
The Critical Role of IL-34 in Osteoclastogenesis
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Abstract

It has been widely believed that the cytokines required for osteoclast formation are M-CSF (also known as CSF-1) and
RANKL. Recently, a novel cytokine, designated IL-34, has been identified as another ligand of CSF1R. This study was to
explore the biological function, specifically osteoclastogenesis and bone metabolism, of the new cytokine. We produced
recombinant mouse IL-34 and found that together with RANKL it induces the formation of osteoclasts both from
splenocytes as well as dose-dependently from bone marrow cells in mouse and these cells also revealed bone resorption
activity. It also promotes osteoclast differentiation from human peripheral blood mononucleated cells. Finally, we show that
systemic administration of IL-34 to mice increases the proportion of CD11b+ cells and reduces trabecular bone mass. Our
data indicate that IL-34 is another important player in osteoclastogenesis and thus may have a role in bone diseases.
Strategies of targeting CSF1/CSF1R have been developed and some of them are already in preclinical and clinical studies for
treatment of inflammatory diseases. Our results strongly suggest the need to revisit these strategies as they may provide a
new potential pharmaceutical target for the regulation of bone metabolism in addition to their role in the treatment of
inflammatory diseases.
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Introduction

Osteoclasts are multinucleated giant cells which have the

capacity to resorb bone. They are derived from the hematopoietic

progenitor of the myeloid lineage by a cytokine-driven prolifer-

ation and differentiation process. Since the identification of the

receptor activator of NFkB ligand (RANKL) as the key regulator

for osteoclast differentiation [1], for a decade, it has been believed

that the cytokines required for osteoclast formation are macro-

phage colony-stimulating factor (M-CSF, also known as CSF-1)

and RANKL [1,2]. These factors are produced primarily by bone

marrow stromal cells, osteoblasts and activated T cells [3]. RANK

is a member of a family of proteins known as the tumor necrosis

factor receptors and is expressed in osteoclasts and their

precursors. The role of RANKL in osteoclastogenesis and bone

resorption has been well documented in recent years [1,4–6]. M-

CSF deficient mice showed osteopetrosis due to severe deficiency

of osteoclasts and macrophages [7,8]. The osteoclast formation

and bone resorption defects observed in M-CSF deficient mice

were rescued by systemic administration of M-CSF [8,9]. The

crucial role of M-CSF on osteoclastogenesis was further supported

by the study on the naturally occurring ‘toothless’ mutation in rat

which was found to be due to the mutation of the Csf1 (M-CSF)

gene [10].

In recent years, M-CSF or RANKL-independent osteoclasto-

genesis has also been noted. In the presence of TNF-a and TGF-b,

an in vitro culture of hematopoietic precursors from RANKL-,

RANK-, or TRAF6-deficient mice can differentiate to osteoclasts,

suggesting the potential existence of alternative routes for

osteoclast differentiation [11]. Systemic TNF-a increased the

number of osteoclast precursors in circulation [12]. Further studies

demonstrated that TNF-a upregulated the expression of c-Fms

(Csf1r), IL-1 and IL-1R in bone marrow [13,14]. Both IL-1 and

TNF are inflammatory cytokines mediating bone resorption in a

variety of diseases affecting bone. IL-1 has not only been shown to

enhance the expression of RANKL in bone marrow stromal cells,

therefore inducing osteoclast formation, but through the IL-1/IL-

1R signaling, it also has the potential to induce osteoclastogenesis

which is RANK/RANKL independent [15,16].

M-CSF is a key cytokine for the development of macrophage

lineage from hemopoietic stem cells and it is also required for the

development of microglia. However, the microglia in the brains of

adult M-CSF deficient mice developed normally, suggesting the

existence of another factor that can substitute for the effect of M-

CSF on this cell type [17]. The effect of M-CSF on osteoclast

differentiation is mediated by its receptor, CSF1R. Similar to CSF-

1 mutation Csf1op/Csf1op mice, deficiency of CSF1R also resulted

in osteopetrosis, reduced mononuclear phagocyte and reproduc-

tive defect indicating the function of CSF-1 is through CSF1R.

However, more severe phenotypes including osteopetrosis in these

mice have also been observed, suggesting the existence of

alternative factor(s) sharing the same receptor [18].

Recently, functional screening of a library of secreted proteins

after transfection of an embryonic kidney cell line with

recombinant cDNAs resulted in identification of a novel cytokine,

designated IL-34 [19]. The novel cytokine was shown to stimulate

the viability of monocytes and colony formation of macrophages

from bone marrow cells. By screening of extracellular domains of

transmembrane proteins, the receptor of IL-34 was discovered,

and was found to be a known receptor, CSF1R [19].
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To assess the role of the new cytokine, IL-34, in the process of

osteoclast differentiation, we produced recombinant IL-34 in our

lab. In this study we found that IL-34 together with RANKL

induces the formation of osteoclasts both from splenocytes as well

as from bone marrow cells in mouse in a dose-dependent manner

and these cells also have bone resorption activity. In human, it also

promotes the osteoclast differentiation from peripheral blood

mononucleated cells. Finally, we show that systematic adminis-

tration of IL-34 to mouse increases the number of CD11b+ cells

and reduces bone mass. Thus, our data point to another important

player for osteoclastogenesis and bone metabolism.

Results

IL-34 in combination with RANKL can induce mouse
osteoclast differentiation both from bone marrow cells as
well as from splenocytes

We first generated and purified recombinant murine IL-34 in

our lab, (Figure S1a). Peptide sequence analysis showed that

sequences from our purified protein correlated with the sequence

of mouse IL-34 (Figure S1b).

As Lin et al. [19] demonstrated that IL-34 is highly expressed in

spleen, we first wanted to know if it is also expressed in other

lymphoid tissues. According to our RT-PCR results, IL-34 was

detected in samples from mouse thymus, lymph nodes, spleen, as

well as bone marrow and liver (Figure 1a). Previous studies have

shown that RANKL, which is another key factor for osteoclastogen-

esis, can be produced by activated lymphocytes [4,20]. IL-34 can

specifically bind to CSF1R [19], this led us to speculate on its

possible overlapping effect with M-CSF. We first wanted to test the

possibility that in combination with RANKL, IL-34 induces the

differentiation of osteoclasts in lymphoid tissues. When splenocytes

were cultured with exogenous RANKL alone for nine days, most of

the TRAP positive cells were mononuclear small cells, and only few

TRAP positive binuclear or multinuclear cells were observed. The

addition of M-CSF and RANKL increased the amount of

multicleated TRAP positive osteoclast-like cells as already shown

previously [1]. Addition of IL-34 alone, cells proliferated and

attached, but majority of the cells were TRAP negative mononu-

clear cells (Figure 1b). However, not only was the cell proliferation

increased by addition of IL-34 combined with RANKL, but also the

number of multinuclear TRAP positive osteoclast-like cells was

increased (Figure 1b). With the same concentration (25 ng/ml), the

effect of IL-34 is comparable with M-CSF.

If IL-34 has the similar function as M-CSF on osteoclast

differentiation from splenocytes, is it able to induce osteoclastogen-

esis from bone marrow cells? To test this, we cultured bone marrow

derived non-adherent cells for nine days with or without RANKL

and different concentrations of IL-34. Again, without exogenous

RANKL, IL-34 alone could not induce the formation of TRAP

positive multinuclear cells (Figure 1c). IL-34 had an effect on cell

proliferation as the density of cells was much lower when IL-34 was

added at a lower concentration (2.5 ng/ml) (Figure 1c). Combined

with RANKL, the addition of IL-34 increased the number of TRAP

positive multinucleated osteoclast-like cells. Furthermore, this effect

was dose-dependent (Figure 1c, 1d). These results demonstrate that

IL-34, similar to M-CSF (CSF1), combined with RANKL induces

the formation of TRAP positive multinucleated osteoclast-like cells

both from splenocytes as well as from bone marrow cells.

In vitro differentiated osteoclasts by IL-34 and RANKL
show dose-dependent bone resorption activity

In order to test whether in vitro differentiated osteoclast-like

cells by IL-34 and RANKL are functional, we cultured bone

marrow derived non-adherent cells on bone slices for 9 days with

the above described conditions followed by TRAP staining and

WGA-lectin staining for pits. As shown in Figure 2, as a control,

M-CSF (25 ng/ml) plus RANKL induced the differentiation of

TRAP positive cells and the formation of pits. With the increased

concentration of exogenous IL-34, the number of TRAP positive

cells was also increased. Moreover, the number of pits formed as

well as the size of the pits also increased with the dose of IL-34,

indicating that in vitro differentiated osteoclasts by IL-34 and

RANKL have bone resorption activity.

In vitro differentiation of human osteoclasts by IL-34 and
RANKL

To extend our findings beyond the species barrier, we

performed our in vitro osteoclast differentiation experiment with

human cells. Mononuclear cells were isolated from human

peripheral blood and were further purified with anti-CD14 coated

magnetic beads. These CD14+ human mononuclear cells were

cultured with human IL-34 and RANKL for 9 days. A similar

effect to that of IL-34 on human osteoclast differentiation was also

observed. Since the experiment was started with human CD14+
mononuclear cells, many of them were positive by TRAP staining.

However, very few multinucleated TRAP positive cells were

observed. This situation was not changed by the addition of

RANKL alone (Figure 3). As expected, M-CSF plus RANKL

induced formation of multinucleated TRAP positive giant cells,

which was served as a positive control of the experiment. The

addition of IL-34 clearly caused the proliferation of human

CD14+ mononuclear cells, which was indicated as increased cell

density as well as the increased number of TRAP+ cells even at a

very low concentration. Formation of multinucleated giant

osteoclast-like cells was clearly observed with the increased

concentration of exogenous IL-34 (Figure 3). The results are

similar to what we observed in mouse cells, suggesting that the

significant role of IL-34 in osteoclast differentiation is not species-

specific. Furthermore, this effect is found on both splenocytes as

well as bone marrow derived cells.

Osteoblasts are one of the cellular sources of IL-34
The literature [19] and our results (Figure 1) indicate that IL-34

is highly expressed in the spleen and combined with RANKL, it

has the capacity to induce osteoclast differentiation from

splenocytes and bone marrow derived cells. The next step was

to discover the cellular sources of IL-34 in bone. Therefore, we

cultured bone marrow derived cells towards as osteoblast lineage

for three weeks and kinetically detected the expression of IL-34 at

the mRNA level. Although IL-34 was expressed at a low level in

bone marrow cells, its expression was significantly induced during

osteogenesis and peaked at 2 weeks (Figure 4a). Interestingly, M-

CSF (CSF1), a cytokine with a similar function to IL-34, also

showed a similar expression pattern to IL-34 (Figure 4b). It is

known that osteoblasts can produce RANKL [21]. Our results

indicated that the expression of RANKL by osteoblasts showed

different kinetics that peaked at one week and then decreased

(Figure 4c).

Systemic administration of IL-34 to mice reduces bone
mass

To further characterize the role of IL-34 on osteoclast

differentiation and bone resorption in vivo, mrIL-34 was injected

into Balb/c mice intraperitonealy. After two weeks of injection, the

proportion of CD11b+ cells from bone marrow, spleen and

peripheral blood was significantly increased (Figure 5a, 5b),
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Figure 1. IL-34 combined with RANKL promotes the differentiation of mouse osteoclast-like cells from splenocytes and bone
marrow. (a). The expression of Il34 in mouse tissues was performed by RT-PCR. Total RNA from mouse tissues were isolated. BM: bone marrow. LN:
lymph nodes. NTC: no template control. (b). Splenocytes were isolated from 6–8-week-old Balb/c mice and cultured for 9 days in the presence of

The Critical Role of IL-34 in Osteoclastogenesis

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18689



suggesting the critical role of IL-34 in monocyte/macrophage

lineage differentiation and proliferation. To determine whether

the increased number of macrophages, including osteoclasts leads

to more active bone resorption, the phenotype of bone from IL-34

injected mice was studied by micro-CT. After one week of

injections, a decreased bone mass of the proximal tibias from IL-

34 injected mice was observed when compared to mice injected

with PBS (Figure 5c). The decreased bone mass was also indicated

by a reduced percentage of bone volume, trabecular number and

increased trabecular separation and total porosity (Figure 5d).

From a longer period of injection, 2 weeks, the decreased

trabecular density in IL-34 injected mice was not only again

observed from 3-D reconstruction of the micro-CT images

compared with PBS injected mice (Figure 5e), but also indicated

by the significantly changed micro-CT derived 3-D trabecular

structure parameters of the proximal tibias of IL-34 injected mice

(Figure 5f). The data from in vivo study strongly support the role of

IL-34 for osteoclast differentiation and bone resorption.

Discussion

Our study showed that IL-34 can replace M-CSF for osteoclast

differentiation both in mouse and human. This provides

experimental evidence supporting IL-34 as another ligand of

CSF1R. However, despite the studies showing the effect of IL-34

on monocyte proliferation [19] and osteoclast differentiation, the

function of this new cytokine is still largely unknown. As our data

show that systemic administration of IL-34 increases CD11b+
cells, it is therefore important to explore whether it can induce the

differentiation of macrophages or monocytes in other tissues.

Previous studies have suggested the critical role of RANKL in

osteoclast differentiation. We have also shown that neither

RANKL nor IL-34 alone can induce osteoclast formation

suggesting IL-34 is necessary but not sufficient (data not included).

Based on current very limited knowledge about this new

cytokine, another important issue need to be noted is that IL-34 is

highly expressed in spleen both in mouse and human. Giving the

crucial function of spleen in immune responses, it is also worth to

explore the biological function of IL-34 in spleen or as an

extension, in immune responses. Now it seems clear that IL-34 has

essential role in myeloid differentiation and proliferation. Myeloid

cells are critical for innate and adaptive immune responses.

Obviously the next question would be what its function is as an

immuno-stimulant? Study how it interacts with lymphocytes will

help us to understand its role during infection and inflammation.

M-CSF is produced by macrophages, monocytes, and stromal

cells. What are the cellular sources of IL-34? We show in this study

that IL-34 is expressed by osteoblasts. Bone structure and integrity

are maintained through bone remodeling, a continuous process of

bone resorption and deposition, which is coordinated through the

relative activities of osteoblasts and osteoclasts. The theory

developed by Rodan and Martin [22] suggested that osteoblasts

are somehow able to instruct osteoclasts to resorb bone matrix,

and therefore determine both the catabolic and anabolic phase of

remodeling. After resorption is finished, the surface of the

remaining bone attracts osteoblasts, possibly by releasing growth

factors from the matrix [23], a process called coupling. Our data

showed that IL-34 can regulate osteoclast formation and IL-34 is

highly expressed by osteoblasts. Previous studies have shown that

osteoblasts can produce RANKL and M-CSF, another two key

cytokines for osteoclast differentiation. Now the third player for

osteoclastogenesis has been identified and can also be produced by

the same cell type indicating that osteoblasts are not only a bone

forming cell, but also play an important regulatory role in bone

homeostasis in the hematopoietic stem cell niche by producing

these cytokines to coordinate the differentiation process of bone

resorbing osteoclasts.

It has been described that two different isoforms of IL-34 exist.

The two isoforms differ by an additional glutamine (Q) in isoform

1, which is the first one identified and designed as IL-34 [19]. We

cloned the isoform 1 that has been proven by DNA sequencing of

the plasmid (data not shown in this manuscript). In Figure S1, the

two protein bands on gel (J1 and J2) have been sequenced and J1

correlates with isoform 1 (with an extra Q meaning glutamine,

highlighted in yellow in figure S1). Mass spectra of trypsin-digested

J2 shows that it is correlated with the same protein. We do not

know exactly how the J2 is generated, possibly truncated by a

nonspecific Pichia protease in the fermentation broth or it may be

underglycosylated. J2 is a much smaller band and gives very low

amount of protein. We used gelfiltration to purify the recombinant

protein and that reduced the minor product to a minimum.

Therefore, the majority of the purified protein is from J1 which

has been used in this study. The other two highlighted letters in the

figure S1 (NIT & NAT) are the consensus N-glycosylation sites

that are usually glycosylated by eukaryotic cells (that includes

Pichia pastoris). Glycosylation makes the cloned protein band

spread on SDS-PAGE. The substantial differences between both

recombinant protein and the cloned IL-34 both on the C- and N-

terminal domains are due to that we left out the original signal

sequence of the protein, which are the first 20 amino acids;

instead, we used the Pichia signal sequence built into the plasmid,

that would be surely recognized by the yeast. We also changed C-

terminal for isolation purposes: a small added sequence with 6

histidines at the end for metal chelate affinity chromatography.

M-CSF has been recognized as a critical factor stimulating the

formation of monocyte/macrophage lineage from pluripotent

hematopoietic stem cells [24]. It is not only a primary regulator of

the survival, proliferation and function of this cell lineage but also

plays an important role in the pathogenesis of various diseases

including bone diseases, inflammatory diseases and cancer.

Therefore, efforts towards targeting M-CSF or M-CSFR signaling

have been made by several pharmaceutical companies [25].

However, identification of the new cytokine, IL-34 which shares

the same receptor with M-CSF and our present data indicate that

targeting of M-CSF alone is not sufficient to block the effect

through CSF1R. Very little is known about the biological

significance of this new ligand of CSF1R, but it appears that the

RANKL (100 ng/ml) alone, IL-34 (25 ng/ml) alone or RANKL combined either with 25 ng/ml of M-CSF or with 25 ng/ml of IL-34. The cells were fixed
with 3% paraformaldehyde and were subjected to TRAP and Hoechst 33258 staining. (c). Bone marrow cells were isolated from the femurs and tibias
of 6–8-week-old Balb/c mice. After depletion of adherent stromal cells by culturing the cells overnight with a-MEM media, the nonadherent bone
marrow cells were cultured for 9 days in the presence of 25 ng/ml of IL-34 alone, 25 ng/mL recombinant M-CSF or with a different concentration of
rmIL-34 (2.5 ng/ml, 25 ng/ml) and 100 ng/ml of RANKL. Three independent experiments were performed. All images in this study were acquired by
Leica DMRB microscope and Leica DC300F digital camera system. Representative images are shown with a magnification of 206 or 406. Bars,
100 mm. (d). The number of TRAP+ mononuclear cells and TRAP+ multinucleared cells ($3 nuclei, shown as OC-like cells) were counted under
microscopy. Data shown were average number counted from four wells. One-way ANOVA analysis was performed and was followed by Turkey’s and
Dunnett’s post-hoc test by using SPSS statistic analysis software. *: The mean difference is significant at the 0.05 level.
doi:10.1371/journal.pone.0018689.g001
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Figure 2. In vitro differentiated osteoclasts by IL-34 and RANKL show dose-dependent bone resorption activity. Mouse nonadherent
bone marrow cells were cultured on bone slices for 9 days in the presence of RANKL and M-CSF or RANKL with 2.5 ng/ml, 25 ng/ml, 100 ng/ml of IL-
34. The bone slices with cells were fixed and stained for TRAP, and all TRAP-positive multinucleated cells were counted and analyzed under a
microscope. The cells were removed followed by WGA-lectin staining for pits. Subsequent counting of resorption pits was performed with a
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concept of targeting CSF1/CSF1R signaling may need to be

revisited. RANKL or CSF1 signaling have been the target of

clinical trials for the treatment of osteoporosis and autoimmune

inflammatory diseases. Our data suggest that IL-34 may also be a

potential pharmaceutical target for the treatment of bone and

inflammatory diseases.

While preparing this manuscript, another two studies have

recently been published. Baud’huin et al. showed that IL-34 is

microscope. Representative images of TRAP staining (a) and WGA-lectin staining (b) under different culturing conditions. Representative images are
shown with a maginification of 206. Bars, 100 mm. (c). Histogram of number of osteoclast-like cells, number of pits under different culturing
conditions and number of pits/osteoclast (n = 5). (d). Area of Pits was quantitated using an Olympus microscope connected to a computer and the
OsteoMeasure program (version 3.21; OsteoMetrics, Atlanta, GA, USA), n = 5. One-way ANOVA analysis was performed and was followed by Turkey’s
and Dunnett’s post-hoc test by using SPSS statistic analysis software. *: The mean difference is significant at the 0.05 level.
doi:10.1371/journal.pone.0018689.g002

Figure 3. In vitro differentiation of human osteoclasts by IL-34 and RANKL. CD14+ human mononuclear cells were isolated from human
peripheral blood followed by purification with anti-CD14 coated meganetic beads. The cells were cultured with RANKL alone or RANKL combined
either with M-CSF or with human IL-34 at the indicated concentrations for 9 days. Cells were fixed followed by TRAP and Hoechst 33258 staining.
Three independent experiments were performed. Representative images are shown with a maginification of 206and 406. Bars, 100 mm. The right
panel showed the quantitation of the number of TRAP+ mononuclear cells and TRAP+ multinucleared cells ($3 nuclei, shown as OC-like cells)
counted under microscopy. Data shown were average number counted from four wells. One-way ANOVA analysis was performed and was followed
by Turkey’s and Dunnett’s post-hoc test by using SPSS statistic analysis software. *: The mean difference is significant at the 0.05 level.
doi:10.1371/journal.pone.0018689.g003
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highly expressed by giant cell tumours of bone and by using in vitro

culture, IL-34 is important in RANKL-induced osteoclastogenesis

[26]. By putting IL-34 under Csf1 promoter, Wei et al. generated a

transgenic mouse model to compare the functions of CSF-1 and IL-

34 in regulation of myeloid cells. They also showed the bone

phenotype of Csf1op/op mouse was rescued by this transgenic mouse

[27] [29]. Both of these two studies suggested that IL-34 plays

important role in regulating osteoclastogenesis. Our study specifi-

cally focuses on osteoclastogenesis both from human and mouse

progenitors. We showed here that combined with RANKL, IL-34

not only induced the formation of osteoclast, but also formed

osteoclasts that had bone resorbing activity. We further show the

systematic administration of IL-34 increases the number of

monocytes and reduces the bone mass in vivo. Therefore, our

results and data link the role of IL-34 directly to bone physiology

and opens new possibilities to potential clinical applications.

Figure 4. IL-34 is expressed by osteoblasts. Bone marrow cells were cultured in phenol red-free a-MEM media supplemented with 10% fetal calf
serum, l0 nmol/L dexamethasone, 50 mg/mL ascorbic acid, and 10 mmol/L sodium b-glycerophosphate. Cells were harvested after 1, 2 and 3 weeks
culture and total RNA was isolated. The expression of Rankl, Csf1 and Il34 were detected by real-time quantitative RT-PCR. Hprt was used as an
endogenous control. Three independent experiments were performed.
doi:10.1371/journal.pone.0018689.g004
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Figure 5. Systemic administration of IL-34 to mice increases the number of monocytes/macrophages and reduces bone mass in
vivo. rmIL-34 was injected into 8-week old Balb/c mice daily at 250 ug/kg, i.p. After one week or two weeks of injections, the mice were sacrificed.
Cells from the peripheral blood, bone marrow and spleen were treated with ACK buffer to lyse red blood cells, followed by anti-CD11b-PE staining.
CD11b-positive cells were detected by FACSCalibur. (a). Representative FACS histogram images from CD11b-PE staining from peripheral blood, bone
marrow cells and splenocytes. (b). Cell numbers of CD11b-positive cells in peripheral blood, bone marrow and spleen from PBS or IL-34 injected mice
(n = 4). * indicating p,0.05. (c). Representative 3-D micro-CT images of the metaphyseal region of proximal tibias from mice injected with PBS or IL-34
for one week. (d). Histograms of 3-D trabecular structure parameters from micro-CT analysis (n = 3). (e). Representative 3-D micro-CT images of the
metaphyseal region of proximal tibias from mice injected with PBS or IL-34 for two weeks. (f). Histograms of 3-D trabecular structure parameters from
micro-CT analysis (n = 4).
doi:10.1371/journal.pone.0018689.g005
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Materials and Methods

Cloning and production of recombinant mouse IL-34
(rmIL-34)

Mouse IL34 reading frame minus signal sequence was PCR

amplified from mouse spleen cDNA with the following primers:

forward - ggtGAATTCaacgagaatttggagatatggac, reverse – GGT-

tctagaCCGGGCAACGAGCCATGGCTT. The PCR product

(665 bp) was cloned into the pPICZaA vector (Invitrogen). Isolated

clones were sequenced and proved to be isoform 1, containing one

extra gutamine residue. The construct was electroporated into

Pichia pastoris, strain X33 and integrated constructs were selected

on Zeocin-yeast extract-peptone-glucose agar plates. Zeocine-

resistant clones were picked.

A 10 mL inoculum was started from a colony overnight. It was

inoculated into 800 mL buffered glycerol-complex medium

containing 1% yeast extract 2% peptone, 100 mM potassium

phasphate pH6, 1.34% yeast nitrogen base, 461025% biotin, and

1% glycerol.

After vigorous overnight shaking at 30uC the cells were

harvested by centrifugation and resuspended in the same medium

containing 0.5% methanol in place of glycerol and shaken again

for 24 h. Then, the fermentation broth was centrifuged to obtain a

clear supernatant. Ni-NTA–agarose beads (5 mL settled volume)

were mixed in and gently rotated in cold conditions for 1 h. Then

the beads were separated and filled into a small chromatography

column, washed with 50 mM phosphate buffer containing

300 mM NaCl and 15 mM imidazole, pH 7.8. The bound

protein was eluted with 250 mM imidazole in the same buffer.

Recombinant IL-34 was further purified by gelfiltration on a

sephacryl S100 column. A small amount of purified IL-34 was run

on 10% SDS-PAGE followed by silver staining. The protein bands

on gel were Trypsin digested and then were proceeded to mass

spectrometry analysis.

In vitro differentiation of osteoclasts
Splenocytes were isolated from 6–8-week-old Balb/c mice.

Bone marrow cells were also isolated from the femurs and tibias of

6–8-week-old Balb/c mice bred in the Central Animal Laboratory

of the University of Turku. By culturing the cells overnight with a-

MEM media (Gibco, New York, NY), adherent stromal cells were

depleted These nonadherent bone marrow cells were cultured for

9 days in the presence of 25 ng/mL recombinant M-CSF (M-CSF)

(R&D Systems, Minneapolis, MN) or with a different concentra-

tion of rmIL-34 and RANKL (100 ng/ml, Peprotech, UK).

For the human experiments, human peripheral blood mono-

nuclear cells were isolated from the peripheral blood of healthy

donors by Ficoll-Paque Plus (Amersham Pharmacia Biotech,

Uppsala, Sweden). CD14+ monocytes were purified using CD14+

antibody-coated microbeads (Miltenyi Biotec, Bergisch Gladbach,

Germany) according to the manufacturer’s instructions. Purified

CD14+ cells were cultured in the presence of 25 ng/mL M-CSF

(M-CSF) (R&D Systems, Minneapolis, MN) or with a different

concentration of recombinant human IL-34 (R&D Systems,

Minneapolis, MN) and RANKL.

After 9 days in culture, the cells were fixed with 3%

paraformaldehyde and were subjected to tartrate resistant acid

phosphatase (TRAP) staining with kit 387-A (Sigma, St Louis,

MO) as well as Hoechst 33258 (Molecular Probes, Eugene, USA)

staining, according to the manufacturer’s instructions.

Bone resorption assay
After a 9-day culture, bone slices with cells were fixed with 3%

paraformaldehyde and 2% sucrose in PBS for 10 min at room

temperature. The slices were stained for TRAP as has been

described previously [28], and all TRAP-positive multinucleated

cells were counted and analyzed under a microscope. Quantifi-

cation of resorption pits was performed according to Selander

et al. [29]. The cells were removed by wiping the surface of the

slices with a soft brush. The bone slices were then incubated with

peroxidase-conjugated WGA-lectin (Sigma, St. Louis, MO) and

diluted 1:40 in PBS for 45 min. The bone slices were then washed

with PBS, incubated in DAB solution (3,39-diaminobenzidine

tetrahydrochloride, 0.52 mg/ml in PBS containing 0.03% H2O2)

for 5–10 min, and rinsed in PBS. Subsequent counting of

resorption pits was performed with microscope. The area resorbed

was quantitated using an Olympus microscope connected to a

computer and the OsteoMeasure program (version 3.21; Osteo-

Metrics, Atlanta, GA, USA).

In vitro differentiation of osteoblasts
Bone marrow cells were obtained from the femurs of 8- week-

old female Balb/c mice and non-adherent cells were removed. All

cultures were carried out in phenol red-free a-MEM media

supplemented with 10% fetal calf serum (Bioclear UK, Wilts, UK),

l0 nmol/L dexamethasone (Sigma, St. Louis, MO), ascorbic acid

(50 mg/mL), 10 mmol/L sodium b-glycerophosphate, and antibi-

otics in 5% CO2, at 37uC. Cells were harvested after 1, 2 and 3

weeks culture and total RNA was isolated from these cells.

Real-time quantitative polymerase chain reaction
(TaqMan) analysis

Total RNA was isolated with an RNeasy kit (Qiagen, Valencia,

CA). Complementary DNA was synthesized with the use of a

TaqMan Reverse Transcription kit (Applied Biosystems, Foster

City, CA) using random hexamers as primers according to the

manufacturer’s instructions. Hypoxanthine guanine phosphoribo-

syltransferase (Hprt) was used as an endogenous control. TaqMan

primers and probes for mouse Csf1, Rankl, Il34 and Hprt were

purchased from Applied Biosystems, and samples were analyzed

using the ABI Prism 7900 Sequence Detection System (Applied

Biosystems).

Systemic administration of IL-34, FACS and micro-CT
analysis

250 ug/kg recombinant murine IL-34 was daily injected

intraperitonealy to 8-week old Balb/c mice bred in the Central

Animal Laboratory of the University of Turku. The animal

experiments were reviewed and approved by the local Ethics

Committee on Animal Experimentation at the University of

Turku and by the local Provincial State Office of Western Finland.

After one-week or two-week injections, the mice were sacrificed.

Cells from the peripheral blood, bone marrow and spleen were

treated with ACK buffer to lyze red blood cells followed by anti-

CD11b-PE (BD Bioscience, San Diego, CA) staining. Cells were

detected and analysed by FACSCalibur (BD Bioscience, San Jose,

CA).

Trabecular bone morphometry within the metaphyseal region

of the proximal tibia was quantified using micro-CT (Sky-

Scan1174, SkyScan, Belgium). Volumetric regions for trabecular

analysis were selected within the endosteal borders to exclude the

growth plate. Trabecular morphometry was characterized by

measuring the bone volume fraction (bone volume / total volume,

BV/TV), trabecular thickness (Tb. Th) and trabecular number

(Tb. N). Image analysis was performed using the program ‘‘CT-

analyser’’ and the ‘‘CT-volume’’ program (both programs are

from SkyScan, Belgium) for 3D visualization of scanned objects.
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Statistical analysis
All error bars on graphs show means + SD. One-way ANOVA

analysis was performed and was followed by Turkey’s and

Dunnett’s post-hoc test by using SPSS statistic analysis software.

The mean difference is significant at the 0.05 level. Student’s t test

was used to compare the micro-CT data generated from PBS or

IL-34 injected mice, which was shown in Figure 5.

Supporting Information

Figure S1 Expression and production of recombinant
mouse IL-34. (a). Mouse IL-34 reading frame was amplified by

PCR from mouse spleen cDNA and cloned into the pPICZaA

vector. The construct was electroporated into Pichia pastoris,

strain X33 and expressed protein was purified and run on 10%

SDS-PAGE followed by Coomassie blue staining (left) and silver

staining (right). The protein bands on silver stained gel were

Trypsin digested and proceeded to mass spectrometry analysis. (b).

Peptide sequences from mass spectrometry analysis (J1) compared

with the expected sequence of mouse IL-34 (mil34cloned). Red

letters are identified residues from J1 band. The other two

highlighted letters (NIT & NAT) are the consensus N-glycosylation

sites that are usually glycosylated by eukaryotic cells.

(TIF)
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