis, and blocks the in vivo growth
of xenograft tumors of several tumors, including lung cancer.
TQ improved apoptosis by raising the Bax/Bcl2 ratio and
regulating p53 in NSCLC.119 It enhances less-regulating
antiapoptotic genes and more-regulating pro-apoptotic genes
in lung cancer cells. TQ-mediated apoptosis was associated
with high regulation and less Bcl-xL and Bcl-2 regulation. TQ
induces caspase-9, -7, and -3. It alters the activity of the Bax/
Bcl-2 pathway, inducing apoptosis. TQ promotes ROS
expression, leading to a diminished level of MMP, con-
sequently liberating cyt-c.
TQ is regarded as an anticarcinogenic and antimutagenic

mediator, and aqueous and alcohol extracts of N. sativa were
established to be effective in inactivating MCF-7 cell
growth.120 It initiates antioxidant results in animal models. It
may be exploited as a therapeutic agent in health management.
TQ is connected with several signaling pathways; TQ

diminished JAK2 and EGFR phosphorylation. It induces cell
death in cancer cells by preventing STAT3 signaling by
inhibiting JAK2- and Src-mediated phosphorylation of EGFR-
TK. It attenuated the STAT3 expression targeting genes, such
as survivin, c-Myc, and cyclin-D1, -D2, and enhanced p27 and
p21. It could inhibits the enzyme activity of several kinases in
various tumor cells and animal models, including MAPK,
PI3K, JAK/STAT, and PLK1. TQ represses the ERK1/2 that
inhibited the NSCLC invasion.121 The TQ-I3 M combination
prevented lung malignancy metastasis and diminished tumor
proliferation by preventing AKT/NF-κB signaling in the
xenograft model. It illustrates considerable antitumor actions
by up-regulation of PTEN during transcription, in which
PTEN participated in stimulating p53 expression and blocking
the AKT signaling. TQ modulates different genetic pathways,
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which prevents NF-κB activation. It up-regulates miR34a and
down-regulates Rac1 expression.122

6.5. Therapeutic Effect of Quercetin. Quercetin (Qu)
has potential antioxidant and antitumor properties such as
growth factor repression, induced apoptosis, and antiprolifer-
ative activities.123 Qu inhibits cell proliferation and stimulates
apoptosis and is an antioxidant. It might alter apoptosis via
downregulating Bcl-xL and Bcl-2 and upregulating Bad and
Bax. Qu alters the Bax-Bcl2 pathway that arbitrates apoptosis.
It enhances cell death in the caspase-3-dependent cascade by
obstructing Cox-2 and triggering Bax and Bcl-2 expression.
However, Qu may be a potent drug in leukemia therapy. Qu
increased the cisplatin-induced apoptosis of the NSCLC H-
520 cells. It performs as a chemosensitizer of lung cancer by
regulating the multiple apoptosis-associated genes. Qu and TQ
considerably decline Bcl-2 and stimulate Bax, which sensitizes
NSCLS inducing apoptosis. Hence, it reduced Bcl-2 and Bcl-xL
and enhanced Bax and caspase-3.124

Qu induces apoptosis of tumor cells and reveals anticancer
roles. It induces apoptosis that shows potential and chemo-
sensitivity and showed tumor inhibitory actions. Figure 5
suggests that Qu might have antitumor, antiproliferative, and
apoptosis-stimulating properties.125 Qu has effective modu-
lation toward inflammatory agents, which block the core
inflammatory enzyme COX�the function of quercetin-
induced molecular regulation in suppressing NSCLC meta-
stasis. Qu exhibited potential cytotoxic results on NSCLCs
harboring the EGFR C797S mutation via blocking AXL and
increasing cell death. It imitates the interfaces of ATP in the
dynamic positions of RTKs. Qu inhibited cell viability,
downregulated VEGFR-2, and reduced AKT, ERK, and JNK
levels. It modified the AKT/AMPK pathway.126

The anticancer functions of Qu normally happen through
the alteration of apoptosis, VEGF, AKT/ MAPK/ERK1/2, and
Wnt/β-catenin signaling.127 It modulates the AKT/PI3K and
ERK pathways and prevents proteasome activity. Qu represses

several cancer cells by blocking the MMP3 expression. It
notably illustrates antimigratory results. Inhibition of MEK1/2,
p38 kinase, or JNK abolished Qu-induced phosphorylation of
c-Jun, cleavage of caspase-3 and -7, cleavage of PARP, and
apoptosis. Inhibition of caspase activation completely blocked
Qu-induced apoptosis. Expression of constitutively activated
MEK1 in A549 cells led to the activation of caspase-3 and
apoptosis. Alteration in the expression of the Bcl-2 family of
proteins and activation of MEK-ERK is required for quercetin-
induced apoptosis in A549 cells.128

6.6. Therapeutic Effect of Venetoclax. Venetoclax is an
inhibitor of Bcl-2, effective in treating chronic lymphocytic
leukemia (CCL).129 Venetoclax (ABT-199) has shown clinical
effectiveness in different tumor types by inducing apoptosis. It
has exhibited clinical effectiveness in many hematological
cancers, but this inhibitor persists in connecting to Bcl-2. It
enhances BIM-dependent apoptosis and blocks tumor growth.
Hence, it is a promising therapy for high Bcl-2-expressing
SCLCs.130 Venetoclax showed anticancer activity in preclinical
trials. It represents the first-in-class inhibitor of Bcl-2 alert
platelets.
ABT-199 works through various pathways to achieve

synergistic cytotoxicity with AZD9291 in NSCLC. This may
offer an efficient option in combined therapy with EGFR-TKIs
to treat NSCLC.131 Combining radiation with EGFR and Bcl-2
obstacles might be a novel move toward targeting cancer stem
cells. NF-κB has been considerably low-regulated in ABT-199+
AZD9291.131 KRAS mutation is much more frequent in
NSCLC. The combinatorial approach for targeting oncogene
obsession to RAS mutant cells, which include ABT199 and
irinotecan, leads to RAS mutant lung tumor cells and increased
apoptosis. The PI3K/AKT pathway was less regulated via the
combination in KRAS mutant lung tumor cells. The results of
the ABT199 and irinotecan combination are synergistic on the
RAS mutant lung tumor cells.132 ABT199 and the silencing of
Bcl-2 inhibited STAT3 phosphorylation. The pharmacological

Figure 5. Effects of quercetin and phytochemicals on cancer cells. By blocking signaling molecules and stimulating pro-apoptotic proteins that
trigger mitochondrial-induced caspase activation and cell death, quercetin decreases cell proliferation. This figure was drawn by using
ChemBioDraw.
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inhibition of Bcl-2 is potent for treating Bcl-2-dependent
tumors.

6.7. Therapeutic Effect of Gefitinib. Gefitinib showed
effective anticancer activity in NSCLC.133 Effectiveness and
safety of two different gefitinib doses in patients with
pretreated NSCLC was reported. The approved suggestion
for Gefitinib has been as a monotherapy for treating metastatic
NSCLC patients. The randomized phase II trial results
contrasted Gefitinib with docetaxel with advanced NSCLCs.
Six phase III trials expected Gefitinib’s survival power only or
combined with therapy in metastatic NSCLC. Thus, the
activities of Gefitinib against vulnerable and resistant tumors
were estimated in many documents. A study134 observed the
effect of Gefitinib in the cell growth of NSCLC cells using
colony formation and MTS and examinations that demon-
strated half-maximal inhibitory concentration (IC50) values of
4−42 μM.
Gefitinib regulated the intrinsic pathway, connecting the

activation of Bax and release of cyt-c. It caused a rapid increase
in the level of BIM. BIM is critical to the gefitinib-induced
destruction of NSCLC cells. ABT-737 enhances gefitinib-
induced apoptosis. It motivates cell death via Bax activation in
tumor cells.135 It activates G1 arrest and cell death through
high regulating of p27 and p21 and Bax activation. Since the
down-regulation of Bcl-2 through RNAi, the effects of Gefitinib
might be an innovative therapeutic plan for treating
NSCLC.136 It suppressed the Bcl-xL and Bcl-2 expressions,
depicting hepatocellular carcinoma (HCC) as prone to
apoptosis. The combined therapy might be a potent new
treatment for lung tumor patients.76

Gefitinib was the first inhibitor of EGFR recognized as a
clinical appliance. It is a TKI revealed for utilization in treating
NSCLC patients; hence, tumors have particular EGFR
mutations. It has been approved for cancer treatment and
metastatic EGFR mutation-positive NSCLC.137 A selective
EGFR TKI blocks EGFR, AKT, and ERK phosphorylation,
activating G1 arrest and cell death. Thus, gathering a BH3
mimetic considerably enhances the destruction of NSCLCs
through EGFR TKI gefitinib. Patients with p-AKT-positive
cancers who obtained Gefitinib had superior response and
disease control rates. Hence Gefitinib might be most efficient
in patients with basal AKT activation�however, phosphor-
ylation of AKT and gefitinib is efficient in patients with
advanced NSCLC.136 Combinational targeting of STAT3 and
EGFR may increase the efficiency of Gefitinib or other EGFR
TKIs in lung tumors.

6.8. Therapeutic Effect of Genistein. Genistein is a
natural product, and it is an isoflavone isolated from legumes of
soybeans, lupin, and fava beans. It is associated with multiple
cancers, cardiovascular disease risk, and osteoporosis.138 It
decreases breast cancer stem cells (CSCs) by less regulation of
the hedgehog-signaling cascade, consequently regulating cell
proliferation. Genistein stimulates cell death in NSCLC cells
via a p53-independent signaling cascade and might act as an
antitumor agent. Genistein increases the result of cisplatin on
the inhibition of NSCLC. It is a promising drug applicant for
treating and managing NSCLC.139

Genistein therapy is used to prevent the development of
tumor cells via increasing apoptosis, inducing delayed cell
cycles, and triggering signaling cascades.140 Genistein prevents
cancer growth and proliferation by downregulating the
negative effect of EGF on the action of FOXO3 in a tumor
model. Genistein increased the anticancer effects of Gefitinib

in an NSCLC, which synergistic action could be due to
enhanced inhibition of the molecular and pro-apoptotic results
of EGFR. It blocks the activation of NF-kB in cancer cells. It
can abolish NF-kB activation via DNA-damaging, which serves
as a chemopreventive drug. Genistein decreased proliferation
and enhanced apoptosis in lung tumor cells, which was
connected with inhibition of the AKT/PI3K and NF-κB
pathways. It is a promising chemotherapeutic agent for lung
cancer.141 It affects EGF-mediated proliferation via the cancer
cells’ PI3K/AKT modulation. It is a potential antiangiogenic
agent, which might repress VEGF-stimulated endothelial cell
activation by decreasing the role of PTK and MAPK activation.
The antiproliferative actions of Genistein are attained from
decreased IGFR phosphorylation and the IGF pathway, which
represses cell development. Genistein decreased the action and
cell proliferation, and ERK controls growth and proliferation,
while p38 is strongly connected with stress and inflammatory
reactions.

7. ENHANCING THE EFFECTIVENESS OF INHIBITORS
WITH CHEMOTHERAPY/RADIOTHERAPY

Chemotherapy has reached a plateau of efficacy as a primary
treatment modality, even if the toxicity can be effectively
controlled. Emerging specific signaling and metabolic pathway
inhibitors contrast with traditional chemotherapy drugs in that
the latter primarily interfere with DNA biosynthesis and the
cell replication machinery. To improve efficacy, combining
targeted drugs with conventional chemotherapeutics has
become a standard approach to testing multiple new agents
in early phase clinical trials.142 They enhance antitumor
response by combining immune checkpoint inhibitors with
chemotherapy of NSCLC.143

Classical chemotherapy frequently remains the most
recommended antitumor therapy for several tumor treatments.
Drugs are efficient for the treatment of multiple tumors.
However, chemotherapeutic drugs may stimulate the RAS/
MEK/ERK cascade through various mechanisms. Activated
ERK could phosphorylate p53 and control its action. The drug
might trigger the CaM-K cascade through ROS. Activating this
pathway may activate the Raf/MEK/ERK pathway,144 which
plays significant functions in apoptosis. Hence the Raf/ MEK/
ERK pathway might control the transcription of various
important genes. Cisplatin-stimulated cell death was linked
with enhanced levels of p53 and the downstream Bax.145 MEK
inhibitors obstructed cell death by blocking the cisplatin-
mediated gathering of p53 and Bax proteins.
Radiotherapy is a general therapeutic plan for the treatment

of several different tumors. However, the results of the
pretreatment of several tumor cells with the drug were
calculated.146 However, the MEK inhibitor treatment radio-
sensitizes the diverse tumor cells. ERK1/ERK2 action is
compulsory for cancer cells to arrest on the G2 checkpoint,
which was observed. The MEK inhibitor repressed the
autocrine pathway in tumor cells, which usually resulted
from EGF discharge and the activation of EGFR. A549 had
KRAS mutations and have been a radiosensitizer via the MEK
inhibitor.147

The capability of an MEK inhibitor for radiosensitizing
certain cells, noticeably other tumor cells without stimulated
mutations in the RAS//MEK/ERK signaling growth motiva-
tion, must be observed to radiosensitization via the MEK
inhibitor, like the KRAS mutation can trigger the PI3K
signaling to cause therapy resistance. However, PI3K/AKT

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c02424
ACS Omega 2023, 8, 26685−26698

26693

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


inhibitors sensitize the cancer vasculature to radiation.148

mTOR and radiation participate in important functions in the
regulation of autophagy. However, mTOR is inhibited through
rapamycin. Increased autophagy is crucial for cell death in solid
tumors and diverse mechanisms to resistance for Raf inhibitors.
The BRAF mutant melanoma cells were sustained in a medium
enclosing the B-Raf inhibitor that altered their reliance from B-
Raf to Raf-1.149

8. CONCLUSIONS AND FUTURE PROSPECTS
Phytochemicals have decreased the risk of diseases, including
cancer.150,151 The antitumor and chemopreventive features of
phytochemicals attract oncology researchers because of their
low toxicity in healthy cells but outstanding effects in tumor
cells. Several signaling molecules, including p53, EGFR,
KRAS/MAPK, STAT3, NF-κB, and PI3K/AKT pathways,
are involved in multiple cancers, including NSCLC. These
signaling cascades participate in an essential role in cancer cell
growth and proliferation.
Phytochemicals can benefit multiple disease hindrances by

regulating cellular and molecular pathways and stimulating
apoptosis. Signaling cascades have been comprehensively
studied for therapeutic development. These signaling cascades
are recognized as promising therapeutic targets for tumor
therapy. These dynamic signaling pathways offer potential
therapies and conflicts for drug investigation and discovery.
Kinase inhibitors with enhanced specificity and improved
pharmacokinetics have been considered to design and develop
anticancer agents. In outlook studies, the current study must
help develop novel inhibitors for p53, EGFR, KRAS/MAPK,
STAT3, NF-κB, and PI3K/AKT pathways to treat NSCLC.
Hence, targeting signaling pathways by inhibitors could be a
promising therapy for NSCLC.
Various phytochemicals have been assessed for promising

antitumor effects in preclinical and clinical studies. Some are
utilized in current tumor therapy after completion of clinical
trials. Therefore, clinical research assesses the efficiency of
some phytochemicals, develops drugs, and conveys them to
therapeutic utilization for NSCLC. Phytochemicals would
serve as a therapeutic target of cancer for public health in the
future. Furthermore, the creative and novel clinical trial
approach should enhance our capacity to evaluate novel
agents and combinations to elucidate molecular diversity and
finally achieve improved outcomes. Further, in-depth mecha-
nistic investigations and exclusive clinical trials are needed to
understand the importance of phytochemicals in human health
and several cancers, including NSCLC.
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