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Abstract

Computational integrative analysis has become a significant approach in the data-driven

exploration of biological problems. Many integration methods for cancer subtyping have

been proposed, but evaluating these methods has become a complicated problem due to

the lack of gold standards. Moreover, questions of practical importance remain to be

addressed regarding the impact of selecting appropriate data types and combinations on

the performance of integrative studies. Here, we constructed three classes of benchmarking

datasets of nine cancers in TCGA by considering all the eleven combinations of four multi-

omics data types. Using these datasets, we conducted a comprehensive evaluation of ten

representative integration methods for cancer subtyping in terms of accuracy measured by

combining both clustering accuracy and clinical significance, robustness, and computational

efficiency. We subsequently investigated the influence of different omics data on cancer

subtyping and the effectiveness of their combinations. Refuting the widely held intuition that

incorporating more types of omics data always produces better results, our analyses

showed that there are situations where integrating more omics data negatively impacts the

performance of integration methods. Our analyses also suggested several effective combi-

nations for most cancers under our studies, which may be of particular interest to research-

ers in omics data analysis.

Author summary

Cancer is one of the most heterogeneous diseases, characterized by diverse morphological,

phenotypic, and genomic profiles between tumors and their subtypes. Identifying cancer

subtypes can help patients receive precise treatments. With the development of high-

throughput technologies, genomics, epigenomics, and transcriptomics data have been

generated for large cancer patient cohorts. It is believed that the more omics data we use,

the more accurate identification of cancer subtypes. To examine this assumption, we first

constructed three classes of benchmarking datasets to conduct a comprehensive
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evaluation and comparison of ten representative multi-omics data integration methods

for cancer subtyping by considering their accuracy, robustness, and computational effi-

ciency. Then, we investigated the influence of different omics data and their various com-

binations on the effectiveness of cancer subtyping. Our analyses showed that there are

situations where integrating more omics data negatively impacts the performance of inte-

gration methods. We hope that our work may help researchers choose a proper method

and an effective data combination when identifying cancer subtypes using data integra-

tion methods.

Introduction

Cancer is a complex, heterogeneous, and serious disease extremely harmful to human health.

Research on cancer has been going on for decades. With the continuous development and the

declining cost of high-throughput technology, international collaborative projects, such as

TCGA, ICGC, and CCLE, have generated and collected a large number of different omics data

of the same cohort of cancer patients at different levels [1], including genome, epigenome,

transcriptome, metabolome, and proteome. It has been accepted that different levels of biologi-

cal data collectively affect and regulate multiple biological processes, and provide more reliable

information for the formation and promotion of complex diseases [2]. As a powerful and valu-

able approach to utilizing different types of genomic data, multi-omics data integration has

attracted much recent interest in the field of bioinformatics.

Applying data integration methods to cancer analysis has three main goals: understanding

the molecular mechanism of cancer, clustering disease samples, and predicting an outcome,

such as survival or therapy efficacy [3]. One of the most important tasks is the identification of

molecular cancer subtypes, i.e. groups of patients with common biological characteristics or

clinical phenotypes such as survival time and drug response. The treatments of different cancer

patients are highly dependent on their specific subtypes [4]. By using data integration strate-

gies and considering different levels of information, cancer subtypes can be identified from

macro perspectives so that patients can get more accurate diagnoses and treatments [5].

In recent years, many computational integration methods for cancer subtyping have been

proposed. To choose among these methods, practitioners usually face two inevitable problems.

The first problem is about how to compare the performance among these methods and the sec-

ond problem is related to the selection of available data types to integrate in order to achieve

the best possible results. The first problem is due to the lack of gold standards and consistent

performic criteria [6], and the fact that different datasets and evaluation metrics were used

when different methods were proposed. To understand and demonstrate the crucial need for

addressing the second problem of data type selection, we surveyed 58 integration methods for

cancer subtyping proposed from 2009 to 2019, and the result is summarized in Fig 1 where

gene expression is treated as the same as mRNA expression and miRNA expression is placed

into the group of epigenome based on observations from [7]. We summarized part of these 58

integration methods with the omics data they used in Fig 1A, and we can see, the data combi-

nations used in these methods [2,8–24] are significantly inconsistent. For example, Fig 1B

shows that while the mRNA expression data were used by 56 of the 58 methods, each of the

other data types was only used by at most nearly half of these methods. Regarding the combi-

nations of data types used in these methods, we also observed a significant variation among

these methods (Fig 1C). We shall note that in most of the papers proposing these methods,
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there was not much effort to discuss why a particular set of data types were selected from either

computational or biological perspective.

In some recent studies on multi-omics integration methods, efforts have been given to

understand the above two problems and most of the studies focused on the first problem on

performance comparison and benchmarked the methods under only one performance

Fig 1. Summary of the data type selection of existing integration methods. (A) Multi-omics data usage of different integration methods. (B) The usage

frequency of each omic data type. We use “Methy”, “mRNA”, “miRNA” and “protein” to represent DNA methylation, mRNA expression, miRNA expression,

and protein expression, respectively. (C) The usage frequency of different omics combinations. We use “G”, “E”, “T”, “P” and “O” to represent genomics,

epigenomics, transcriptomics, proteomics, and others, respectively.

https://doi.org/10.1371/journal.pcbi.1009224.g001
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criterion. Treating these subtyping methods as methods for unsupervised clustering, Chauvel

et al. [25] evaluated iCluster [26], moCluster [22], iNMF [27], JIVE [28], MDI [29], and BCC

[24] by using simulated datasets to study whether the method could recover the clusters they

constructed and the consistency between simulated and estimated clusters using Adjusted

Rand Index (ARI). On BRCA real datasets with true labels and subtypes markers, similar, but

less sufficient, comparisons were conducted. Rappoport et al. [30] benchmarked LRAcluster

[21], PINS [17,31], SNF [23], rMKL-LPP [4], MCCA [32], MultiNMF [33], and iClusterBayes

[15] using 10 real cancer datasets by survival analysis and clinical parameters enrichment. The

experiments were well designed and the analysis was interesting. However, the evaluation was

still limited as it focused on a single clinical-based accuracy criterion.

To the best of our knowledge, only two studies [34,35] considered the second problem on

the significance of the selection and combination of the data types. As both studies used differ-

ent data types for different diseases (such as BXD, Platelet, and BRCA), it is not clear if the

insights obtained are useful for cancer subtyping. This is particularly true for the work by

Pierre-Jean [35] where different data type combinations were not considered at all on real dis-

ease datasets. The evaluation in these two studies is also limited in that the datasets generated

or collected all had true labels and a clustering-based performance metric was used.

In this study, we constructed three classes of benchmarking datasets by integrating all the

possible combinations of four different types of multi-omics data of nine different cancers.

Using these datasets, we evaluated and compared the performance of ten representative inte-

gration methods for cancer subtyping by taking into consideration their clustering accuracy as

well as their clinical significance. Based on the experiment results, we further studied the influ-

ence of different omics data and their various combinations on the effectiveness of data inte-

gration methods for cancer subtyping.

Materials and methods

In this section, we briefly review existing integration methods and discuss in detail every pro-

cess of our experiments, including data pre-processing, dataset construction, integration and

subtyping, and performance evaluation.

Selection of integration methods

Researchers have been committed to developing computational multi-omics data integration

methods for cancer subtyping using different strategies or techniques. Previous studies have

classified the current integration methods into several categories based on different criteria,

including clustering of clusters [24,29], transformation-based approaches [4,36], and deep

learning-based approaches [14,37–41], which we summarize in Table 1. It is worth noting that

in these categorizations, a particular method may belong to multiple categories.

Aiming at a systematic evaluation of integration methods and data selection issues, in this

work, we adopted the simple methodology-based division proposed by Bersanelli [3], where

integration methods are grouped into two categories: network-based methods and statistics-

based methods. We selected five representative network-based methods, Similarity Network

Fusion (SNF) [23], Neighborhood based Multi-Omics clustering (NEMO) [12], Cancer Inte-

gration via Multikernel Learning (CIMLR) [13], Multi-View NMF (MultiNMF) [33], and Pat-

tern Fusion Analysis (PFA) [2], and three widely used statistics-based integration methods,

Low-rank Approximation Based Multi-omics Data Clustering (LRAcluster) [21], moCluster

[22], and iClusterBayes [15]. We also selected an integrative framework Perturbation Cluster-

ing for Data Integration and Disease Subtyping (PINS) [17,31] in our study which cannot be

placed in either of the two categories. As deep learning techniques have been widely used in
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the field of bioinformatics and achieved many successes, we added a deep learning-based

method, Subtype-GAN [95], into our experiment. We notice that LRAcluster, PFA, and Mul-

tiNMF are not originally designed for cancer subtyping problems but these methods represent

general frameworks for integrating multi-omics data, which can be used to conduct different

downstream analysis including cancer subtyping and have good performances [1,11,12,30].

For evaluation and comparison of more integration methods, we included these three methods

in this study. We briefly discuss the selected ten integration methods as follows.

1. SNF constructs sample-sample similarity networks, one for each type of omics data, where

the nodes representing the samples and weighted edges between nodes representing the

similarity between the samples. A message-passing process is then used to update the

weights of similarity among multiple similarity networks on the same set of samples itera-

tively to make these networks more and more similar. The spectral clustering [96] method

is used on the converged similarity network to identify cancer subtypes.

2. NEMO builds a similarity network between samples for each omics data and then modifies

the similarity to relative similarity (RS) which is more comparable between omics. When

integrating different omics data, NEMO simply averages RS in the different similarity net-

works for each pair of samples. Cancer subtypes are identified on the averaged similarity

network using spectral clustering. NEMO can handle partial multi-omics datasets in the sit-

uation that each pair of samples has measurements in at least one common omics in which

they are both measured.

3. CIMLR uses different Gaussian kernels to measure patient-to-patient distance and then

learns weights for these multiple kernels in each data type. After estimating the number of

Table 1. Summary of previous studies.

Study Categories Methods

Wang et al. (2016) [42] direct integrative clustering [21,28,43–46]

clustering of clusters [23,24,29,47]

regulatory integrative clustering [48]

Tini et al. (2017) [34] multivariate [32,49–57]

concatenation-based [21,22,26,28,58–61]

transformation-based [4,23,36,62–64]

Rappoport et al. (2018) [30] early integration [21,26,65]

late integration [17,47,66]

intermediate integration similarity-based [4,23,67–73]

dimension reduction [21,28,32,33,45,50,53,58,74–80]

statistical modeling [15,24,26,29,43,48,81–87]

deep learning-based [86,87]

Chauvel et al. (2019) [25] conceptual integration [88]

consensus clustering [89]

concatenation-based integration [90,91]

searching for common variations -

multi-omic pathway enrichment [92,93]

Subramanian et al. (2020) [1] multivariate [4,22,27,28,58,59,94]

similarity [12,17,23]

network [48]

fusion [2,23,81]

Bayesian [21,24,26,29,43,48,81]

https://doi.org/10.1371/journal.pcbi.1009224.t001
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clusters using the gap statistic, it combines the multiple kernels into a resulting similarity

matrix with a block structure. K-means clustering is used on the resulting similarity matrix

to identify cancer subtypes.

4. MultiNMF is a multi-view clustering algorithm based on nonnegative matrix factorization.

It obtains a shared coefficient matrix as the common consensus data matrix by formulating

a joint matrix factorization process with the constraint. The consensus data matrix is con-

sidered as a latent representation of the original data points reflecting the latent clustering

structure shared by different views. K-means is used directly on this consensus matrix to

obtain the cancer subtyping results.

5. PFA exacts local information of each biological dataset using a dimension reduction strat-

egy. Based on an adaptive optimization method, it aligns local sample patterns into a global

sample-spectrum. The clustering method K-means [97] is used on the sample-spectrum

matrix to identify cancer subtypes.

6. LRAcluster uses a low-rank approximation based integrative probabilistic model to inte-

grate different types of multi-omics data. The real-type, binary, and count-based data matri-

ces are modeled as different distributions determined by a latent representation of the

original data matrix. The objective function of LRAcluster is designed to be convex so that

the global optimal can be found by the simple gradient-ascent algorithm. To clustering the

samples, the K-means method is used on the latent representation matrix.

7. moCluster is based on a multitable multivariate analysis. It finds latent variables using

sparse consensus PCA and determines the number of latent variables using permutation

and elbow test. Cancer subtypes are identified using conventional clustering methods such

as hierarchical clustering and K-means clustering method.

8. iClusterBayes uses different models for continuous, binary, and count data. It integrates

different types of omics data by projecting them into a common low-dimensional inte-

grated space, using the Bayesian latent variable regression model. K-means clustering is

performed on the projected latent representation of the samples.

9. PINS uses its own perturbation clustering method to cluster each omics datasets and con-

structs connectivity matrices which will be merged into a combined similarity matrix subse-

quently. It uses similarity-based clustering methods such as uses hierarchical clustering

[98], PAM [99], or Dynamic Tree Cut [100] to identify subtypes from the integrated simi-

larity matrix.

10. Subtype-GAN is a deep learning-based multi-omics data integration approach for discov-

ering cancer subtypes. It extracts features from each omics data by relatively independent

layers and integrates different omics by feeding the extracted information to the same

shared layer simultaneously. Consensus GMM clustering is used to predict cancer subtyp-

ing results.

Omics data pre-processing

The Cancer Genome Atlas Program (TCGA) has collected a large number of different types of

omics data from more than 30 types of cancers. In this study, four types of omics data were

chosen, including copy number variation in genome level, DNA methylation and miRNA

expression in epigenome level, and mRNA expression in transcriptome level (Fig 2A). To

decide the cancer types to be used in our studies, we focused on those cancers which had a suf-

ficient number of samples of the four types of omics data in the TCGA collection and had
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been used in previous studies on cancer subtyping. As a result, nine common cancers were

chosen, including Adrenocortical Carcinoma (ACC), Breast Invasive Carcinoma (BRCA),

Colon Adenocarcinoma (COAD), Kidney Renal Papillary Cell Carcinoma (KIRP), Kidney

Renal Clear Cell Carcinoma (KIRC), Liver Hepatocellular Carcinoma (LIHC), Lung Adeno-

carcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), and Thymoma (THYM).

For the mRNA and the miRNA expression data, we downloaded the level-three data of

HTSeq-FPKM data and BCGSC miRNA Profiling miRNA-Seq data from TCGA. For the

DNA methylation data, we chose Illumina Human Methylation 450 level-three data from

TCGA. We selected the promoter-associated probes and mapped them to each gene as

LRAcluster did. The promoter regions were based on Yang’s previous study [101,102]. When

evaluating the methylation level of each gene, we observed that multiple probes might map to

the same gene. Therefore, we used the median value of these probes to represent the methyla-

tion level of that gene. For CNV data, we also mapped CNV regions to each gene and found

that a gene might span multiple CNV regions. In this case, we took the same strategy to evalu-

ate the copy number level of each gene using the median value of its corresponding CNV

regions.

For each type of omic data, we first filtered the features that had more than 20% missing val-

ues across all patients and filtered the samples that had more than 20% missing values across

all features as SNF did. Then, we selected the samples that belonged to the same patient cohort

for four omics datasets. We used the K-nearest neighbor method to impute the missing values

[103]. Since batch effects had been reported among most high-throughput technologies [104]

which might disturb the experiment, we removed the batch effects using the ComBat function

[105] to avoid the disturbance, and the essential batch numbers were extracted from the clini-

cal information downloaded from TCGA. Finally, we normalized each dataset by calculating

z-scores to eliminate the differences due to the use of different scales in these datasets.

Benchmarking dataset construction

To make a comprehensive evaluation and comparison, we constructed three different classes

of benchmarking datasets using four types of omics data of nine cancers. Fig 2B shows the

details of dataset construction.

1. Dataset group #1: Nine-cancer datasets. Dataset group #1 considers all four types of

omics data for each of nine cancers. There are also two versions for each cancer dataset.

The first version of each dataset contains samples with all features after the data processing

step, which is denoted as the complete dataset. The second version of each dataset contains

samples that only have significant features, which is called the significant dataset. We

explain in the following how significant features are determined. For the mRNA expression

and the DNA methylation data, we adopted the median absolute deviation (MAD) to select

the top 2,000 most-variable features as iClusterPlus [43] did. For the miRNA expression

data, we calculated MAD for each miRNA and selected the top 200 miRNAs because the

number of miRNAs was too small. As GISTIC2 [106] identified genomic regions that were

significantly gained or lost across a set of tumors, therefore, for the CNV data, we selected

Fig 2. Data usage. (A) Omics data types we used in this study. The main color of each heatmap (matrix) represents one type of omics data, i.e. black

represents CNV, green represents miRNA expression, orange represents DNA methylation, and blue represents mRNA expression. The shade of color in

each heatmap is proportional to the different values. (B) Datasets construction. As TCGA group assigned BRCA and COAD patients into five (i.e.

“LumA”, “LumB”, “Basal”, “Her2”, and “normal”) and four (i.e. “CIN”, “GS”, “MSI”, and “POLE”) subtypes, respectively, in BRCA and COAD gold

standards datasets of Dataset group #3, we use these assignments as gold standards of BRCA and COAD patients. (C) Omics data combinations. We use

“Methy”, “mRNA”, and “miRNA” to represent DNA methylation, mRNA expression, and miRNA expression, respectively.

https://doi.org/10.1371/journal.pcbi.1009224.g002
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the genes in significantly gained or lost regions (q-value < 0.05) reported in Broad Institute

for each cancer. We notice that the scales of the significant datasets are much smaller than

those of the complete datasets since only approximately 10% of features of each omic data

are reserved.

2. Dataset group #2: Noise datasets. We used the significant datasets of BRCA and COAD in

Dataset group #1 as the original datasets. Noise datasets were constructed by adding Gauss-

ian noises with five different levels to each of the original datasets. The mean of the Gauss-

ian noise is the same as the original dataset, and the variance is 0.5, 1, 2, 3, and 4 times of

the original one, respectively.

3. Dataset group #3: Gold standards datasets. There are two parts of Dataset group #3. The

first part includes the BRCA and COAD datasets with true labels. Although there is no gold

standard for cancer subtyping, subtypes of BRCA and COAD patients have been analyzed

by the TCGA group in a previous study [107], and we considered these subtypes as the true

labels. For each of these two cancers, we used the samples studied in [107] that are in both

of the complete and significant datasets in Dataset group #1 to construct the first part of the

gold standard datasets. The second part consists of Pan-cancer datasets. Using the complete

datasets of BRCA, COAD, KIRC, LUAD, and LUSC in Dataset group #1, we identified the

common features of all five cancers for each omic data and combined the omic datasets of

the five cancers together with those common features to construct Pan-cancer datasets. The

cancer labels were considered as true labels.

Previous studies on integrative cancer analysis have used different combinations of multi-

omics data, among which mRNA expression + miRNA expression and mRNA expression

+ miRNA expression + DNA methylation are the two most used combinations. Because of the

inconsistency of the data combinations used in previous studies and the lack of a common

guideline, we enumerated all the possible combinations of the four types of omics data. As Fig

2C shows, there are six two-omic combinations, four three-omic combinations, and one four-

omic combination, giving a total of 11 possible combinations. We used each of these combina-

tions to construct the three classes of benchmarking datasets illustrated above and these data-

sets were all used in our experiments.

Omics data integration and subtyping

We used the packages or codes provided by the authors of these ten representative integration

methods to obtain the subtyping results on each data combination in the whole benchmarking

datasets. Table 2 lists the details of these packages. We also did some improvements to these

packages, including the parallelization of LRAcluster, running iClusterBayes in parallel with-

out operating system limitation, and removing PFA’s limitation on the number of data types it

could handle. Details of these technical improvements can be found in our recent paper [6]

(https://github.com/GaoLabXDU/CEPICS). Since the LRAcluster, PFA, and MultiNMF pack-

age only output an integrated sample-feature matrix rather than clustering (subtyping) results,

we used the K-means clustering with 300 iterations on the sample-feature matrices to obtain

stable subtyping results.

Performance evaluation

Using the subtyping results we obtained, we evaluated the performance of the ten integration

methods. To make a comprehensive and reliable comparison, three performance criteria were

used: the accuracy, the robustness, and the computational efficiency.
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1. Accuracy. The accuracy is the most important factor for users to choose a method. Accu-

rate results may help researchers find new cancer subtypes and make precise treatments for

different cohort patients. However, evaluating the accuracy of integration methods for can-

cer subtyping is challenging because of the lack of gold standards and ground truth. We

believe that in addition to the use of clustering-based metrics, subtyping results should also

be evaluated using clinically-relevant metrics to make sure that good subtyping results cap-

ture significant differences in clinical features. Therefore, we evaluated and compared the

accuracy of the ten methods by taking into consideration both of the clustering accuracy

and the clinical significance. For unlabelled datasets, we used the log-rank test p-value and

silhouette coefficient to evaluate the subtyping results. The p-value of the log-rank test is

the most wildly used metric that represents the extent of the significance of different cohort

patients on survival time from the clinical aspect [108–111]. The silhouette coefficient [112]

measures the similarity between a sample and its classified subtype in comparison to the

samples in the other subtypes to determine how appropriately samples in a dataset have

been clustered. For labelled datasets, we used precision, normalized mutual information

(NMI), adjusted rand index (ARI), and F-measure to evaluate the degree of agreement

between the subtyping results obtained by these methods and the true labels. Precision is

the percentage of samples that are classified into the correct subtype. When calculating the

precision of each subtyping result, it was necessary to label each cluster with its correspond-

ing subtype. We adopted a heuristic strategy that labelled a cluster as the subtype with the

largest number of matches.

2. Robustness. Due to the limitations of sequencing techniques and experiment conditions,

different levels of noise exist in the omics data. When we integrate multi-omics data, the

effects of noise may get worse and cause inaccurate subtyping results. It is, therefore, neces-

sary and important to take into consideration the robustness of integration methods. We

evaluated the robustness of each method by calculating NMI and ARI between the results

of original datasets and the corresponding noise datasets disturbed by different levels of

noise.

3. Computational Efficiency. Typical biological datasets are known as small-sample-high-

dimension datasets in that the number of samples might not be very huge, but the number

of features associated with a sample is normally large. In most omics datasets, there are nor-

mally a few hundred samples, while each sample typically has thousands of features. For

example, the original COAD methylation dataset has 291 samples, but a sample has over

Table 2. Details of packages or codes used in this work.

Method Package name/Source code Version Language Platform Resource Download Link

SNF SNFTool 2.3.0 R/MATLAB CRAN/- http://compbio.cs.toronto.edu/SNF/

NEMO Source code - R - https://github.com/Shamir-Lab/NEMO

CIMLR CIMLR 1.0.0 R/MATLAB -/- https://github.com/danro9685/CIMLR

MultiNMF Source code - MATLAB - http://jialu.info/code/Code_multiNMF.zip

PFA Source code - MATLAB - http://sysbio.sibcb.ac.cn/sysbio/cb/chenlab/software.htm

LRAcluster LRAcluster 1.0 R - http://lifeome.net/software/lracluster/

moCluster mogsa 1.22.1 R Bioconductor

iClusterBayes iClusterPlus 1.20.0 R Bioconductor

PINS PINSPlus 2.0.0 R CRAN

Subtype-GAN Subtype-GAN - Python - https://github.com/haiyang1986/Subtype-GAN

https://doi.org/10.1371/journal.pcbi.1009224.t002
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450 thousand features. Datasets with such characteristics pose a great challenge for integra-

tion methods since the running time of these integrated methods may become too high.

Using the experiment results on the accuracy of the integration methods we used on all pos-

sible combinations of the omics data types of the cancers, we further analyzed the influence of

different omics data on the effectiveness of data integration in cancer subtyping. Moreover, to

understand the inconsistency of the results reported in different previous studies of data inte-

gration methods for cancer subtyping, we studied the impact of different data combinations

on the performance of the integration methods for eight of nine cancers and identified some

data combinations that are effective for most of the eight cancers. We hope that our analysis

and observations serve as useful guidance for the practice of using an integrated approach to

cancer subtyping.

Results

We evaluated each method in terms of its accuracy, robustness, and computational efficiency

on the constructed benchmarking datasets. A comprehensive comparison of the performance

of the ten integration methods was conducted, taking into consideration both their clustering

accuracy and their clinical significance. We further analyzed the influence of different types of

omics data and their combinations on cancer subtyping.

Accuracy

As cancer subtyping results are generally obtained by unsupervised clustering, the determina-

tion of the number of cancer subtypes/clusters (denoted as k) is difficult and still an open ques-

tion. We notice that, in these ten selected methods, iClusterBayes, SNF, PINS, NEMO,

moCluster, CIMLR, and Subtype-GAN have their own criteria to estimate the best k from the

user-specified range. For SNF, NEMO, and CIMLR, they estimate the best k automatically

according to eigen-gaps or rotation cost. For PINS, it automatically evaluates the instability of

different connectivity matrices to determine the best k. For iClusterBayes and moCluster, they

calculate different metrics (deviance ratios and Bayesian information criterion values for

iClusterBayes, and gap-statistic for moCluster) to generate a plot that is used to choose the best

k by users manually. For Subtype-GAN, it uses Consensus GMM clustering to choose the best

k. Therefore, we evaluate and compare the performance of all methods suggested and all possi-

ble number of clusters to make our experiments comprehensive. All ten integration methods

were applied to each dataset in Dataset group #1 and #3, using each of the 11 possible combi-

nations of the data types, which were summarized in Table 3. The calculations of Dataset

group #1 and #3 were reported in S2 and S3 Files, respectively.

For Dataset group #1, as the true number of subtypes (i.e. k) was unknown, we first evalu-

ated and compared the performance based on the number of clusters suggested by each

method. As these methods require users to specify a maximum number of clusters (i.e. k-

max), we set k-max to 8, which was the maximum number of subtypes commonly identified in

Table 3. Testing strategies and the datasets of the accuracy tests.

Dataset Cancer k Evaluation Metrics

Dataset group #1: Nine-cancer datasets Complete BRCA; COAD; KIRC; LUAD; LUSC; ACC; KIRP; LIHC; THYM 2–8 Silhouette;

Log-rank testSignificant

Dataset group #3: Gold standards datasets Complete BRCA; COAD BRCA: 5

COAD: 4

Precision;

F-measure;

NMI;

ARI

Significant

Pan-cancer - 5

https://doi.org/10.1371/journal.pcbi.1009224.t003
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cancer subtyping studies [15,17,23]. All the method-suggested k were listed in S1 Table in S1

File. Moreover, we also experimented with all possible values between 2 and 8.

The clustering accuracy of the integration methods was measured by the silhouette coeffi-

cient. Note that silhouette coefficient can be calculated in the original space or in the integrated

space. In this study, we calculated silhouettes using the concatenated input data matrices in the

original space as the authors of PINS did. For the results using the method-suggested k, we

found that iClusterBayes had the highest silhouette coefficient in most cancer datasets followed

by Subtype-GAN and SNF (Fig 3A). For the results using all possible k (i.e., k = 2 to 8), iClus-

terBayes and LRAcluster performed the best (Fig 3B) followed by NEMO and PFA. SNF and

Fig 3. Clustering-based performance of Dataset group #1 Nine-cancer Datasets. We use “iCB”, “LRA”, “moC”, “CIM”, “MNMF”, and “SGAN” to represent

iClusterBayes, LRAcluster, moCluster, CIMLR, MultiNMF, and Subtype-GAN respectively. (A) Silhouette coefficient based on the suggested k of methods. We

set k-max as 8 and let each method suggest the best k. Each of the 11 data points in a box represents a silhouette coefficient of the subtyping results based on the

method suggested k obtained by the corresponding method using one of the 11 possible combinations of data types. (B) Silhouette coefficient based on all the

possible k. Each of the 11 data points in a box represents the average silhouette coefficient of the subtyping results from k = 2 to 8 obtained by the corresponding

method using one of the 11 possible combinations of data types.

https://doi.org/10.1371/journal.pcbi.1009224.g003
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Subtype-GAN performed worse compared to its performance of method-suggested k. We also

calculated the silhouettes in the integrated space. The results were shown in S1 Fig in S1 File

and the calculations were reported in S2 File.

To evaluate the clinical significance of the integration methods, we downloaded the clinical

information of these nine cancers from TCGA. Based on subtyping results, we calculated the

log-rank test p-values and their rankings across methods as the performance metrics to evalu-

ate the clinical significance. Fig 4A summarizes the clinical-based performance of the integra-

tion methods on the nine-cancer datasets in Dataset group #1 based on method-suggested k.

We observed that NEMO and PINS had the best average ranking and identified more signifi-

cant cancer subtypes than other methods. Fig 4B summarizes the performance based on all the

possible k. NEMO and SNF performed the best on both two metrics. CIMLR, PINS, and Mul-

tiNMF performed well and similarly.

For Dataset group #3, we also compared the performance based on method-suggest k first.

We listed the suggested k of each method in S2 Table in S1 File. Since LRAcluster, PFA and

MultiNMF cannot suggest k, we clustered BRCA and COAD samples into 5 and 4 clusters for

these methods, respectively. NMI and ARI were used to evaluate clustering-based accuracy.

We found that SNF and NEMO had the best average performance for both metrics and for

both complete and significant datasets. CIMLR, PINS, and LRAcluster had comparable perfor-

mance on NMI while iClusterBayes, CIMLR and Subtype-GAN had comparable performance

on ARI (Fig 5A).

As the true labels of samples and the number of clusters were known in Dataset group #3,

we next clustered BRCA, COAD, and Pan-cancer samples into 5, 4, and 5 clusters, respectively.

Precision, F-measure, NMI, and ARI were used to evaluate the clustering accuracy. We

obtained similar observations that SNF and NEMO had the best average performance followed

by CIMLR and LRAcluster (Fig 5B).

To get an overall ranking of these integration methods, we aggregated the performance

measurements of them over all datasets and all performance metrics using the following for-

mula:

Avg Rank ¼
P

RNMI Suggest þ
P

RARI Suggest þ
P

RPrecision þ
P

RNMI þ
P

RARI þ
P

RF� measure þ
P

RSilhouette Suggest þ
P

RSilhouette

2ðItemNMI Suggest þ ItemARI Suggest þ ItemPrecision þ ItemNMI þ ItemARI þ ItemF� measure þ ItemSilhouette Suggest þ ItemSilhouetteÞ

þ

P
RankLog� rank Suggest þ

P
RankSignificant# Suggest þ

P
RankLog� rank þ

P
RankSignificant#

2ðItemLog� rank Suggest þ ItemSignificant# Suggest þ ItemLog� rank þ ItemSignificant#Þ

where R(�) is the ranking of a method as evaluated with a specific metric and a specific dataset,

while Item(�) is the number of the datasets used for a specific metric. The rationale behind the

above formula is that a good method should be accurate under both clustering-based metrics

and clinical-based metrics. As shown in Fig 6, NEMO has the best overall performance fol-

lowed by SNF, iClusterBayes, and LRAcluster. The aggregated rankings of the other six meth-

ods are comparable.

Robustness

We believe that robust methods are those that have a reasonable degree of resilience to noise

in the data. Under this assumption, we used Dataset group #2 to study how quickly the subtyp-

ing results of these methods change as higher and higher levels of noise are introduced into the

data. In this set of experiments, for each method i, we obtained a set of subtyping results Ri,c,k,σ,

where c = 1,2,� � �,11 is the index of the data combination used, k = 2,3,� � �,8 is the number of

subtypes to calculate, and σ = 0,0.5,1,2,3,4 is the noise level. For each method i, we calculated
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the NMI and ARI between the result Ri,c,k,0 (the result of using original data) and the result Ri,c,

k,σ0(σ0 = 0.5,1,2,3,4) obtained when different levels of noise are introduced into the data. As

PINS could not cluster samples into a specific number of clusters, we calculated the NMI and

ARI between Ri,c,0 and Ri,c,σ0(σ0 = 0.5,1,2,3,4). The calculations of robustness were reported in

S4 File.

Using the BRCA noise datasets, we found that LRAcluster is the most robust method since

it has the largest average NMI at all noise levels (Fig 7A). When the number of clusters is fixed,

its NMI decreases slowly as the noise level increases. For a fixed level of noise, the NMI of

LRAcluster has little difference among the different number of clusters. The robustness of

NEMO and SNF are similar to LRAcluster, but their NMI are lower than LRAcluster’s under

the same condition and decrease more quickly with the noise level. The robustness of iCluster-

Bayes is good at k = 2,3,4, and even better than SNF when k = 2,3. However, when k>4, the

NMI decreases sharply and becomes much lower than the NMI of SNF under the same condi-

tion. MultiNMF has the acceptable robustness performance at only k = 2,3. Fig 7B shows the

results on the COAD noise datasets, from which similar observations can be made. From the

results of ARI, we had similar observations.

Fig 7C shows the rank table of robustness comparison. LRAcluster is ranked in the first

place in all 20 tests and is thus the most robust method, followed by NEMO and SNF.

Computational efficiency

The computation time required to complete the tasks is an important factor to consider when

practitioners choose among different integration methods, especially when the amount of data

to be processed is huge. Sometimes, a user may prefer a less accurate method over a method

that takes a long time to finish.

Dataset group #1 and the Pan-cancer dataset in Dataset group #3 were used to evaluate the

computational efficiency of the integration methods. The scales of the datasets used in the eval-

uation are listed in Table 4. In our experiments, we used the default parameter settings in the

R package/MATLAB source code of these methods. To obtain the best results of LRAcluster,

we tried the dimension parameter from 1 to 10 and the sum of the running time these 10 trials

took was evaluated. As one of the essential steps of moCluster is to determine the number of

latent variables using permutation and elbow test, we also tried this parameter from 1 to 10.

The running time of the K-means clustering algorithm was not included for LRAcluster, PFA,

and MultiNMF because these methods derived the matrices after dimension reduction instead

of the clustering results, and the running time of K-means had little influence on the compari-

sons and analysis.

For each method and each combination of data types, the total running time is the sum of

the time the method takes to complete the computation for all the settings for the number of

Fig 4. Clinical-based performance of Dataset group #1 Nine-cancer Datasets. The representations of the abbreviations are the same as those in Fig

3. We calculated the -log10(log-rank test p-value) of the subtyping results based on every possible k, combination, and cancer of each method. (A)

Clinical-based performance based on the suggested k of methods. The upper plot shows the average ranking of the ability to cluster patients into

clinically-significant subtypes of each method. Each data point in the box was calculated as follows. We fixed cancer and combination to rank the

-log10(p-value) among all methods, which represented the ability of clustering patients into clinically-significant subtypes of each method using the

current combination. Then each method had 11 (combinations) � 9(cancers) rankings which we used to compare these methods. The lower plot

shows the cumulative number of significant p-values. We set 1.301 as the threshold which corresponded to 0.05 before the transformation to evaluate

whether the current subtyping result had clinical significance and we counted the significant ones. (B) Clinical-based performance based on all the

possible k. Two plots had the same meaning as (A) but the ways of calculation were a little different. Each data point in the box of the upper plot was

calculated as follows. We fixed cancer, combination, and k to rank the -log10(p-value) among all methods. Therefore, each combination had 7

rankings corresponding to each possible k, and we then calculated the average of these 7 rankings to represent the ability of using the current

combination. For the lower plot, we counted the number of significant p-values for each combination among all possible k and cumulated the

average of each combination to draw the plot.

https://doi.org/10.1371/journal.pcbi.1009224.g004
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clusters from 2 through 8. The calculations of computational efficiency were reported in S5

File.

Fig 8A shows the comparison of the running time. Due to the large difference in running

time of different methods, we used the log 10 transformation of running time for illustration.

It is clear that the three statistics-based methods, i.e. iClusterBayes, LRAcluster and moCluster,

cost too much more time than the network/graph-based methods. With the increase of data

scale, the running time of all the methods increases. The comparison of the total running time,

including running times on all combinations and all datasets, is shown in Fig 8B from which

the same conclusion can be drawn. The deep learning-based method, Subtype-GAN, cost low-

est time in complete and Pan-cancer datasets so that it performed the best in total running

time.

The scale of a dataset is decided by two factors: the number of samples and the number of

features per sample. To get a better picture about the computational efficiency of the integra-

tion methods, we analyzed the influence of the two factors on the running time. Fig 8C shows

the fold change (i.e., ratio) of the running time on the complete BRCA datasets to the running

time on significant BRCA datasets and the fold change of the running time on the Pan-cancer

datasets to the running time on the complete BRCA datasets. From Table 4, we see that the sig-

nificant datasets of Dataset group #1 all have the same number of samples as the complete

Fig 5. Clustering-based performance of Dataset group #3 Gold Standard Datasets. For each metric (i.e. precision, NMI, ARI, and F-measure) and each

integration method, each data point in a box is a measurement of using one of the 11 data type combinations for both BRCA and COAD datasets, and the white

line within the box indicates the mean value of the results. (A) Clustering-based performance of gold standard datasets based on the suggested k of methods. We

set k-max as 8 and let each method suggest the best k. The performance of the method suggested k was used to evaluate and compared. To the three methods

that cannot suggest best k, we clustered BRCA and COAD samples into 5 and 4 clusters, respectively. (B) Clustering-based performance of gold standard

datasets based on the pre-defined k. As the true labels of samples and the number of clusters are known in Dataset group #3, we clustered BRCA and COAD

samples into 5 and 4 clusters, respectively, and calculated the clustering-based metrics to evaluate and compare the performance of the integration methods.

https://doi.org/10.1371/journal.pcbi.1009224.g005

Fig 6. Accuracy Rank Table. The rank items listed under the table include the information of metrics, datasets, cancer, whether based on the method suggested k, which

are connected by underlines. “Sugg” represents the current test is based on the method suggested k. “Com” and “Sig” represent the complete and significant datasets,

respectively.

https://doi.org/10.1371/journal.pcbi.1009224.g006
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datasets but have much fewer features, while the Pan-cancer datasets in Dataset group #3 have

almost the same number of features as the complete datasets of Dataset group #1, but have

much more samples. These, together with the results in Fig 8C, indicate that for statistics-

based methods, such as LRAcluster, an increase in the number of features has a much more

severe impact on their computational efficiency than an increase in the number of features.

On the other hand, for network-based methods such as SNF and CIMLR, the number of sam-

ples is a more significant factor in their computational efficiency. The running time of the

deep learning-based method Subtype-GAN is hardly affected by the increase in samples and

features which has a significant advantage in large-scale datasets.

Fig 8D shows the running-time-based rank table of these methods. NEMO and SNF ranked

first and second, respectively, and are the most efficient methods. We note that PFA, while being

ranked in the third place, takes a little amount of total time than SNF (Fig 8B). This is because its

running time on the Pan-cancer datasets is much lower than SNF. For Subtype-GAN which

ranked fourth, although it runs fastest in both complete and Pan-cancer datasets that have a large

number of features, it costs much more time than network-based methods in significant datasets.

Influences of different omics data and their integration on cancer

subtyping

Using our experiment results on the accuracy of the integration methods over various data

combinations and cancers, we explored the influence of different omics data and their

Fig 7. Robustness performance. A robust method should satisfy two criteria: when the number of clusters is fixed, its NMI decreases slowly as the noise

level increases; for a fixed level of noise, the NMI has little difference among the different number of clusters. We show the NMI comparisons of (A) BRCA

noise datasets and (B) COAD noise datasets. The x-coordinate of figures is the number of clusters on which there are five bars in each cluster number.

Each bar represents the average NMI over all 11 combinations at the current noise level datasets on the given number of clusters. The confidence interval

around the average NMI is plotted using an error bar. (C) Robustness rank table. The rank items listed under the table include the information of metrics,

noise level, and cancer which are connected by underlines.

https://doi.org/10.1371/journal.pcbi.1009224.g007

Table 4. Data scales of different datasets.

Dataset Cancer Sample mRNA miRNA Methylation CNV

Complete dataset of Dataset group #1 BRCA 759 18206 368 19049 19568

COAD 291 17261 375 19052 19551

KIRC 314 18465 352 19056 19552

LUAD 450 18310 427 19052 19551

LUSC 363 18599 423 19060 19551

ACC 77 18034 845 18711 19551

KIRP 273 18241 769 18715 19551

LIHC 364 17946 846 18714 19551

THYM 119 18354 1018 18716 19551

Significant dataset of Dataset group #1 BRCA 759 2000 200 2000 1974

COAD 291 2000 200 2000 1449

KIRC 314 2000 200 2000 2102

LUAD 450 2000 200 2000 3446

LUSC 363 2000 200 2000 3074

ACC 77 2000 200 2000 524

KIRP 273 2000 200 2000 1023

LIHC 364 2000 200 2000 2050

THYM 119 2000 200 2000 991

Pan-cancer dataset of Dataset group #3 - 2177 16636 315 19048 19551

https://doi.org/10.1371/journal.pcbi.1009224.t004
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combinations on the effectiveness of data integration for cancer subtyping. We focused on two

issues. The first one is whether a specific type of omics data has similar discriminative power

for subtyping on different cancers. The second one is whether there are combinations of data

types that are effective for the majority of the integration methods and cancers.

To quantify the relative influence of different types of omics data on the effectiveness of

data integration for a specific cancer, we use the Weighted Average Z-Score (among the group

of 4 omics data types) that takes into consideration the accuracy measures from our experi-

ments on the integration methods under all accuracy metrics, including precision, NMI, ARI,

F-measure, silhouette coefficient and transformed log-rank test p-value. We notice that the

strategies of suggesting k in these ten methods are different. The performance based on the

method-suggested k and all possible k are inconsistent for some methods. There could be two

possible reasons: (1) the procedure of suggesting k in the methods may not work for our con-

structed benchmarking datasets; (2) the performance based on the method-suggested k are not

optimal. Therefore, in order to avoid the bias introduced by the selection of k, we do not take

the results using the method-suggested k into consideration. Moreover, as PINS cannot gener-

ate the subtyping results for a specific k, we do not consider the results of PINS in the following

analysis.

For a given cancer, the Weighted Average Z-Scores are calculated as follows. For each type

of omics data and each integration method, we calculate the average accuracy measure (over

all the accuracy metrics) of the integration method applied to a specific data combination that

contains this type of omics data. Since each omics data type belongs to exactly 7 of the 11 possi-

ble combinations, there are 7 measurements for each accuracy measure, and we take the mean

of these 7 values as the Overall Accuracy Measure of the omics data type on a specific metric.

We then calculate the z-scores (with respect to the particular integration method) among the

four types of omics data, using their Overall Accuracy Measures. The weighted average is

defined in a similar way as the weighted rank in the Section “Accuracy”. The Weighted Aver-

age Z-Score of a type of omics data is its average z-scores over all the integration methods.

Regarding the use of different metrics, we mention that, as we had calculated the silhouette

coefficient and the p-value of these methods under different settings for the number of clusters

(from 2 to 8), we took the average of them. For the other four metrics, we used the value

obtained in the experiments directly. When we evaluated the clinical significance of KIRP, we

found that many zero p-values occurred which was abnormal, and could not do the log trans-

formation. Therefore, we did not analyze KIRP in this work.

Fig 9A summarizes the results. We see that LIHC are mainly affected by the mRNA expres-

sion, BRCA, KIRC, LUSC, and ACC are mainly affected by the miRNA expression, COAD

and THYM are mainly affected by CNV, and LUAD is affected mainly by DNA methylation.

This observation confirms that the effectiveness of data integration on subtyping of different

cancers might be affected by different omics data. An even more interesting observation is that

the effectiveness of data integration on the subtyping of the two lung cancers LUAD and

LUSC is largely influenced by two different types of omics data. This might help shed light on

the origin, driver, or causal events of lung cancers.

Fig 8. Computational efficiency performance. (A) Running time of different datasets. Here, we only included the results for the BRCA datasets in Dataset #1

and the Pan-cancer datasets in Dataset #3. The difference between the running times of these methods is similar to other cancer datasets but less significant as

those datasets are much smaller than BRCA datasets. The data combinations are placed along the x-coordinate in ascending order of the number of

participating data types and data scales. (B) Total running time. (C) Fold changes of running time on different datasets. (D) Computational efficiency rank

table. The rank items listed under the table include the datasets and cancer which are connected by underlines. “Com” and “Sig” represent complete and

significant datasets, respectively.

https://doi.org/10.1371/journal.pcbi.1009224.g008
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To analyze the effectiveness of different data combinations, we calculated the weighted

average z-scores among all possible combinations of data types for each pair of cancer and the

integration method. For a given cancer and integration method, the weighted average z-scores

are based on the accuracy measures of the method applied on the datasets of that cancer using

different data combinations, and the strategies of choosing measurements and the calculation

of weighted average z-scores are the same as mentioned above. The radar plots of these

weighted average z-scores are shown in Fig 9B, and we use integers 1, 2, 3, and 4 to label the

four omics data types mRNA expression, miRNA expression, DNA methylation, and CNV,

respectively, so that a data combination can be written as a sequence of digits.

As these radar plots show, we find that there are no combinations in any cancer datasets

that are effective for all nine methods. The situation becomes better when we consider combi-

nations that are effective for five or more methods. For example, for the BRCA datasets, the

collection of data combinations {“13”, “14”, “123”, “124”, “134”, and “234”} are all effective for

at least five integration methods, and we consider these combinations as effective combina-

tions of BRCA. In the following analysis, we summarize the effective combinations of each

cancer to find the combinations which are effective for most cancers. It turns out that the com-

bination “13” (i.e. mRNA expression and DNA methylation) is effective for seven cancers. The

combinations “14” (i.e. mRNA expression and CNV), “123” (i.e. mRNA expression, miRNA

expression, and DNA methylation), “124” (i.e. mRNA expression, miRNA expression, and

CNV) are effective for six cancers.

To further verify the effectiveness of the combinations identified in the above analysis, we

compared the performance of the integration methods using these combinations with the per-

formance of three widely-used clustering methods (K-means, spectral clustering, and hierar-

chical clustering) applied to individual omics data types. We used the silhouette coefficients

and the transformed p-values calculated in the log-rank test for the comparison.

Because of the characteristic of multi-omic data, high dimensions relative to the small sam-

ples, most of the existing methods can not properly separate the samples in the original space.

For achieving better clustering results in multi-omics datasets integration, many effective inte-

gration methods project features of each omic data into a new integrated space and then clus-

ter samples in this integrated space. In order to show the advantages of data integration, we

used the silhouette coefficient results based on integrated space to do the comparison. As Fig

10A shows, the average silhouette coefficient achieved by the nine integration methods over all

parameter settings (number of clustering 2 to 8) on each of the 11 possible combinations is

consistently higher than the average silhouette coefficient achieved by the three clustering

methods using individual data types over the same range of parameter setting, with perfor-

mance gain of the effective combinations identified in the preceding analysis being much

more significant. The comparison of the log-transformed p-values of the log-rank test is sum-

marized in the top plot in Fig 10B. “123”, “13” ranked top four of all 15 items while “124” and

“14” ranked the ninth and tenth. In addition, the results of integration methods have more

Fig 9. Influences of different omics data and their integration on cancer subtyping. (A) Influence of different omic types to different

cancers on cancer subtyping. On the radar plot, each quadrilateral represents a cancer type and each vertex of the quadrilateral represents

the influence (i.e. Weighted Average Z-score) of a type of omic data with regard to that cancer. (B) Effective combinations of each cancer-

method pair. Each vertex in the radar plots represents the weighted average z-score of a specific data combination with respect to a

particular pair of cancer and method. In the plots, we use integers 1, 2, 3, and 4 to label the four omics data types mRNA expression,

miRNA expression, DNA methylation, and CNV, respectively, so that a data combination can be written as a sequence of digits. For

example, the sequence “134” corresponds to the combination of the three data types: mRNA expression, DNA methylation, and CNV. The

red circle on each radar plot represents the z-score of zero. Combinations with a positive average weighted z-score are colored red and are

considered to be effective for that cancer-method pair. (C) Common effective combinations of cancer types. The effective combinations for

most cancer types are colored red.

https://doi.org/10.1371/journal.pcbi.1009224.g009
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outliers (depicted in red circles), suggesting that multi-omics integration could potentially find

subtypes with more significant differences in survival analysis.

As there is no gold standard, a well-known challenging task to use unsupervised clustering

methods is the selection of the parameter setting for the number of clusters. To further under-

stand the power and clinical advantage of data integration in cancer subtyping, we compared

the p-value of single-omic clustering-based subtyping methods and integration methods when

they use the same (and fixed) number of clusters k. For each data combination and each can-

cer, we calculated the average p-value of the eight integration methods and the average p-value

of three single-omic clustering methods, using the same number of clusters k. We then

counted the total number of cases (over the possible values of k = 2 to 8) where integration

methods using the data combination have improved performance (i.e. a greater transformed

p-value) over the single-omic-based clustering methods. The bottom plot in Fig 10B shows the

percentages of improvements of using each combination. The average values of all eleven com-

binations are over 60%. These observations indicate that the improvement of using effective

combinations in integration methods over single types of omic-data is not only significant but

also robust in a certain degree over the choice of the method’s parameter.

Discussion

Many multi-omics integration methods have been proposed to improve our understanding of

cancer. Cancer subtyping can be used in precision medicine to help patients receive more

accurate and personalized treatments based on their response to different therapies and drugs.

In this study, we have conducted a comprehensive evaluation and comparison of ten represen-

tative multi-omics integration methods in terms of their accuracy, robustness, and computa-

tional efficiency. Using our benchmarking datasets constructed from collections of real cancer

data, we were able to evaluate the accuracy of these methods from the clinic perspective as well

as the computational perspective. From our experiments and analyses, we observed that the

methods NEMO and SNF perform very well in all three criteria, i.e. accuracy, robustness, and

computation efficiency, which is mainly because the strategies that they adopt can capture

both shared and specific information from different omics data and make the integrated simi-

larity networks retain more information from every single similarity network with low-level

noise. The other methods have certain limitations. For example, LRAcluster is the best in

robustness, but has poor computational efficiency; iClusterBayes, while being good in accuracy

and robustness, has the worst computational efficiency; PFA has the poor robustness and accu-

racy, but has better performance in running time. Among the seven methods that can suggest

an optimal k after specifying a k-max, we must point out that PINS is the most friendly-used

method because its automatic procedure of estimating k does not require users to do any addi-

tional work. In contrast, some methods (e.g. iClusterBayes and moCluster) require users to

select k based on their generated curves, however, it could be a tough task for users because the

breakpoint of the curve cannot be easily determined or inconsistent k could be recommended

by two different types of plots. In summary, NEMO and SNF are recommended for general

cancer subtyping tasks, however, users may also want to consider the other eight methods

depending on their specific purpose or under certain circumstances.

Using our results on the accuracy, we have also analyzed the influence of different omics

data types and their combinations on cancer subtyping. Our analysis shows that the influence

Fig 10. Comparison of the performance of the integration methods using effective combinations with the performance of clustering methods

applied to individual omics data types. (A) Silhouette coefficients comparison. (B) Transformed p-values of the log-rank test comparison. In the bottom

plot, each point in the box is the improvement percentage for a specific cancer type on that combination.

https://doi.org/10.1371/journal.pcbi.1009224.g010
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of these omics data types varies, and several commonly-used combinations of omics data types

can indeed improve the accuracy of all the ten methods as measured by both clustering and

clinical metrics. On the other hand, our analysis indicates that integrating more types of omics

data may negatively impact the performance on cancer subtyping, refuting the widely held

intuition that incorporating more types of omics data always helps produce better results

[113]. From our experiments, it is clear that the results obtained by using the four omics data

types for integration analysis were not always better than the results obtained by using three or

two-omics data types. Similarly, the results of the three-omics integration were not always bet-

ter than the results of two-omics integration. While this observation is counter-intuitive and

deserves further investigation, we believe that it is the consequence of three intertwined fac-

tors: (1) the negatively-correlated noises in the omics data which may cancel out useful infor-

mation; (2) the redundancy in different types of omics data; and (3) the computational/

statistical challenges that integrating excessive datasets impose on the integration methods pre-

venting them from making the best use of the information, if any, in the multi-omics datasets,

to calculate optimal solutions.

It is worthwhile to mention another surprising observation on the significance of DNA

methylation data in the effectiveness of integration methods. Ramazzotti et al. proposed their

method CIMLR [13] based on multiple kernel learning and employed CIMLR to integrate

point mutation, CNA, DNA methylation, and gene expression four omics data for cancer sub-

typing. They found that in this four-omic combination, each of gene expression and methyla-

tion accounted for 30–50% of the kernel weight in most of 36 cancers. Our analysis on the

effectiveness of the 11 possible combinations, however, shows that only one combination in 2

and 3 omics datasets can be considered to be effective. This is unexpected as methylation had

been proven to play an important role in cancer and has been the most common data type

used in previous research on integrated multi-omics data for cancer subtyping. We leave it to

future work to understand this unexpected phenomenon, but speculate that it is the result of

the following three factors of our experiments: (1) certain characteristics of the methylation

data that do not fit the model assumption of some of the ten integration methods, resulting in

a much lower overall effectiveness score for those of the methylation-participating combina-

tions in our evaluation; (2) the data processing step in which we mapped all the features to

genes in methylation and CNV datasets as previous studies did, resulting in a loss of some sig-

nificant information; and (3) performance criterion that uses clinical-based metrics as well as

clustering-based metrics, in comparison to previous studies where only one metric may be

used.

As more types of omics data have being generated for cancer patients and more integration

methods, especially deep learning-based methods, have being proposed, new data types such

as proteomics and single-cell omics data as well as machine learning-based methods should be

considered in the future development of the benchmarking framework for data integration.

Supporting information

S1 File. Supplementary File. Evaluation and comparison of multi-omics data integration

methods for cancer subtyping. S1 Fig. Silhouette coefficient comparison based on integrated

space of Dataset group #1 Nine-cancer Datasets. We use “iCB”, “LRA”, “moC”, “CIM”,

“MNMF” and “SGAN” to represent iClusterBayes, LRAcluster, moCluster, CIMLR, Mul-

tiNMF, and Subtype-GAN, respectively. (A) Silhouette coefficient based on the suggested k of

methods. We set k-max as 8 and let each method suggest the best k. Each of the 11 data points

in a box represents a silhouette coefficient of the subtyping results based on the method sug-

gested k obtained by the corresponding method using one of the 11 possible combinations of

PLOS COMPUTATIONAL BIOLOGY Evaluation and comparison of multi-omics data integration methods for cancer subtyping

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009224 August 12, 2021 26 / 33

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009224.s001
https://doi.org/10.1371/journal.pcbi.1009224


data types. (B) Silhouette coefficient based on all the possible k. Each of the 11 data points in a

box represents the average silhouette coefficient of the subtyping results from k = 2 to 8

obtained by the corresponding method using one of the 11 possible combinations of data

types. S1 Table. Suggested k of each method using Dataset group #1 Nine-cancer Datasets.

Notations: B-BRCA, C-COAD, KC-KIRC, LA-LUAD, LS-LUSC, A-ACC, KP-KIRP, LI-LIHC,

T-THYM. m-mRNA expression, mi-miRNA expression, me-DNA methylation, cnv-copy

number variation. S2 Table. Suggested k of each method using Dataset group #3 Gold Stan-

dard Datasets. Notations: m-mRNA expression, mi-miRNA expression, me-DNA methyla-

tion, cnv-copy number variation.

(DOCX)

S2 File. Accuracy Calculation of Dataset group #1.

(XLSX)

S3 File. Accuracy Calculation of Dataset group #3.

(XLSX)

S4 File. Robustness Calculation of Dataset group #2.

(XLSX)

S5 File. Computational Efficiency Calculation.

(XLSX)

S6 File. Selected samples and features.

(XLSX)

Acknowledgments

We thank all members of Prof. Gao’s lab at Xidian University for fruitful discussions. We

thank Xiaofei Yang at Xi’an Jiaotong University for the advice on DNA methylation data pre-

processing. We also thank Jindong Wang at Microsoft Research Asia for downloading the raw

data this work used and Xiao Long at Guizhou Institute of Technology for useful advice.

Author Contributions

Conceptualization: Ran Duan, Lin Gao.

Data curation: Ran Duan.

Formal analysis: Lin Gao, Yuxuan Hu.

Funding acquisition: Lin Gao.

Investigation: Ran Duan, Han Xu, Mingfeng Huang, Hongda Wang, Yongqiang Dong, Chao-

qun Jiang.

Methodology: Ran Duan, Lin Gao, Yuxuan Hu, Han Xu, Mingfeng Huang.

Project administration: Lin Gao.

Resources: Lin Gao.

Software: Ran Duan, Han Xu, Mingfeng Huang, Kuo Song, Hongda Wang, Yongqiang Dong,

Chaoqun Jiang, Chenxing Zhang.

Supervision: Lin Gao, Yuxuan Hu.

PLOS COMPUTATIONAL BIOLOGY Evaluation and comparison of multi-omics data integration methods for cancer subtyping

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009224 August 12, 2021 27 / 33

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009224.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009224.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009224.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009224.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009224.s006
https://doi.org/10.1371/journal.pcbi.1009224


Validation: Ran Duan, Han Xu, Mingfeng Huang, Kuo Song, Hongda Wang, Yongqiang

Dong, Chaoqun Jiang, Chenxing Zhang, Songwei Jia.

Visualization: Ran Duan.

Writing – original draft: Ran Duan.

Writing – review & editing: Ran Duan, Lin Gao, Yong Gao, Yuxuan Hu.

References
1. Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation,

and Its Application. Bioinform Biol Insights. 2020; 14: 1177932219899051. https://doi.org/10.1177/

1177932219899051 PMID: 32076369

2. Shi Q, Zhang C, Peng M, Yu X, Zeng T, Liu J, et al. Pattern fusion analysis by adaptive alignment of

multiple heterogeneous omics data. Bioinformatics. 2017; 33: 2706–2714. https://doi.org/10.1093/

bioinformatics/btx176 PMID: 28520848

3. Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, et al. Methods for the integra-

tion of multi-omics data: mathematical aspects. BMC Bioinformatics. 2016; 17: S15. https://doi.org/10.

1186/s12859-015-0857-9 PMID: 26821531

4. Speicher NK, Pfeifer N. Integrating different data types by regularized unsupervised multiple kernel

learning with application to cancer subtype discovery. Bioinformatics. 2015; 31: i268–i275. https://doi.

org/10.1093/bioinformatics/btv244 PMID: 26072491

5. Saria S, Goldenberg A. Subtyping: What It is and Its Role in Precision Medicine. IEEE Intelligent Sys-

tems. 2015; 30: 70–75. https://doi.org/10.1109/MIS.2015.60

6. Duan R, Gao L, Xu H, Song K, Hu Y, Wang H, et al. CEPICS: A Comparison and Evaluation Platform

for Integration Methods in Cancer Subtyping. Front Genet. 2019; 10: 966. https://doi.org/10.3389/

fgene.2019.00966 PMID: 31649733

7. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover geno-

type–phenotype interactions. Nature Reviews Genetics. 2015; 16: 85–97. https://doi.org/10.1038/

nrg3868 PMID: 25582081

8. Zhang Y, Shi R, Chen C, Duan M, Liu S, Ren Y, et al. ELMO: An Efficient Logistic Regression-based

Multi-Omic Integrated Analysis Method for Breast Cancer Intrinsic Subtypes. IEEE Access. 2020; 8:

5121–5130. https://doi.org/10.1109/ACCESS.2019.2960373

9. Xu A, Chen J, Peng H, Han G, Cai H. Simultaneous Interrogation of Cancer Omics to Identify Sub-

types With Significant Clinical Differences. Frontiers in Genetics. 2019; 10: 236. https://doi.org/10.

3389/fgene.2019.00236 PMID: 30984238

10. Wu M., Gao Y., Liu J., Zheng C., Wang J. Integrative Hypergraph Regularized Principal Component

Analysis for Sample Clustering and Co-expression Genes Network Analysis on Multi-omics Data.

IEEE Journal of Biomedical and Health Informatics. 2019; 1–1. https://doi.org/10.1109/JBHI.2019.

2948456 PMID: 31634852

11. Shi Q, Hu B, Zeng T, Zhang C. Multi-view Subspace Clustering Analysis for Aggregating Multiple Het-

erogeneous Omics Data. Front Genet. 2019; 10: 744. https://doi.org/10.3389/fgene.2019.00744

PMID: 31497031

12. Rappoport N, Shamir R. NEMO: cancer subtyping by integration of partial multi-omic data. Bioinfor-

matics. 2019; 35: 3348–3356. https://doi.org/10.1093/bioinformatics/btz058 PMID: 30698637

13. Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecu-

lar mechanisms that correlate with survival. Nature Communications. 2018; 9: 4453. https://doi.org/10.

1038/s41467-018-06921-8 PMID: 30367051

14. Guo Y, Shang X, Li Z. Identification of cancer subtypes by integrating multiple types of transcriptomics

data with deep learning in breast cancer. Neurocomputing. 2018; 324: 20–30. https://doi.org/10.1016/

j.neucom.2018.03.072

15. Mo Q, Shen R, Guo C, Vannucci M, Chan KS, Hilsenbeck SG. A fully Bayesian latent variable model

for integrative clustering analysis of multi-type omics data. Biostatistics. 2017; 19: 71–86.

16. Zhang W, Ma J, Ideker T. Classifying tumors by supervised network propagation. Bioinformatics.

2018; 34: i484–i493. https://doi.org/10.1093/bioinformatics/bty247 PMID: 29949979

17. Nguyen T, Tagett R, Diaz D, Draghici S. A novel approach for data integration and disease subtyping.

Genome Research. 2017; 27: 2025–2039. https://doi.org/10.1101/gr.215129.116 PMID: 29066617

PLOS COMPUTATIONAL BIOLOGY Evaluation and comparison of multi-omics data integration methods for cancer subtyping

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009224 August 12, 2021 28 / 33

https://doi.org/10.1177/1177932219899051
https://doi.org/10.1177/1177932219899051
http://www.ncbi.nlm.nih.gov/pubmed/32076369
https://doi.org/10.1093/bioinformatics/btx176
https://doi.org/10.1093/bioinformatics/btx176
http://www.ncbi.nlm.nih.gov/pubmed/28520848
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1186/s12859-015-0857-9
http://www.ncbi.nlm.nih.gov/pubmed/26821531
https://doi.org/10.1093/bioinformatics/btv244
https://doi.org/10.1093/bioinformatics/btv244
http://www.ncbi.nlm.nih.gov/pubmed/26072491
https://doi.org/10.1109/MIS.2015.60
https://doi.org/10.3389/fgene.2019.00966
https://doi.org/10.3389/fgene.2019.00966
http://www.ncbi.nlm.nih.gov/pubmed/31649733
https://doi.org/10.1038/nrg3868
https://doi.org/10.1038/nrg3868
http://www.ncbi.nlm.nih.gov/pubmed/25582081
https://doi.org/10.1109/ACCESS.2019.2960373
https://doi.org/10.3389/fgene.2019.00236
https://doi.org/10.3389/fgene.2019.00236
http://www.ncbi.nlm.nih.gov/pubmed/30984238
https://doi.org/10.1109/JBHI.2019.2948456
https://doi.org/10.1109/JBHI.2019.2948456
http://www.ncbi.nlm.nih.gov/pubmed/31634852
https://doi.org/10.3389/fgene.2019.00744
http://www.ncbi.nlm.nih.gov/pubmed/31497031
https://doi.org/10.1093/bioinformatics/btz058
http://www.ncbi.nlm.nih.gov/pubmed/30698637
https://doi.org/10.1038/s41467-018-06921-8
https://doi.org/10.1038/s41467-018-06921-8
http://www.ncbi.nlm.nih.gov/pubmed/30367051
https://doi.org/10.1016/j.neucom.2018.03.072
https://doi.org/10.1016/j.neucom.2018.03.072
https://doi.org/10.1093/bioinformatics/bty247
http://www.ncbi.nlm.nih.gov/pubmed/29949979
https://doi.org/10.1101/gr.215129.116
http://www.ncbi.nlm.nih.gov/pubmed/29066617
https://doi.org/10.1371/journal.pcbi.1009224


18. Liu B, Shen X, Pan W. Integrative and regularized principal component analysis of multiple sources of

data: Integrative and regularized principal component analysis. Statist Med. 2016; 35: 2235–2250.

https://doi.org/10.1002/sim.6866 PMID: 26756854

19. Wang H, Zheng H, Wang J, Wang C, Wu F-X. Integrating Omics Data With a Multiplex Network-

Based Approach for the Identification of Cancer Subtypes. IEEE Transactions on NanoBioscience.

2016; 15: 335–342. https://doi.org/10.1109/TNB.2016.2556640 PMID: 28113909

20. Le Van T, van Leeuwen M, Carolina Fierro A, De Maeyer D, Van den Eynden J, Verbeke L, et al.

Simultaneous discovery of cancer subtypes and subtype features by molecular data integration. Bioin-

formatics. 2016; 32: i445–i454. https://doi.org/10.1093/bioinformatics/btw434 PMID: 27587661

21. Wu D, Wang D, Zhang MQ, Gu J. Fast dimension reduction and integrative clustering of multi-omics

data using low-rank approximation: application to cancer molecular classification. BMC Genomics.

2015; 16: 1022. https://doi.org/10.1186/s12864-015-2223-8 PMID: 26626453

22. Meng C, Helm D, Frejno M, Kuster B. moCluster: Identifying Joint Patterns Across Multiple Omics

Data Sets. J Proteome Res. 2016; 15: 755–765. https://doi.org/10.1021/acs.jproteome.5b00824

PMID: 26653205

23. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregat-

ing data types on a genomic scale. Nature Methods. 2014; 11: 333–337. https://doi.org/10.1038/

nmeth.2810 PMID: 24464287

24. Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics. 2013; 29: 2610–2616. https://

doi.org/10.1093/bioinformatics/btt425 PMID: 23990412

25. Chauvel C, Novoloaca A, Veyre P, Reynier F, Becker J. Evaluation of integrative clustering methods

for the analysis of multi-omics data. Briefings in Bioinformatics. 2019. https://doi.org/10.1093/bib/

bbz015 PMID: 31220206

26. Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint

latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics.

2009; 25: 2906–2912. https://doi.org/10.1093/bioinformatics/btp543 PMID: 19759197

27. Yang Z, Michailidis G. A non-negative matrix factorization method for detecting modules in heteroge-

neous omics multi-modal data. Bioinformatics. 2015; 32: 1–8. https://doi.org/10.1093/bioinformatics/

btv544 PMID: 26377073

28. Lock EF, Hoadley KA, Marron JS, Nobel AB. Joint and individual variation explained (JIVE) for inte-

grated analysis of multiple data types. The Annals of Applied Statistics. 2013; 7: 523–542. https://doi.

org/10.1214/12-AOAS597 PMID: 23745156

29. Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL. Bayesian correlated clustering to integrate mul-

tiple datasets. Bioinformatics. 2012; 28: 3290–3297. https://doi.org/10.1093/bioinformatics/bts595

PMID: 23047558

30. Rappoport N, Shamir R. Multi-omic and multi-view clustering algorithms: review and cancer bench-

mark. Nucleic Acids Research. 2018; 46: 10546–10562. https://doi.org/10.1093/nar/gky889 PMID:

30295871

31. Nguyen H, Shrestha S, Draghici S, Nguyen T. PINSPlus: a tool for tumor subtype discovery in inte-

grated genomic data. Bioinformatics. 2018; 35: 2843–2846. https://doi.org/10.1093/bioinformatics/

bty1049 PMID: 30590381

32. Witten DM, Tibshirani RJ. Extensions of Sparse Canonical Correlation Analysis with Applications to

Genomic Data. Statistical Applications in Genetics and Molecular Biology. 2009; 8: 1–27. https://doi.

org/10.2202/1544-6115.1470 PMID: 19572827

33. Liu J, Wang C, Gao J, Han J. Multi-View Clustering via Joint Nonnegative Matrix Factorization. Pro-

ceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied

Mathematics; 2013. pp. 252–260. https://doi.org/10.1137/1.9781611972832.28

34. Tini G, Marchetti L, Priami C, Scott-Boyer M-P. Multi-omics integration—a comparison of unsuper-

vised clustering methodologies. Briefings in Bioinformatics. 2017 [cited 11 Jan 2019]. https://doi.org/

10.1093/bib/bbx167 PMID: 29272335

35. Pierre-Jean M, Deleuze J-F, Le Floch E, Mauger F. Clustering and variable selection evaluation of 13

unsupervised methods for multi-omics data integration. Briefings in Bioinformatics. 2019; bbz138.

https://doi.org/10.1093/bib/bbz138 PMID: 31792509

36. Mariette J, Villa-Vialaneix N. Unsupervised multiple kernel learning for heterogeneous data integra-

tion. Bioinformatics. 2017; 34: 1009–1015. https://doi.org/10.1093/bioinformatics/btx682 PMID:

29077792

37. Rhee S, Seo S, Kim S. Hybrid Approach of Relation Network and Localized Graph Convolutional Fil-

tering for Breast Cancer Subtype Classification. Proceedings of the Twenty-Seventh International

PLOS COMPUTATIONAL BIOLOGY Evaluation and comparison of multi-omics data integration methods for cancer subtyping

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009224 August 12, 2021 29 / 33

https://doi.org/10.1002/sim.6866
http://www.ncbi.nlm.nih.gov/pubmed/26756854
https://doi.org/10.1109/TNB.2016.2556640
http://www.ncbi.nlm.nih.gov/pubmed/28113909
https://doi.org/10.1093/bioinformatics/btw434
http://www.ncbi.nlm.nih.gov/pubmed/27587661
https://doi.org/10.1186/s12864-015-2223-8
http://www.ncbi.nlm.nih.gov/pubmed/26626453
https://doi.org/10.1021/acs.jproteome.5b00824
http://www.ncbi.nlm.nih.gov/pubmed/26653205
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1038/nmeth.2810
http://www.ncbi.nlm.nih.gov/pubmed/24464287
https://doi.org/10.1093/bioinformatics/btt425
https://doi.org/10.1093/bioinformatics/btt425
http://www.ncbi.nlm.nih.gov/pubmed/23990412
https://doi.org/10.1093/bib/bbz015
https://doi.org/10.1093/bib/bbz015
http://www.ncbi.nlm.nih.gov/pubmed/31220206
https://doi.org/10.1093/bioinformatics/btp543
http://www.ncbi.nlm.nih.gov/pubmed/19759197
https://doi.org/10.1093/bioinformatics/btv544
https://doi.org/10.1093/bioinformatics/btv544
http://www.ncbi.nlm.nih.gov/pubmed/26377073
https://doi.org/10.1214/12-AOAS597
https://doi.org/10.1214/12-AOAS597
http://www.ncbi.nlm.nih.gov/pubmed/23745156
https://doi.org/10.1093/bioinformatics/bts595
http://www.ncbi.nlm.nih.gov/pubmed/23047558
https://doi.org/10.1093/nar/gky889
http://www.ncbi.nlm.nih.gov/pubmed/30295871
https://doi.org/10.1093/bioinformatics/bty1049
https://doi.org/10.1093/bioinformatics/bty1049
http://www.ncbi.nlm.nih.gov/pubmed/30590381
https://doi.org/10.2202/1544-6115.1470
https://doi.org/10.2202/1544-6115.1470
http://www.ncbi.nlm.nih.gov/pubmed/19572827
https://doi.org/10.1137/1.9781611972832.28
https://doi.org/10.1093/bib/bbx167
https://doi.org/10.1093/bib/bbx167
http://www.ncbi.nlm.nih.gov/pubmed/29272335
https://doi.org/10.1093/bib/bbz138
http://www.ncbi.nlm.nih.gov/pubmed/31792509
https://doi.org/10.1093/bioinformatics/btx682
http://www.ncbi.nlm.nih.gov/pubmed/29077792
https://doi.org/10.1371/journal.pcbi.1009224


Joint Conference on Artificial Intelligence. Stockholm, Sweden: International Joint Conferences on

Artificial Intelligence Organization; 2018. pp. 3527–3534. https://doi.org/10.24963/ijcai.2018/490

38. Mallavarapu T, Hao J, Kim Y, Oh JH, Kang M. Pathway-based deep clustering for molecular subtyping

of cancer. Methods. 2020; 173: 24–31. https://doi.org/10.1016/j.ymeth.2019.06.017 PMID: 31247294

39. Chen R, Yang L, Goodison S, Sun Y. Deep-learning approach to identifying cancer subtypes using

high-dimensional genomic data. Bioinformatics. 2019; 36: 1476–1483. https://doi.org/10.1093/

bioinformatics/btz769 PMID: 31603461
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