
Original Article

Pretreatment Brain Connectome
Fingerprint Predicts Treatment
Response in Major Depressive Disorder
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Abstract

Background: Major depressive disorder (MDD) treatment is characterized by low remission rate and often involves weeks

to months of treatment. Identification of pretreatment biomarkers of response may play a critical role in novel drug

development, in enhanced prognostic predictions, and perhaps in providing more personalized medicine. Using a network

restricted strength predictive modeling (NRS-PM) approach, the goal of the current study was to identify pretreatment

functional connectome fingerprints (CFPs) that (1) predict symptom improvement regardless of treatment modality and (2)

predict treatment specific improvement.

Methods: Functional magnetic resonance imaging and behavioral data from unmedicated patients with MDD (n¼ 200) were

investigated. Participants were randomized to daily treatment of sertraline or placebo for 8weeks. NRS-PM with 1000

iterations of 10 cross-validation were implemented to identify brain connectivity signatures that predict percent improve-

ment in depression severity at week-8.

Results: The study identified a pretreatment CFP that significantly predicts symptom improvement independent of treat-

ment modality but failed to identify a treatment specific CFP. Regardless of treatment modality, improved antidepressant

response was predicted by high pretreatment connectivity between modules in the default mode network and the rest of

the brain, but low external connectivity in the executive network. Moreover, high pretreatment internal nodal connectivity

in the bilateral caudate predicted better response.

Conclusions: The identified CFP may contribute to drug development and ultimately to enhanced prognostic predictions.

However, the results do not assist with providing personalized medicine, as pretreatment functional connectivity failed to

predict treatment specific response.
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Introduction

Major depressive disorder (MDD) is a severe mental
illness, affecting about 300 million people annually,1

with at least 16% lifetime prevalence in the Unites
States.2 Antidepressants are the most commonly used
pharmacotherapy for acute MDD.3,4 In particular, selec-
tive serotonin reuptake inhibitors or selective serotonin
norepinephrine reuptake inhibitors are currently recom-
mended as first-line treatment.4 Nevertheless, the evi-
dence of antidepressant treatment efficacy has been
conflictive and less than 40% of patients have achieved
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remission with initial treatment.5–9 On the other hand,
substantial placebo treatment effects in antidepressant
trials have been increasingly demonstrated.10 These con-
troversial findings seem to suggest improvement of
symptoms in many patients with MDD might not be
treatment-specific. Consequences of inadequate and
ineffective treatments have led to extra economic costs
and psychological burdens on patients.7,11 For more per-
sonalized treatment to be invented and assigned, it is
important to identify pretreatment biomarkers that pre-
dicts future symptom improvement.

With the advent of resting-state functional magnetic
resonance imaging (rs-fMRI), large-scale brain function-
al networks (FNs) have been identified.12 Altered func-
tional connectivity in major FNs of default mode (DM)
for internal attention processes, central-executive (CE)
for external attention processes, and affective and
salience networks for emotional processes have shown
to be involved in the pathophysiology of MDD.13

These neurobiological markers were suggested to be
useful for serving as treatment targets for MDD.14–16

Following the discovery of FNs, scientists were able to
map functional connections of the entire brain, termed
the “functional connectome.”17

Recently, connectome-based predictive modeling
(CPM) approach was established using a data-driven
protocol for developing predictive models of brain-
behavior relationships from connectivity data using
cross-validation.18 Behaviors were successfully predicted
in healthy subjects as well as in patients suffering from
neuropsychiatric disorders.19–23 In MDD, relevant
research is scarce, one study showed that decreased
brain dynamics in several brain regions predicted suicid-
al ideation in patients.24 Particularly in treatment
response in MDD, Nemati, Akiki et al. (2020) identified
a unique connectome fingerprint (CFP) at one-week
post-treatment that predated and predicted response to
the antidepressant sertraline. In comparison to placebo,
the authors found reduction in DM connectivity at week
one predicted better response to sertraline at week eight.
Overall, compared to placebo, response to sertraline was
predicted by a reduction in internal connectivity within
the primary cortices and within the executive networks,
but an increase in connectivity between the executive
network and the rest of the brain.25

These new findings were derived by applying a net-
work restricted strength (NRS) approach combined with
the classic CPM method.18,26 There are two major
advantages of the NRS approach: 1) it enables calcula-
tions of internal connectivity strength in all identifiable
nodes within any FNs as well as external connectivity
strength between all FNs; and 2) using the Akiki-
Abdallah (AA) hierarchical atlas for whole-brain parcel-
lation, “nodes” (modules or communities) are defined
using subject-level clustering of functional networks

and a reclustering network, allowing the large number
of edges to be reduced, and thus reducing the number of
statistical comparisons and leading to better interpreta-
tions of findings.27,28

Leveraging this promising new approach, the current
study employed the NRS predictive modelling (PM)
methods to identify a functional connectivity signature
of treatment response in patients with MDD random-
ized to sertraline or placebo. In the present study, Aim 1
was to identify a pretreatment CFP that predicts antide-
pressant response, regardless of treatment modality and
Aim 2 was to identify a CFP that predicts better
response to sertraline, compared to placebo. To assess
the brain localization of predictive connectivity, we also
investigated the nodal fingerprint (NFP) along with the
CFP. We hypothesized that pretreatment functional
connectivity would successfully predict percent improve-
ment in depression severity at week eight.

Methods

Demographic and Clinical Characteristics

The current study included 200 unmedicated patients with
MDD with an age range between 18 to 65 years (Table
S1). Inclusion and exclusion criteria for subjects were pre-
viously reported in detail.29 In brief, subjects met criteria
for nonpsychotic MDD as per the Structured Clinical
Interview for DSM-IV-TR (SCID) criteria,30 had a
Quick Inventory of Depressive Symptomatology
(QIDS)31 score equal or above 14 and were unmedicated
for at least three weeks prior to the study.29 FMRI and
behavior data were obtained. All subjects were randomly
assigned to an eight-week treatment of either sertraline or
placebo (up to 200mg daily). The 17-item Hamilton
Depression Rating Scale (HAMD) was rated for depres-
sion severity before and after treatment.32 HAMD scores
were used as the primary clinical outcome of the parent
trial. Scanning and assessments were conducted at base-
line. Participants were treated with the study medication
for a total of eight weeks. The HAMD scores were re-
assessed at the end of week eight (Table S1). The antide-
pressant treatment response was defined as the percentage
changes in HAMD scores before and after the MDD
subjects were treated with sertraline or placebo.

Neuroimaging Acquisition and Processing

As previously reported, the structural (1x1x1 mm3) and
functional (3.2x3.2x3.1 mm3; TR¼ 2000ms; TE¼ 28ms;
12min) scans at baseline were collected using 3-Tesla
magnets.33,34 MR scans were surface-based preprocessed
by using a pipeline adapted from the HCP (https://gith
ub.com/Washington-University/HCPpipelines),35 as
reported elsewhere.14,25,28,36,37
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In the preprocessing pipeline, FreeSurfer parcellation

was used for structural scans. Slice timing correction,

motion correction, intensity normalization, brain mask-

ing, and registration of fMRI images to structural MRI

and standard template were performed. The cortical
gray matter ribbon voxels and each subcortical parcel

were projected to a standard Connectivity Informatics

Technology Initiative (CIFTI) 2mm grayordinate space.

ICA-FIX was used to identify and remove artifacts,38,39

followed by mean grayordinate time series regression

(MGTR). The FIX and MGTR have been found to sig-

nificantly reduce motion-correlated artifacts.40

Network Restricted Strength Predictive Modeling

The A424 atlas was used for gray matter whole-brain

parcellation into 424 nodes and average time series

within each node was computed.25,41–43 The network-

affiliated parcellations based on the A424 nodes were

then performed by using the AA hierarchical connectiv-

ity atlas at 50 (AA-50), 24 (AA-24), and 7 modules (AA-

7) (https://github.com/emergelab/hierarchical-brain-net

works).25,44 Fisher-z transformation was conducted on
the pairwise correlation coefficients to produce the full

connectome. The full details of A424 and AA atlases,

along with the NRS-PM codes were previously

reported,25 and are publicly available at https://github.

com/emergelab. Here, we briefly introduce four key

measures used in the NRS-PM: 1) NRS connectome is

the pairwise connectivity of FNs affiliated modules at

AA-24 and AA-50, 2) nodal strength (nS) is the average
connectivity strength from one node to all other nodes in

the brain, i.e., comparable to Global Brain Connectivity

(GBC) as in Abdallah et al.,45 3) nodal internal NRS

(niNRS) is the average connectivity strength from one

node to all other nodes within the same canonical con-

nectivity FN (i.e., at AA-7), and 4) nodal external NRS

(neNRS) is the average connectivity strength from one

node to all other nodes outside of its FN.25 The predic-
tive modelling (PM) applied in this study was adapted

from the CPM approach,18 as previously established.25

Using linear modeling, the CPM is a data-driven

machine learning approach focusing on brain-behavior

relationship with built-in cross-validation (CV).18 As in

the previous study, 1000 iterations of ten-fold CV was

used to determine the statistical significance and to guar-

antee the stability of the models in the current study.25

Full details of the NRS methods were previously
reported in Nemati, Akiki et al. (2020).

Statistical Analyses

Normal probablity plots and test statistics were used to

examine the normality of outcome measures. Estimates

of variation were considered as the standard deviations

of the sampling distribution of the mean. T-tests and chi-
squares were performed to assess the difference in demo-
graphic data between the setraline and placebo groups.
Multiple comparisons were corrected by using False
Discovery Rate (FDR; p< 0.05). The statistical signifi-
cance threshold was set at 0.05 (2-tailed tests). Analyses
were conducted by using MATLAB (2017 b; Mathworks
Inc.) and the Statistical Package for the Social Sciences
(version 24; IBM).

The primary CFP analysis was conducted by using
NRS-PM at AA-50 followed by two secondary CFPs
at AA-24 and A424. The secondary CFPs were carried
out to inspect the upstream modules (i.e., AA-24) and to
test the model without network restrictions (i.e.,
A424).25 For the nodal fingerprint (NFP) analysis,
nS-PM was considered as primary analysis, both
niNRS-PM and neNRS-PM were performed as second-
ary analyses to investigate the shifts within and between
canonical networks (i.e., at AA-7).25 The study codes
and predictive models will be made publicly available
at https://github.com/emergelab.

Results

The dataset was acquired from the National Institute of
Mental Health Data Archive (NDA), Establishing
Moderators and Biosignatures of Antidepressant
Response for Clinical Care (EMBARC). We included
all subjects (n¼ 200) with successful resting state fMRI
and who completed depression assessment at week-8.
There were no significant differences of clinical out-
comes between treatment groups. Demographics and
clinical characteristics are reported in Table S1.
Detailed protocol and results of the EMBARC clinical
trial were reported elsewhere.29,46

Aim 1: Pretreatment Connectivity Predicts
Improvement Regardless of Treatment Modality

The primary CFP analysis based on AA-50 identified
a pretreatment CFP that significantly predicted percent-
age of symptom improvement at week eight compared to
baseline regardless whether patients received sertraline
or placebo (r¼ 0.19, CV¼ 10, iterations¼ 1000,
p¼ 0.03). As shown in Figure 1(a), enhanced treatment
response was predicted by lower pretreatment connectiv-
ity between the executive and sensorimotor and salience
modules, but increased connectivity between the DM
modules and the rest of the brain. Secondary analyses
also identified pretreatment CFP at higher resolution
(A424), which significantly predicted percentage of
symptom improvement (r¼ 0.19, CV¼ 10, iter-
ations¼ 1000, p¼ 0.02; Figure 1) while pretreatment
CFP at lower resolution (AA-24) showed a trend on
the prediction (r¼ 0.14, CV¼ 10, iterations¼ 1000,
p¼ 0.08) (Figure 1). Due to the large number of predic-
tive edges, visualizing the full connectome (A424) PM
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often yields undiscernible CFP.25 However, inspecting

the nodes with highest degree (i.e., top 2.5% of each of

positive and negative predictive edges) revealed a pattern

of connectivity signature comparable to the AA-50 CFP

(Figure 1).
The primary NFP analysis, based on nS, identified a

pretreatment NFP that is significantly associated with

percent improvement of depression severity at week

eight, regardless of treatment (i.e., sertraline or placebo)

(r¼ 0.18, CV¼ 10, iterations¼ 1000, p¼ 0.03; Figure 2).

Secondary analyses identified a significant NFP based

on niNRS (r¼ 0.19, CV¼ 10, iterations¼ 1000,

p¼ 0.02), but not on neNRS (r¼ 0.15, CV¼ 10, iter-

ations¼ 1000, p¼ 0.08). As shown in Figure 2(a), per-

cent improvement of depression severity was predicted

by high global brain connectivity (i.e., nS) at baseline in

various nodes within the sensorimotor network, partic-

ularly the auditory module. Enhanced response to ser-

traline and placebo was also predicted by higher global

connectivity in nodes within DM network, particularly

the posterior hippocampus. In contrast, lower global

connectivity in nodes within the cerebellum predicted

better response. Inspecting the results in Figure 2(d)

shows higher pretreatment internal connectivity (i.e.,

niNRS) in primary cortices and subcortical regions, par-

ticularly the bilateral ventral caudate, as predictor of

sertraline and placebo response.
Aim 2: Pretreatment Connectivity Predicts Improvement

Specific to Sertraline, Compared to Placebo
We failed to identify a significant pretreatment CFP

or NFP that could predict percent improvement specific

to sertraline, compared to placebo (all p> 0.05).

Discussion

By employing the newly validated NRS-PM approach,25

the current study provided evidence of a unique CFP

that predicted symptom improvement regardless of

treatment (sertraline vs. placebo). Our results revealed

a unique connectomic signature evident at pretreatment

that significantly predicted symptom improvement inde-

pendent of treatment modality (i.e., sertraline or

Figure 1. Pretreatment connectome fingerprint (CFP). A–C, The circular graphs are labeled based on the Akiki-Abdallah (AA) whole-
brain architecture at 50 modules (AA-50; primary CFP), 24 modules (AA-24), and the full connectome with 424 nodes (A424). Modules
and nodes are colored according to their affiliation to the 7 canonical connectivity networks: central executive (CE), default mode (DM),
ventral salience (VS), dorsal salience (DS), subcortical (SC), sensorimotor (SM), and visual (VI). Edges are colored based on the initiating
module using a counter-clockwise path starting at 12 o’clock. Internal edges (i.e., within module) are depicted as outer circles around the
corresponding module. Thickness of edges reflect their corresponding weight in the predictive model. The module abbreviations of AA-24
and AA-50, along with further details about the affiliation of each node are available at https://github.com/emergelab/hierarchical-brain-
networks/blob/master/brainmaps/AA-AAc_main_maps.csv. Only edges of significant predictive models following correction are shown in
A and C (all p � 0.05). The model in B was at trend level (p¼ 0.08). C, For the full connectome, it is not possible to visually discern the
underlying signature considering the large number of edges retained. Therefore, as in previous studies, the circular graph is thresholded
using nodal strength within the full connectome fingerprint as cutoff to retain the highest top 2.5% negative predictive edges and top 2.5%
positive predictive edges. D, Shows the nodal degree of the full connectome fingerprint edges without a threshold. The color bar unit is
arbitrary, reflecting the sum of weighted edges. All predictive models will be made publicly available at https://github.com/emergelab.
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placebo) at week eight. An overall pattern emerged con-
sistent with reduced connectivity between modules
within the CE network and the visual (VI) network.
The CE also showed reduced connectivity to the ventral
salience (VS) and sensorimotor (SM) networks, along
with enhanced connectivity found between the CE to
the globus-pallidus-putamen subcortical (GPu SC) net-
work and between the DM network to the dorsal
salience (DS) and the ventral salience (VS) networks.
Additionally, enhanced connectivity between modules
within the SM was revealed. No CFP was identified at
pretreatment that could predict the interaction between
treatment and symptom improvement at week eight and
neither was any correlation observed between pretreat-
ment CFP and baseline disease severity.

The CE consists of important brain regions that have
been strongly implicated in the pathophysiology of
MDD such as the dorsal lateral prefrontal cortex
(dlPFC) and dorsal medial PFC (dmPFC).47–49 Based
on task and rs-fMRI studies, the CE has also been
found to be one of the major FNs affected by
MDD.49–51 Although findings have been inconsistent
and possibly due to different methodologies used, a
hypo-connected CE has been suggested in patients suf-
fering from MDD.52,53 According to our findings, the
CE was also decreasingly connected to VS and SM
FNs. The CE is important for cognitive processing
while the VS and SM are important for emotion and
motor controls respectively.49 Zhi et al. found that
patients with MDD compared to healthy controls
showed decreased connectivity between CE and several

FNs including the VS and SM.54 These results implicat-
ed that MDD patients before treatment showed weak-
ening cognitive processing and might simultaneously
interfered its adequate functional communication to
emotional and motor controls when needed. Consistent
rs-fMRI studies have also shown decreased connectivity
within the VI in MDD patients and our observation on
decreased connectivity between the modules within this
FN is in line with the literature.49,54

On the other hand, the CE showed enhanced connec-
tivity to the GPu SC FN. The GPu SC FN consists of the
globus-pallidus and putamen, two important subcortical
structures in the basal ganglia. Abnormalities in the basal
ganglia including these two structures have been found in
MDD patients compared to healthy controls.55–58 It is
suggested that motor manifestations such as alteration
in gait and posture observed in depressive states may
derive from basal ganglia dysfunction.59 Though specula-
tively, the increased connectivity between the CE and the
GPu SC might be compensatory to its weakening connec-
tivity to the VS and SM and such neural mechanism
seems to contribute to symptom improvement indepen-
dent of treatment modality. Increased connectivity within
the SM FN might have also reflected such mechanism for
compensating declined ability in motor manifestations.
Additionally, enhanced connectivity was found between
the DM to the DS and the VS FNs. The DM represents
brain function at rest while salience network represents
emotional process. Alterations in both the FNs have
been importantly implicated in pathophysiology of
MDD.13,45,50,52,53,60,61 Major brain regions in the DM

Figure 2. Pretreatment nodal fingerprint (NFP). A, The canonical networks nodal affiliation based on the Akiki-Abdallah (AA) hierarchical
atlas at 7 modules (AA-7). The AA-7 affiliation was used to compute nodal external network restricted strength (neNRS) and nodal
internal NRS (niNRS). B–D, Nodal predictive results using nodal strength (nS; primary NFP; B), neNRS (C), or niNRS (D) as input features.
In (B) and (C), only nodes of significant predictive models following correction are shown (all p � 0.05). The predictive model in (C) was at
trend level (p¼ 0.08). The color bar unit is arbitrary, reflecting the sum of weighted nodes. All predictive models will be made publicly
available at https://github.com/emergelab.
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and salience network also anchor the frontal-limbic cir-
cuitry that is important for emotion regulation. Also,
speculatively, increasing functional communication
between these two FNs might be again compensatory to
emotional dysregulation in MDD and thus such neural
pattern could be an indicator of symptom improvement
regardless of sertraline and placebo effects.

Using the same study sample, Nemati et al. revealed a
unique CFP at one-week post-treatment significantly
predicted response to sertraline compared to placebo.
Specifically, three patterns of brain connectivity dynam-
ic shifts emerged: 1) a reduction in internal connectivity
among the CE and GPu SC modules, along with
increased external connectivity between these modules
and the rest of the brain; 2) reduced internal connectivity
among modules within the SM and VI networks; 3) in
DM/VS modules containing the amygdala and insula
(i.e., affective DM and inferior VS, respectively). The
reduced connectivity with perceptual and motor areas
(i.e., SM and VI) was found and the authors suggested
increased connectivity with higher order association
regions might indicate an early shift toward enhanced
executive control.25 Considering the findings from
these two studies together, it seems that decreased func-
tional connectivity within the CE may be involved in the
pathophysiology of MDD independent of treatment
effect. And it might be that at pretreatment, the stronger
the functional circuitry shift to compensate neural defi-
cits in MDD could better predict symptom improvement
regardless of treatment. And after one week of treat-
ment, the brain circuitry shifted again with the focus
to adapt and to maximize the neurochemical effects
brought by the sertraline in order to improve symptoms.

Nevertheless, in the current study, the CFP failed to
predict interaction between treatment (i.e., sertraline vs.
placebo) and symptom improvement and there was no
correlation between pretreatment CFP and baseline dis-
ease severity. This could be attributed to the relatively
small sample size which may lack the statistical power
necessary for prediction. Alternatively, this could simply
reflect the inability for CFP-PM to predict treatment
response at baseline. If CFP represents the pattern of
changes in the future, it may be less likely to be strongly
linked to the present disease stage and thus may have
resulted in no significant correlation findings between
pretreatment CFP and baseline disease severity. On the
other hand, since MDD patients with psychosis were
excluded from the study, the current findings cannot
be generalized to all patients suffering from depression.

In conclusion, the current study identified a unique
pretreatment CFP that predicted symptom improvement
in MDD patients. The pretreatment CFP revealed the
reduced functional connectivity in the CE involved in the
pathophysiology of MDD and the early brain circuitry
shifted to enhance cognitive, emotional and motor

processes and contributed to symptom improvement in

the future. Longitudinal study needs to be carried out to

further demonstrate changes in neural correlates related

to symptom improvement independent of treatment

modality.
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