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Regulation of microRNA (miRNA) expression contributes to a wide range

of target gene expression and phenotypes. The miRNA expression in the

liver, the central metabolic organ, was examined in 209 pigs, and integrated

with haematological and clinical biomarkers of metabolic and overall health,

mRNA-target expression levels and single-nucleotide polymorphism (SNP)

genotypes. The expression levels of 426 miRNA species correlated with

plasma haematological or biochemical traits (r2 ¼ |0.19–0.45|, false discovery

rate , 5%). Pairs of these miRNAs and their predicted target mRNAs showing

expressing levels associated with the identical traits were examined to under-

stand how immune and metabolic traits are affected by miRNA-mediated

regulatory networks derived by mapping miRNA abundance as an expression

quantitative trait. In total, 221 miRNA-expression-QTL correspond to 164

SNPs and 108 miRNAs, including miR-34a, miR-30e, miR-148-3p, miR-204,

miR-181-5p, miR-143-5p and let-7 g that also correlate with the biomarkers.

Sixty-one SNPs were simultaneously associated with 29 miRNA and 41

mRNA species. The expression levels of 13 out of 29 miRNA were correlated

with one of the biochemical or haematological traits. For example, the

expression levels of miR-34a were correlated with serum phosphorus and cho-

lesterin levels; miR-204, miR-15a and miR-16b were correlated with

triglyceride. For haematological traits, the expression levels of miR-652 and

miR-204 were correlated with the mean corpuscular haemoglobin concen-

tration, and the expression of miR-143 was correlated with plateletcrit.

Pleiotropic association analyses revealed genetic links between mRNA and

miRNA on SSC6 for miR-34a, SSC9 for miR-708 and SSC14 for miR-652. Our

analysis of miRNA and mRNA transcript profiles, their correlation with clini-

cally important plasma parameters of hepatic functions as well as

information on their genetic regulation provide novel regulatory networks

and potential new biomarkers for immune and metabolic traits.

1. Introduction
MicroRNAs (miRNAs) are small endogenous non-coding molecules ranging from

18 to 24 nt that control target transcripts at the post-transcriptional level. miRNAs

target mRNA transcripts via basepair complementarity, typically in the 30 untrans-

lated region [1,2], but may also target the coding sequence [3]. This targeting can

induce transcript cleavage, degradation, destabilization and repression of trans-

lation, thereby modulating protein levels. It has been recently shown that

reduction in target mRNA levels accounts for most of the regulatory, repressive

effects of miRNAs [4]. Moreover, miRNA expression profiles have been associated

with many complex traits and diseases [5–7]. Coordinated miRNA and mRNA

expression in Erhualian and Large White Pigs was analysed in order to contribute

to the understanding of breed-specific metabolic characters [8].
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Table 1. Porcine miRNA (SSC-miRNAs of miRbase) showing negative and positive correlation (r) with biochemical traits at FDR , 5%.

phenotype positive correlation of miRNA negative correlation of miRNA r p-value

ALB miR-335 miR-146a-5p, miR-20a, miR-21, miR-152 0.19 – 0.22 4.85 � 1023 –

1.26 � 1023

BUN miR-193a-3p, miR-145-5p, miR-29b miR-18a 0.19 – 0.27 4.27 � 1023 –

5.81 � 1025

CREA miR-130a, miR-34a miR-193a-5p, miR-125b, miR-92a 0.19 – 0.26 5.11 � 1023 –

8.11 � 1025

GLU miR-143-3p, miR-193a-3p, miR-324,

miR-30b-5p, miR-30e-5p,

miR-130a, miR-19b, miR-29b

let-7c, let-7d-5p, let-7a, miR-26a, miR-92b-5p 0.19 – 0.28 4.92 � 1023 –

4.04 � 1025

IP miR-885-5p, miR-92a, miR-4332,

miR-92b-3p, miR-331-3p, miR-744,

miR-92b-5p, miR-4334-5p

miR-34a, miR-194b-5p, miR-20a, miR-15a,

miR-146a-5p, miR-152

0.19 – 0.42 5.08 � 1023 –

1.08 � 10210

NH3 miR-455-5p, let-7i, miR-497, miR-34a, miR-362,

miR-363, miR-181d-5p, miR-22-5p

0.19 – 0.25 4.28 � 1023 –

1.63 � 1024

TCHO miR-1307, miR-744 miR-146a-5p, miR-152, miR-15a, miR-34a 0.19 – 0.22 4.56 � 1023 –

1.55 � 1023

TG miR-106a, miR-92b-5p, miR-92a,

miR-4332, miR-222

miR-107, miR-30d, miR-103,

miR-744

miR-15a, let-7 g, let-7i, let-7f, miR-199b-3p,

miR-10a-5p, miR-199a-3p, miR-148a-3p, miR-20a,

miR-195, miR-7, miR-218b, miR-30e-3p,

miR-146a-5p

miR-21, miR-499-5p, miR-676-3p, miR-148b-3p,

miR-29c, miR-98, miR-100, miR-204, miR-27b-3p

0.19 – 0.33 4.55 � 1023 –

8.90 � 1027
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Expression-QTL (eQTL) analysis integrates gene expression

and genome-wide genotype information to identify genetic vari-

ation associated with changes in gene expression. Many eQTL

mapping studies reveal genetically regulated mRNA transcripts

in various tissues such as liver, brain, muscle, blood and fat

[9–14]. eQTL-based analysis provides insight into miRNA regu-

lation [15]; compared with mRNA transcripts, there are relatively

few studies of miRNA-eQTL [16–20]. Most studies use miRNA

expression profiles from whole blood, cell lines and adipose

tissue [17–19]. Though liver is the central metabolic organ, and

plays a vital role in maintaining homeostasis and health, as well

as regulating nutrient utilization, there is only one report of gen-

etic regulated miRNA expression in the liver [21]. Knowledge of

the genetic regulation of liver miRNA expression profiles will

provide insight into haematological, biochemical and clinical–

chemical biomarkers of hepatic function supporting metabolic

homeostasis, innate defence and resilience. Pigs share many

similarities in physiology and genome content with humans,

and therefore provide an excellent model for medical research,

including studies on liver transplantation [22].

The identification of single-nucleotide polymorphisms

(SNPs) associated with miRNA abundance in the liver has

the potential to aid in the understanding of the role of

miRNAs in metabolism and immune processes. We examined

the genetic regulation of porcine liver miRNA expression and

its consequences on plasma haematological and biochemical

traits that are biomarkers of liver function and surrogate

traits for immune and metabolic status. Additional links

between predicted mRNA targets were identified along with

miRNA and mRNA that correlated with the biomarkers.
2. Results
2.1. Trait-correlated hepatic microRNAs expression
Expression levels of 826 different miRNA species from 209

individuals were used for correlation analysis. At a significance

level of FDR , 5%, expression levels of 426 miRNA species

correlated with plasma biomarkers of immune and metabolic

status. All measurements and descriptions of the traits are

shown in electronic supplementary material, table S1.

At a significance level of FDR , 5%, expression levels of 330

miRNA species correlated with at least one of the biochemical

traits (albumin, ALB; ammonia nitrogen, NH3; blood urea

nitrogen, BUN; total cholesterol, TCHO; triglyceride, TG;

glucose, GLU; inorganic phosphorus, IP; creatinine, CREA).

In total, 549 correlations between miRNA expression and

biochemical traits were found at r ¼ |0.19–0.45| (electronic

supplementary material, table S2). Table 1 shows 63 miRNA

that are listed as porcine miRNAs in miRbase (SSC-miRNA)

correlated with various biochemical traits at FDR , 5%.

Haematological traits include white blood cell count

(WBC), lymphocyte count (LYM), red blood cell count

(RBC), haemoglobin concentration (HGB), haematocrit level

(HCT), mean corpuscular volume (MCV), mean corpuscular

haemoglobin (MCH), mean corpuscular haemoglobin con-

centration (MCHC), red distribution width (RDW), platelets

(PLT), mean platelet volume (MPV) and plateletcrit (PCT).

At a significance threshold of FDR , 5%, we detected 1027

trait-correlated expressions; among them, 350 miRNAs

were correlated with at least one haematological trait
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(electronic supplementary material, table S3). The correlation

between expression levels and haematological traits ranged

between r ¼ |0.19–0.44|. Most transcripts were correlated

with erythrocytes and a few with platelets. Eighty SSC–

miRNA were correlated with one of the haematological

traits with FDR , 5% (table 2).

The expression levels of 254 miRNA species were corre-

lated with biochemical and haematological traits. A total

of 839 pairs of 254 miRNA species correlated with both

metabolic and immune traits at FDR , 5% (electronic sup-

plementary material, table S4). The most common pairs

were found to include TG and other haematological traits

(351 pairs). Figure 1 shows the 153 pairs of SSC–miRNA

correlated with both biochemical and haematological traits.

2.2. Common traits correlated with microRNA and
corresponding mRNA expression

Out of 6321 previously identified transcripts that were cor-

related with a minimum of one biochemical trait with r ¼
|0.22–0.41| at a significance level of FDR , 1% [14]; in this

study, we obtained those transcripts that were negatively cor-

related with miRNA expression and were correlated with the

same biochemical traits. The transcripts were predicted as

targets of miRNAs according to analyses with TargetScan

and RNAhybrid. In total, 2843 combinations of miRNA and

mRNA were determined to be linked to the same biochemical

traits, shown in electronic supplementary material, table S5.

Overall, eight biochemical traits (TG, TCHO, NH3, IP, GLU,

CREP, BUN, ALB), 150 miRNA and 779 annotated transcripts

were linked. Most links between traits and corresponding

miRNA–mRNA pairs were identified for IP followed by

TG, with 1637 and 755 pairs, respectively.

For haematological traits, 5387 transcripts from our

previously study showing correlations with at least one of the

traits at r ¼ |0.22–0.48| and FDR , 1% were used for inte-

grating with miRNA [14]. Using the same criteria, 3753

combinations between miRNA and mRNA linked to the

same haematological traits were identified and are shown in

electronic supplementary material, table S6. Overall, seven

haematological traits (WBC, RBC, MCV, MCHC, LYM, HGB

and HCT), 125 miRNA and 671 annotated transcripts were

identified. Most links between traits and miRNA–mRNA

pairs were identified for RBC (3178) followed by WBC (414).

2.3. Genetic regulation of microRNA transcripts
expression-QTL

German Landrace pigs were genotyped and liver miRNA

expression profiling was acquired using Affymetrix’s Genechip

miRNA 3.0 array. After quality control, 2736 probes (826 dif-

ferent miRNA species) from 209 individuals and 48 909 SNP

markers were used for miRNA-eQTL analysis. A genome-

wide association study between genotype and miRNA

expression revealed 221 significant miRNA-eQTL that corre-

sponded to 108 miRNA sequences and 164 SNPs at a

thresholds of negative log 10 . 4 (electronic supplementary

material, table S7). A total of 118 out of 221 significant

miRNA-eQTL involved Sus scrofa mature miRNAs listed in

the miRbase, whereas the other miRNA could be mapped on

Sscrofa 10.2 by BLAST. The 118 miRNA-eQTL belonged to

45 miRNA species. Two miRNA (miR-708-5p and miR-34a)
are highly associated with SNPs in surrounding regions

(cis-eQTL). The other five miRNA transcripts were identified

as locally regulated SNPs associated within the same chromo-

some of the probe-set/gene, including miR-30e, miR-19a,

let-7 g, miR-4507 and miR-27d. The genetic regulated miRNAs

miR-34a, miR-30e, miR-148-3p, miR-204, miR-181-5p, miR-

143-5p and let-7g were also correlated with haematological

and biochemical traits. Figure 2 shows the genetic regulation

of SSC-miRNA across different pig chromosomes. Figure 3

depicts a Manhattan plot of miR-34a, miR-708 and miR-652

together with the top SNPs associated with their expression

levels.

2.4. Common genotypes effect both mRNA and
microRNA transcripts

Sixty-one SNPs were simultaneously associated with 29 miRNA

species and 41 annotated transcripts (electronic supplementary

material, table S8). The expression levels of 13 out of 29

miRNA correlated with biochemical traits or haematological

traits. For example, miR-34a correlated with IP, and TCHO or

miR-204, miR-15a, miR-16b correlated with TG. For haematolo-

gical traits, the expression levels of miR-652 and miR-204 were

found correlated with MCHC and the expression of miR-143

was found correlated with PLT. Eighteen out of 41 mRNA

were previously assigned as cis-QTL [14]. Twelve out of 61

SNPs associated with miR-34a. Of note, miR-34a has not yet

been annotated in the porcine genome. Human miR-34a is

located on chromosome 1 at 9.15 Mb, a region syntenic to

SSC6 position 64–65 Mb. Interestingly, SNPs associated with

transcripts located on SSC6 at 55–65 Mb also associa-

ted with transcript levels of miR-34a. Notably, some of the

SNPs and transcripts in this region are poorly annotated. The

SNPs that significantly associated with miR-34a were also

associated with KIF1B and FBXO6, which have a cis-eQTL. All

nine SNPs associated with miR-708 located on SSC9 at 10–

15 Mb were also associated with transcript levels of POLD3,
MOGAT2 and CAPN5 in the same region, all of which

are cis-eQTL. Three SNPs located on SSC6 associated with

mRNA (CCDC30, RIMKLA, C3H1ORF50 and ST3GAL3) in

the same regions (cis-mRNA) also associated with miR-204 on

SSC1. SNPs (ASGA0036064) regulating the transcription

of TTC8 in cis action also regulate miR-99a, miR-425-9p,

miR-130b, miR-98, miR-140 in trans-action. Five out of seven

SNPs found to regulate miR-652 were located on SSC14 and

have a cis-mRNA.

Genetic links between mRNA and miRNA were also

shown using pleiotropic association analyses of miR-34a with

GALP, LZIC, FBXO6 and KIF1B with 376 SNPs on SSC6

(FDR , 5%). miR-708 together with CAPN5, MOGAT2 and

POLD3 were associated with 114 SNPs on SSC9 (FDR , 5%).

miR-652 with PYROXD2 and ZDHHC16 with 71 SNPs on

SSC14 and 2 SNPs on SSC7 (FDR , 5%) (figure 4).
3. Discussion
3.1. Trait-correlated hepatic microRNA expression is

linked to metabolic and immune status
Holistic analysis of miRNA revealed not only trait-correlated

expression but also a broad interaction between haematological



Table 2. Porcine miRNA (SSC-miRNAs of miRbase) showing negative and positive correlation (r) with haematological traits at FDR , 5%.

phenotype positive significant miRNA negative significant miRNA r p-value

WBC miR-28-5p miR-4332, miR-92b-5p, miR-16, miR-145-5p,

miR-1307

0.19 – 0.24 5.22 � 1023 –

3.57 � 1024

LYM let-7d-5p, let-7i, miR-146a-5p, miR-15a,

miR-27b-3p, miR-204, let-7a, miR-151-3p,

miR-421-3p, miR-194b-5p, miR-28-5p,

miR-199b-3p, let-7e, miR-215,

miR-199a-3p, miR-30e-3p, miR-151-5p,

miR-361-5p, miR-98, miR-218b, let-7f,

miR-30a-3p, miR-21, miR-182,

miR-10a-5p, miR-150, miR-195

miR-30d, miR-4334-5p, miR-22-3p, miR-107,

miR-4332, miR-30e-5p, miR-324, miR-103,

miR-222, miR-17-5p,miR-335, miR-362,

miR-451

0.19 – 0.32 4.95 � 1023 –

2.90 � 1026

HCT miR-744, miR-4332, miR-92b-5p,

miR-4334-5p

miR-185, miR-151-3p, miR-28-5p, miR-152,

miR-151-5p, miR-1285, miR-20b, let-7e

0.19 – 0.29 4.11 � 1023 –

2.03 � 1025

HGB miR-339-5p, miR-130a, miR-19b, miR-22-3p,

miR-30e-5p, miR-744, miR-92b-5p,

miR-199a-5p, miR-4334-5p, miR-4332

miR-151-3p, miR-28-5p, miR-28-3p, miR-185,

miR-151-5p, miR-20b, let-7e, miR-146a-5p,

miR-152, miR-195, miR-361-5p, miR-182,

miR-421-3p, let-7d-5p, miR-150, miR-1285,

miR-194b-5p, miR-30a-3p, miR-10a-5p, miR-

128, let-7a, miR-98, miR-21, miR-7, miR-

26a, let-7c, miR-214, let-7f, miR-100, miR-

425-5p

0.19 – 0.37 4.85 � 1023 –

3.38 � 1028

RBC miR-19b, miR-1307, miR-744, miR-92b-5p,

miR-4332 miR-4334-5

miR-185, miR-152, miR-28-5p, miR-151-3p,

miR-28-3p, miR-20b, let-7e, miR-151-5p,

miR-195, miR-181b

miR-146a-5p, miR-1285, miR-361-5p,

miR-421-3p

0.19 – 0.37 4.19 � 1023 –

2.88 � 1028

MCV miR-4334-5p miR-27b-3p, miR-24-3p, miR-152, miR-28-3p 0.19 – 0.22 5.08 � 1023 –

1.12 � 1023

MCH miR-145-5p, miR-193a-3p miR-204 0.20 – 0.22 3.78 � 1023 –

1.14 � 1023

MCHC miR-30d, miR-107, miR-4334-3p, miR-143-

5p, miR-335, miR-22-3p, miR-29b, miR-

4332, miR-339-5p, miR-19b, miR-497,

miR-193a-3p, miR-324, miR-130a,

miR-30e-5p, miR-199a-5p

miR-28-3p, miR-28-5p, miR-150, miR-151-3p,

miR-128, miR-151-5p, miR-26a, miR-204,

miR-20b, miR-195, miR-146a-5p,

miR-421-3p, miR-10a-5p, miR-182,

miR-23a, miR-30a-3p, miR-30e-3p, miR-98,

miR-194b-5p, let-7d-5p, let-7e, miR-361-5p,

let-7a, miR-139-5p, miR-193a-5p, miR-15b,

miR-499-5p, miR-148b-3p, miR-100,

miR-214, miR-24-3p, miR-18b, let-7c,

miR-218b, miR-194a, miR-21, miR-152,

let-7f, miR-125a, miR-185, miR-7, miR-342,

miR-23b, miR-199b-3p, miR-215

0.20 – 0.42 4.46 � 1023 –

6.31 � 10210

MPV miR-363, miR-20b 0.19 – 0.26 4.92 � 1023 –

1.64 � 1024

PLT miR-497, miR-363 0.21 – 0.24 1.94 � 1023 –

5.78 � 1024

PCT miR-497 0.24 4.18 � 1023
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let-7a miR-27b-3p miR-92b-5p let-7f miR-103 miR-193a-3p miR-21 miR-335 miR-30e-3p miR-193 miR-26a miR-193a-5p miR-152 miR-222 miR-499-5p miR-199-3p miR-148b-3p miR-204 miR-497 miR-100 let-7d-5p let-7c miR-29b miR-20b miR-363 miR_23b miR-19b

miR-30d miR_155 miR_23a miR-22-3p miR-4334-5p miR-98 miR-218b miR-130a miR-199b-3p miR-145-5p miR-199a-3p miR-10a-5p miR-194b-5p miR_150 miR-4332 let-7i miR-1307 miR-362 miR-7 miR-146a-5p miR-15a miR-195 miR-30e-5p miR-107 miR-744 miR_34a miR-324

HGB MCH WBC MCHC MPV LYM HCT PLT PCT MCV RBC

NH3GLUALBTCHOIPCREATGBUN

Figure 1. Common relationships between miRNAs, and biochemical and haematological traits. In total, 153 SSC-miRNA pairs were correlated with biochemical and
haematological traits.

ss
c-

m
iR

-2
1

ss
c-

m
iR

-4
25

-5
p

ss
c-

m
iR

-2
04

ss
c-

m
iR

-6
52

ss
c-

m
iR

-7
44

ss
c-

m
iR

-9
9b

ss
c-

m
iR

-1
81

c
ss

c-
m

iR
-2

22
ss

c-
m

iR
-1

5b
ss

c-
m

iR
-2

04
ss

c-
m

iR
-3

0e
-3

p
ss

c-
m

iR
-3

4a
ss

c-
m

iR
-1

30
b

ss
c-

m
iR

-1
93

a-
3p

ss
c-

m
iR

-2
10

ss
c-

m
iR

-2
22

ss
c-

m
iR

-4
25

-5
p

ss
c-

m
iR

-4
55

-3
p

ss
c-

m
iR

-6
52

ss
c-

m
iR

-7
08

-5
p

ss
c-

m
iR

-9
8

ss
c-

m
iR

-9
9a

ss
c-

m
iR

-2
9c

ss
c-

m
iR

-3
0e

-5
p

ss
c-

m
iR

-5
32

-5
p

ss
c-

m
iR

-1
48

b-
3p

ss
c-

m
iR

-1
5a

ss
c-

m
iR

-2
1

ss
c-

m
iR

-7
08

-5
p

ss
c-

m
iR

-1
43

-5
p

ss
c-

m
iR

-1
48

b-
3p

ss
c-

m
iR

-1
8b

ss
c-

m
iR

-2
04

ss
c-

m
iR

-2
21

-3
p

ss
c-

m
iR

-2
9c

ss
c-

m
iR

-3
0e

-3
p

ss
c-

m
iR

-5
03

ss
c-

m
iR

-9
2b

-3
p

ss
c-

m
iR

-9
9b

ss
c-

m
iR

-1
40

-5
p

ss
c-

m
iR

-1
48

b-
3p

ss
c-

m
iR

-1
9a

ss
c-

m
iR

-2
9c

ss
c-

m
iR

-1
00

ss
c-

m
iR

-3
61

-5
p

ss
c-

m
iR

-7
08

-5
p

ss
c-

le
t-

7g
ss

c-
m

iR
-1

30
b

ss
c-

m
iR

-2
9c

ss
c-

m
iR

-1
50

ss
c-

m
iR

-6
52

ss
c-

m
iR

-7
08

-5
p

ss
c-

m
iR

-1
22

ss
c-

m
iR

-1
93

a-
3p

ss
c-

m
iR

-2
18

b
ss

c-
m

iR
-5

03
ss

c-
m

iR
-7

08
-5

p
ss

c-
m

iR
-9

8
ss

c-
m

iR
-1

30
7

ss
c-

m
iR

-1
82

ss
c-

m
iR

-7
08

-5
p

ss
c-

m
iR

-1
48

b-
3p

ss
c-

m
iR

-7
08

-5
p

ss
c-

m
iR

-1
30

b
ss

c-
m

iR
-1

40
-3

p
ss

c-
m

iR
-1

93
a-

5p
ss

c-
m

iR
-2

3b
ss

c-
m

iR
-2

7b
-3

p
ss

c-
m

iR
-2

9c
ss

c-
m

iR
-3

0e
-5

p
ss

c-
m

iR
-1

8a
ss

c-
m

iR
-2

8-
5p

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

01 03 04 06 07 08 09 10 11 12 13 14 15 16 17 Uwgs X

–l
og

10
 (

p-
va

lu
e)

chromosome/miR_SSC

Figure 2. Manhattan plot of miR-eQTLs. Genome-wide association of SNPs and expression levels of miRNA located in pig genome Sscrofa 10.2. SNPs associated at a
significance threshold (dotted line) p-value – log10 . 4 are shown. The miRNA and SNPs located on the same chromosomes are labelled as dark bold dots.

rsob.royalsocietypublishing.org
Open

Biol.7:170101

5

and metabolic traits. For example, serum TG was correlated

with miR-744, miR-199, miR-10, miR-23, miR-195 and miR-

155, which were also correlated with erythrocyte-related traits

(RBC, MCHC, HGB and MCV). Some of these interrelation-

ships are evidenced by previous knowledge as exemplarily

detailed here. This clearly indicates that our analyses provide

biologically meaningful interactions. In fact, miR-155 plays a

crucial role in several physiological processes including haema-

topoietic lineage differentiation, immunity and inflammation

[23,24]. miR-155 is also involved in adipogenesis and lipid

metabolism [25,26]. Overexpression of liver miR-155 in trans-

genic mice resulted in significantly reduced levels of serum

total cholesterol, triglycerides (TG) and high-density lipopro-

tein (HDL) [26]. BUN is the major nitrogenous product of

protein and amino acid catabolism and often used as an indi-

cator of kidney and liver function. Interestingly, miR-155 is

highly upregulated following ischaemic or toxic injury to the

kidneys [27,28]. In this study, we show for the first time that

there is a relationship between miR-155 expression and
immune and metabolic parameters in healthy animals. We

found that expression levels of miR-155 were highly negatively

correlated with TG, ALB, BUN and IP. At the same time, miR-

155 was also correlated with erythrocyte levels (RBC, HGB,

HCT and MCHC) and LYM.

Similarly, miR-199a, miR-195, miR-10 and miR-23

expression were correlated with TG and haematological

traits. Some of these miRNA are known biomarkers for hepa-

tocellular carcinoma, including miR-199a [29] and miR-195

[30]. Insulin receptor (INSR) is a direct target of miR-195

[31]. Aberrant expression of miR-152 is related to hepatocellu-

lar carcinoma [32], as well as hepatic glycogenesis [33]. In our

study, miR-152 was negatively correlated with TCHO and

erythrocytes (RBC, MCHC).

We found that the expression of let-7 family mRNA nega-

tively correlated with GLU levels, positively correlated with

erythrocytes and negatively correlated with LYM. A previous

study reported that overexpression of let-7 resulted in insulin

resistance and impaired glucose tolerance, implying that the
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lin28/let-7 pathway regulates glucose metabolism [34]. In

another study, it was reported that miRNA let-7 expression is

regulated by glucose [35]. A number of studies have also

demonstrated that let-7 miRNAs levels drop after infection,

which in turn increases IL-10 mRNA [36]. It also regulates

IL-13 expression and is associated with allergic airway inflam-

mation [37], and suppresses adaptive immune responses,

contributing to immune evasion of tumours [38].

Phosphorus (P) is a key element in numerous physiologi-

cal processes, including energy transduction, cell signalling

and regulation in metabolic pathways. We found that IP

was correlated with a number of miRNAs including miR-

34a and miR-194, which are both abundant in the liver.

miR-34a is an obesity-associated miRNA that attenuates

metabolic hormone function [39,40]. It is upregulated in the

Doroc pig and Göttingen Minipig obesity model [41,42]. In

other cases, miR-34a expression has been found to be

increased in human patients with liver disease and in a rat

liver fibrosis model [43,44]. miRNA-194 acts as a prognostic

marker and inhibits proliferation in hepatocellular carcinoma

by targeting MAP4K4 [45]. We detected additional miRNAs

that were highly correlated with IP and erythrocytes includ-

ing miR-1225 and miR-4334, whose functions remain unclear.

Blood ammonia (NH3) is an indicator of liver and kidney

disease. Interestingly, we found that liver miRNA, including

miR-138, miR-214 and miR-497, linked to NH3 and platelet
traits (PCT and PLT). The functional link between platelets

and blood NH3 mediated by miRNA is unknown. Most

of these miRNAs are reported as biomarkers in renal tumour-

igenesis and hepatocellular carcinoma [46,47]. miR-214

appears to participate in the development of hepatic fibrosis

[48], while miR-497 regulates cell proliferation in hepato-

cellular carcinoma [49]. While links between miRNAs and

specific traits (mostly pathologic conditions) have been

shown, we provide evidence that many miRNAs represent

common links between metabolic and haematological and

immune-related traits.
3.2. Common traits correlated with microRNA and
mRNA

Our previous study identified liver transcripts related to

cellular and molecular processes and established a compre-

hensive view of hepatic gene activity linked to metabolic

and immune traits in pigs [14]. The fact that thousands of

genes have potential binding sites for miRNAs and single

miRNAs can simultaneously target hundreds of genes

[50,51] makes the data analysis challenging even with the

use of prediction software and criteria. To determine the

relationship between identified miRNAs and their targets,

we used previous data taken from the same samples. We
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previously identified 6321 transcripts that were correlated

with a minimum of one biochemical trait with r ¼ |0.22–

0.41| at a significance level of FDR , 1% [14]. In order to

focus our study, after target prediction using miRNA seed

sequence analysis, only transcripts (mRNA and miRNA)

correlated with the same traits and that were negatively cor-

related with each other were analysed. For instance, BUN,

a biomarker for kidney and liver function, was correlated

with miR-145, miR-18, miR-29a and miR-671. These

miRNAs were related to transcripts including SAP30 L,
FZD4, BMPR2, LEPR, SCD, ATP1A1, CXCL12, GC, LEPR,
SLC16A2, DPP4, SULT2A1, PHB, UBR1 and DPP4, which

were also correlated with BUN and are involved in adipo-

genesis or lipid metabolism pathways. Interestingly, as

previously reported, BUN is correlated with fat traits [14].

MiRNAs including let-7, miR-1224 and miR-2288 that cor-

related with glucose levels were also correlated with target

mRNAs belonging to functions of carbohydrate metabolism,
including ACACA, ATXN2, FASN, ESR1, FUT8, SCD, CTH,
GPR39, ITGB3, MLXIPL, BCL2, RGL1, MTAP, PGM2 and

SLC16A6. As discussed above, the let-7 family plays a signifi-

cant role in glucose metabolism; this study shows the

complex levels of regulation.

Additional relationships were identified between haema-

tological traits, miR-145 and transcripts of acute phase

response signalling like SOCS3 and STAT3. Targets of miR-

1915 that correlated with RBC were found to be enriched in

LXR/RXR activation. Interestingly, Aconitase 1 (ACO1) is

involved in the control of iron homeostasis [52] and superox-

ide dismutase 1 (SOD1) has a significant role on the lifespan

and quantity of red blood cells in peripheral blood [53]; both

of these were predicted targets of miR-1777b [14]. MiR-1777b

was highly correlated with RBC (r ¼ 0.397, p ¼ 3.97 � 1029).

This miRNA is still not annotated in pigs; however, using

BLAST, we found a sequence identical to miR-1777b located

on SSC6 at 827723 bp.
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The complex miRNA–mRNA regulatory networks ident-

ified by this study may contribute to fine-tuning liver gene

expression and may have a significant impact on metabolic

and immune traits.

3.3. Genetic regulation of microRNA transcripts
Genetic polymorphisms that affect miRNA levels can

contribute to a wide range of target genes and phenotypes.

We obtained SNP genotypes and assessed whole-genome

miRNA expression in the liver to identify genetic variations

that influence miRNA and mRNA targets related to immune

and metabolic traits. A low number of cis-miRNA-eQTL was

also reported in a study of primary fibroblasts derived from

the umbilical cord [54]. Other reports of genetic regulation

of miRNA expression in the skin revealed 42 eQTL for

38 miRNAs, all of which were trans-eQTL [20]. Trans-only

miRNA eQTL in the liver have also been reported [21]. Other

studies report a limited number of miRNA eQTLs in adipose

tissue [55] and dendritic cells [18]. By contrast, an eQTL

study of whole blood miRNAs from a large sample size

revealed about 27% of miRNA with cis effects [19]. Compared

with our previous study with eQTL of mRNA from the same

samples, we found that about 75% of mRNA have cis effects

[14]. In this study, we found miR-708 as cis-eQTL with the win-

dows smaller than 1 Mb and the transcripts in the surrounding

region also regulated with the same SNPs. Based on the syn-

teny between the human and pig genome and the discovery

of other transcripts in this region regulated with the same

SNPs, we expected miR-34a to be cis-eQTL. Five other miR

(miR-30e, miR-19a, miR-4507, miR-27d and let-7 g) were

associated with SNPs on the same chromosome. Other

miRNA (like miR-652) are still unmapped (NW_003539729)

in the pig chromosome. Most of the miRNA-eQTL in this

study were identified as trans-eQTL. We identified a number

of miRNA that were correlated with haematological and bio-

chemical traits. Since miRNAs can target many mRNAs, the

effect of genetic variants on miRNA expression can play an

important role in complex phenotypes mediated by various

target genes.

3.4. Shared genotype effects on mRNA and microRNA
transcripts

SNPs located at the same region as its regulated transcripts

were identified as cis-eQTL. These SNPs can regulate many

transcripts in the vicinity. Subsequently, miRNA eQTLs will

be enriched for eQTLs of host genes as shown in our study.

Interestingly, most of the SNPs regulating mRNAs that were

cis-eQTL at the same time also regulate miRNA. We found

that SNPs around miR-708 and miR-34a were also associated

with the mRNA transcripts in the vicinity. Recently, the

majority of shared eQTLs of miRNAs and mRNAs were

found to have different effects on miRNA or mRNA transcrip-

tion, suggesting an independent regulation of miRNAs

and mRNAs [56]. miR-34a was negatively correlated with IP

(r ¼ 0.35, p ¼ 2.26 � 1027). The same SNPs that regulated

miRNA-34a also regulated mRNAs including FBXO6, KIF1B,

GALP, LZIC, LOC100516739 and NMNAT1. In our previous

study, we found that the expression pattern of Galanin-

like peptide (GALP) was also negatively correlated with IP

(r ¼ 0.28, p ¼ 7.9 � 1027). GALP is a neuropeptide regulating
feeding behaviour and is involved in energy metabolism

[57,58]. Interestingly, high-phosphorus diets enhance energy

metabolism through the utilization of free fatty acids released

via lipolysis of white adipose tissue [59]. Accordingly, our pre-

vious study showed that miR-34a and miR-708 are upregulated

in Duroc pigs, which are more obese than Pietrain [42]. This

information links miR-34a to IP and TCHO, providing evi-

dence of a functional link between IP, energy metabolism,

genetic regulation of miRNA 34a and GALP.

We found that SNPs located on SSC9 associated with

Aquaporins (AQP11) and miR-15a/16a. Using target site pre-

diction, AQP11 was identified as a target of miR-15a/16 in

many species including human, rat and mouse. Aquaporins

are membrane water/glycerol channels involved in many

physiological processes including circulation of glycerol and

adipocyte metabolism [60]. In the present study, miR-15a

was also found to be negatively correlated with TG and

TCHO. miR-15a, however, has not been located in the pig

genome. Genetic regulate miR-652 also regulate PYROXD2

and ZDHHC16 located on SSC14 and SSC7. Our previously

study determined PYROXD2 and ZDHHC16 as cis-eQTL,

but miR-652 has not been located in the pig genome.

The analysis of miRNA transcript profiles together

with information on their genetic regulation provide a new

resource for understanding the genotype–phenotype mapping

associated with hepatic gene expression targets and the

physiological processes related to haematological, immune

and metabolic traits. Our findings suggest a substantial overlap

of the genetics of miRNA and mRNA. In fact, we demonstra-

ted that SNPs show pleiotropic effects by simultaneously

affecting miRNA and mRNA expression and thus build regu-

latory networks influencing complex traits. Our analyses of

trait-correlated miRNA and eQTL detection complement

genome-wide association studies (GWAS) of immune and

metabolic traits. The study supports the notion that miRNA

can be used as biomarkers by showing links between liver

miRNA and mRNA expression and plasma haematological,

biochemical and clinical–chemical parameters.
4. Material and methods
4.1. Animals and sample collection
Animal care and tissue collection procedures followed the

guidelines of the German Law of Animal Protection.

The experimental protocol was approved by the Animal Care

Committee of the Leibniz Institute for Farm Animal Biology.

Performance-tested pigs from commercial herds of German

Landrace pig were used for GWAS of liver miRNA (n ¼ 209).

Liver and blood samples were collected from pigs at an

average age of 170 days at the experimental slaughter facility

of the Leibniz Institute for Farm Animal Biology. Veterinary

inspection of the carcasses and organs after slaughter con-

firmed a lack of any impairments, disease symptoms or

pathological signs to avoid any bias of blood phenotypes.

Blood serum was prepared by centrifugation and haemato-

logical and biochemical traits were determined using

automated analyser devices (ABX Pentra 60 HORIBA,

Montpellier, France; Fuji DriChem 4000i, FujiFilm, Minato,

Japan; electronic supplementary material, table S1).

Genotyping was performed using the PorcineSNP60

BeadChip (Illumina Inc., San Diego, CA, USA) as per the
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manufacturer’s SNP Infinium HD assay protocol. In brief,

200 ng of DNA was amplified, fragmented and hybridized

to the PorcineSNP60 BeadChip containing 62163 locus-

specific 50-mers covalently linked to beads distributed on

the microarray surface. Single-base extension of captured

oligos incorporated labels detected by Illumina ISCAN and

images were subsequently converted to intensity data. Inten-

sity data were normalized and assigned a cluster position,

genotype and quality score with GENOMESTUDIO software (Illu-

mina Inc.). Samples with call rates less than 99% were

removed. Markers with low minor-allele frequency (less

than 5%) were also excluded. Markers that strongly deviated

from the Hardy–Weinberg equilibrium ( p , 0.0001) were

also excluded. The average call rate for all samples was

99.8%+0.2. The markers of the 60 K chip were mapped to

the porcine reference genome using SSCROFA 10.2 (Ensembl;

downloaded from NCBI, http://www.ncbi.nlm.nih.gov).

4.2. RNA isolation and microRNA microarray analysis
Small RNAs were isolated and enriched from liver using an

miReasy Mini kit and an RNeasy MinElute Cleanup kit

(Qiagen, Hilden, Germany) according to the manufacturer’s

protocols. The quality and quantity of small RNA were

assessed with an Agilent 2100 Bioanalyser (Agilent, Santa

Clara, CA, USA) using an Agilent small RNA kit. miRNA

expression profiling was performed using the GeneChip

miRNA 3.0 array (Affymetrix, Santa Clara, CA, USA) accord-

ing to the manufacturer’s recommendations. Affymetrix

Gene Chip Micro 3.0 Array provides 100% miRBase v17 cover-

age (www.mirbase.org). The microarray contains 12187

unique sequences for the detection of mature miRNAs

assigned to S. scrofa and other species including human, pro-

viding a highly redundant expression analysis platform

because many miRNA probes of various species are identical,

reflecting the high degree of conservation of miRNAs. Small

RNAs (200 ng) were used for sample preparation with a

FlashTag Biotin RNA labelling kit for Affymetrix GeneChip

miRNA arrays (Genisphere, Hatfield, PA, USA). Labelled

RNA was then hybridized for 16 h to the miRNA arrays

according to the manufacturer’s recommendations, washed

and stained in a Fluidics Station 450, and scanned on a

G3000 GeneArray Scanner (Affymetrix). Robust multi-array

average (RMA) background correction, log2 transformations

and quantile normalization methods implemented in JMP

GENOMICS 6 (SAS Institute, Cary, NC, USA) were performed.

4.3. Bioinformatic analysis
All miRNA probe-set sequences were used to blast against

miRBase 21 (SSC miRNA) and pig genome (SSCROFA 10.2).

All miRNA species that were not available in the SSC miR-

database or could not be mapped in pig genome were

excluded. A total of 2736 probe-sets (826 different miRNA

species) passed the filtering and were used for further

analyses. miRNA microarray data were deposited in the

Gene Expression Omnibus public repository (GEO accession

numbers: GSE97274, GSM2560488–GSM2560696). TargetScan

was used first to detect predicted target genes based on

seed complementarity on both 3’- and 50-UTR and coding

sequences of the porcine mRNA sequences (Sscrofa 10.2) and

miRNA species from our study. Further, RNAHYBRID software

(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid) was
used for direct prediction of multiple energetically favourable

potential binding sites (energy cut-off ¼ 225 kcal mol21).

Our previous mRNA expression data were integrated with

miRNA data from the same samples. We further identified

mRNA–miRNA pairs that were negatively correlated

(FDR , 5%) with each other and that correlated with the

same traits (FDR , 5%).

4.4. Data pre-processing and statistical analysis
After quality control and filtering, the expression data were

further pre-processed to account for systemic effects. Mixed-

model analyses of variance using JMP GENOMICS (SAS Insti-

tute, Cary, NC, USA) were used to adjust for the effect. The

genetic similarity matrix between individuals was first com-

puted as identity-by-descent of each pair for the k-matrix

and used (considered) as a random effect. For control of

population stratification, top principal components (PCs)

explaining a variation of more than 1% were considered as

covariates. In total, 17 PCs were included as covariates.

Gender was used as a fixed effect, slaughter day was used

as a random effect and carcass weight was considered as a

covariate. The residuals were retained for further analysis.

eQTL analyses were conducted using the R package

Matrix eQTL [61]. Matrix eQTL tests for association between

each SNP and residual transcripts levels were assessed by

modelling the additive effects of genotypes in a least square

model [61]. Matrix eQTL performs a separate test for each

gene–SNP pair and corrects for multiple comparisons by cal-

culating the FDR [62]). Annotation and localization of SNP

sites and probe-sets (SSCROFA 10.2) allowed for discrimination

of cis- and trans-regulation. We defined an eQTL as cis if an

associated SNP was located within an area less than 1 Mb

from the probe-set/gene.

The common regions linking mRNA and miRNA were

analysed by pleiotropic association. Pleiotropic association

analyses were performed by MANOVA (multivariate analysis

of variance) between miRNA and mRNA transcripts levels

and genetic marker data.

The correlation of miRNA transcript levels with

haematological and biochemical traits were estimated

as Spearman coefficients and corrected for multiple

comparisons by calculating the FDR [62].
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