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ABSTRACT: A growing consensus is emerging that optimiz-
ing the drug−target affinity alone under equilibrium
conditions does not necessarily translate into higher potency
in vivo and that instead binding kinetic parameters should be
optimized to ensure better efficacy. Therefore, in silico
methods are needed to predict the kinetic parameters and
the mechanistic determinants of drug−protein binding. Here
we demonstrate the application of COMparative BINding
Energy (COMBINE) analysis to derive quantitative struc-
ture−kinetics relationships (QSKRs) for the dissociation rate
constants (koff) of inhibitors of heat shock protein 90 (HSP90) and HIV-1 protease. We derived protein-specific scoring
functions by correlating koff rate constants with a subset of weighted interaction energy components determined from the
energy-minimized structures of drug−protein complexes. As the QSKRs derived for these sets of chemically diverse compounds
have good predictive ability and provide insights into important drug−protein interactions for optimizing koff, COMBINE
analysis offers a promising approach for binding kinetics-guided lead optimization.

KEYWORDS: Quantitative structure−kinetics relationships, drug binding kinetics, COMparative BINding Energy analysis,
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Over the past few decades, many classical regression
techniques have been developed and successfully applied

to correlate the properties of a series of molecules with their
biological activities to derive quantitative structure−activity
relationships (QSAR).1,2 With the availability of the three-
dimensional (3D) structures of many macromolecular drug
targets and data on the activities of families of compounds,
these approaches have been extended in three dimensions to
derive 3D-QSARs.3−6 COMparative BINding Energy (COM-
BINE) analysis is one such approach that has been successfully
applied to a number of targets to derive target specific scoring
functions based on molecular mechanics calculations to predict
binding affinity and target selectivity.7−11,11−13 Unlike other
3D-QSAR methods, such as CoMFA3 or CoMSIA,14

COMBINE makes full, simultaneous, and systematic use of
all the available information from 3D structures of receptor−
ligand complexes and the measured bioactivities of com-
pounds, by explicitly including information about the
receptor−ligand interaction energies rather than only about
the interaction properties of the ligands. Over the past few
years, drug−target binding kinetics have gained a lot of interest
from the drug discovery research community due to their
influence on the time course of a drug’s effect.15 It is now

increasingly recognized that the in vivo efficacy of a drug
correlates better with binding kinetics than binding affinity.16

However, the molecular determinants of drug-binding kinetics
are poorly understood. With the increasing number of
experimental measurements of drug-binding kinetics and
crystal structures of the corresponding drug−target complexes,
there is great potential for using this data to derive 3D-QSKRs
for medium throughput prediction of binding kinetics for novel
compounds. In addition, computational methods to derive 3D-
QSKRs can provide an understanding of the determinants of
relatively faster or slower binding kinetics of a specific drug.
These insights can help in the rational modulation of the
binding kinetics during lead optimization. In a number of
cases, it has been found that a drug’s efficacy directly depends
on the residence time (τ = 1/koff) of the drug-receptor
complex.16,17 For example, Maschera et al.18 and Shuman et
al.,19 in their separate studies on the interaction of drug-
resistant mutants of HIV-1 protease and clinical drugs,
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observed that the inhibition of wild type and mutant proteases
was strongly correlated with the dissociation rates (koff) of the
drug−protease complexes and that the resistance mainly
resulted from the increase in koff rates. In another study,
geldanamycin, a HSP90 inhibitor, was shown to have
nanomolar efficacy in contrast to its micromolar affinity in
vitro and its high efficacy was found to be the result of its slow
koff rate.

20

In this work, we apply the COMBINE analysis method to
derive QSKRs for the dissociation rate constants (koff) of
chemically diverse sets of inhibitors of HSP90 and HIV-1
protease. COMBINE analysis was originally developed to
derive QSARs for binding affinity; here, we provide the first
demonstration of its applicability to deriving QSKRs for
binding kinetic parameters. For this purpose, we studied two
established and well-studied drug targets. HSP90 is a
chaperone protein, known for its role in stabilizing a number
of proteins essential for tumor growth, and it is therefore an
anticancer target.21 HIV-1 protease is a primary target for anti-
AIDS chemotherapy.22 Both proteins have been the subject of
extensive structure-based drug discovery efforts and hence are
well characterized experimentally. The two targets present
different challenges for the prediction of drug-binding kinetics:
they show high binding site flexibility and inhibitors with both
slow and fast binding kinetics are known.23,24

For COMBINE analysis, a set of 3D structures of ligand−
receptor complexes are modeled and energy-minimized, and
ligand−receptor interaction energies are computed using a
classical molecular mechanics force-field. These energies are
then partitioned and subjected to partial least-squares
projection to latent structures (PLS) regression to derive a
statistical model which correlates the activity of interest to
weighted selected components of the ligand−receptor
interaction energy (see eq 1). The interaction energy
components are typically Lennard−Jones (LJ) and coulombic
interaction terms, decomposed on a per residue basis.
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where k is the activity of interest (e.g., KD, koff, kon), Δui are per
residue terms of the ligand−receptor interaction energy,
calculated for n residues. Coefficients wi and the constant C
are determined from PLS regression.25−27 PLS is used to
predict the dependent variables (activity values) from a set of
predictors or independent variables (matrix of interaction
energy terms) by extracting the set of orthogonal factors, latent
variables, which have the best predictive power and explain the
maximum covariance between the dependent and independent
variables. This step is followed by a regression step where the
latent variables are used to predict the dependent (activity)
variables.
The data set used for the COMBINE analysis of HSP90

inhibitors consists of 70 structurally diverse inhibitors
belonging to 11 different chemical classes: resorcinol, indazole,
hydroxyl-indazole, aminoquinazoline, benzamide, aminopyrro-
lopyrimidine, 7-imidazopyridine, 7-azaindole, aminothienopyr-
idine, 6-hydroxyindole, adenine and 2-aminopyridine (see
Figure S4 in the Supporting Information).28 These inhibitors
bind to the ATP binding pocket in the N-terminal domain of
HSP90 (N-HSP90) and block its ATPase function. The
structures of the N-HSP90 in complex with inhibitors are
known to have high plasticity and exist in “loop-in”, “helical”,

or “loop-out” conformations which differ at the side of ATP
binding site where the α-helix3 is located.29,30 Here, 57 of the
inhibitors in the data set bind to the helical conformation of N-
HSP90 and 13 inhibitors bind to the loop-in conformation of
N-HSP90. The koff rate constants measured for these
compounds by surface plasmon resonance (SPR) were taken
from Kokh et al.,28 and they span about 4 orders of magnitude
(from 0.0001 to 0.83 s−1). Co-crystallized structures of 37
HSP90−inhibitor complexes were available in the PDB
database. The structures of the remaining 33 protein−inhibitor
complexes were modeled by analogy, and the bound complexes
were subsequently optimized using the Schrödinger software
(release 2015-4, Schrödinger, LLC, New York). During the
chemometric analysis, four compounds (6, 30, 65, and 69)
were detected as outliers and they significantly diminished the
quality of the model. Interestingly, three of these compounds
(30, 65, 69) were also identified as outliers in the recent work
by Kokh et al.28 where the authors used τRAMD, an enhanced
sampling procedure based on molecular dynamics simulations,
to calculate the relative residence times of HSP90 inhibitors.
These outlier compounds were not considered further here,
and therefore, our final data set consisted of 66 inhibitors. For
selection of the training and test sets of compounds, the
inhibitors were ranked from high to low koff values and every
fifth inhibitor in the list was selected for the test set. Therefore,
the resulting training set and test set consisted of 53 inhibitors
(80%) and 13 inhibitors (20%), respectively. In addition, the
final model was also validated using different cross-validation
methods (see Table 1).

Using the gCOMBINE program,31 207 coulombic and 207
LJ energy terms for all 53 HSP90 inhibitors in the training set
were calculated. These interaction energies correspond to the
207 amino acid residues in the N-HSP90. Next, only those
interaction energy terms that show variance across the entire
training data set and have a standard deviation greater than the
specified cutoff value, were selected for PLS analysis. Different
cutoff values in the range of 0.2−1.0 kcal/mol were tested. The
best model was obtained when a standard deviation cutoff of
0.25 kcal/mol was used, resulting in 42 inhibitor−residue
interaction energy terms (12 coulombic and 30 LJ terms) to be
used for PLS analysis (see Figure 1A). Then the weights (or
the contributions) of these 42 energy terms and their
projection over different numbers of latent variables were
determined from PLS analysis by correlating the energy terms
with experimental log10(koff) values (see Figure 1B). The

Table 1. Statistical Measures of Correlation for the
COMBINE Analysis Models Derived for log(koff) of HSP90
and HIV-1 Protease Inhibitorsa

HSP90 HIV-1 protease

validation Q2 AAEV RMEV Q2 AAEV RMEV

leave-one-out (LOO) 0.69 0.45 0.57 0.70 0.58 0.75
leave-two-out (L2O) 0.69 0.45 0.58 0.51 0.68 0.96
leave-three-out (L3O) 0.68 0.46 0.59 0.52 0.68 0.95
random groups of 7 (10
iterations)

0.68 0.46 0.59 0.60 0.63 0.86

aCross-validated correlation coefficient (Q2), average absolute errors
(AAEV), and root mean squared errors (RMEV) for different
validation methods are given for the PLS models derived with three
latent variables for HSP90 inhibitors and six latent variables for HIV-1
protease inhibitors.
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regression coefficient R2 and standard mean errors were
determined for different numbers of latent variables (see Table
S1 in the Supporting Information). The models were then
subjected to different cross-validation techniques to access
their sensitivity and predictive ability. The model with three
latent variables was found to have the best predictive power
and least sensitivity with a R2 of 0.80 and a leave-one-out
(LOO) cross-validated correlation coefficient (Q2) of 0.69.
The average absolute error (AAET) and the root mean squared
error (RMET) for the training set were calculated to be 0.37
(log10 (s−1) units) and 0.46 (log10 (s−1) units), respectively.
The model obtained has good predictive power as the
correlation coefficient for the test-set (R2

PRED) with 13
compounds was calculated to be 0.86 with an AAEP of 0.33
and RMEP of 0.37. The values of the average absolute error
(AAEV) and the root mean squared error (RMEV) for different
cross-validation sets were found to be consistent for the
different cross-validation methods used (Table 1).
Nine amino acid residues: N51, D54, K58, D93, G97, D102,

L103, Y139, and T184, make contributions of both coulombic
and LJ interaction energies to the QSKR model (see Figures
1B and S2). The major contribution to the koff rates comes
from the LJ energies of the hydrophobic residues lining the
binding pocket. Therefore, compounds with slow koff rates tend
to have bulky hydrophobic groups mediating strong LJ
interactions with the nonpolar binding site residues. Most of
the helix-binders are relatively bulkier in size and have slower

koff rate constants, as they have additional hydrophobic
moieties which occupy a transient hydrophobic cavity formed
between α-helix3 and β-strands and mediate strong van der
Waals interactions with hydrophobic residues L103, I104,
N106, L107, G108, T109, I110, and A111 (see Figure 1A and
1D). On the other hand, loop-binders are usually smaller in
size and have relatively higher koff rates. As also observed by
Kokh et al.,28 there is a good correlation (R2 = 0.61) between
molecular weight and koff values for all the compounds. This
correlation between koff values and compound size is even
more prominent (R2 = 0.94) for the resorcinol class of
compounds that bind to the helix conformation of N-HSP90.28

Loop-binders that have slower koff rates have additional polar
moieties mediating coulombic interactions with amino acid
residues such as N51, E47, and G97, thereby stabilizing the
bound-state (see Figure 1D).
For the COMBINE analysis of HIV-1 protease, the data set

consisted of 36 compounds belonging to different chemical
classes such as cyclic ureas, cyclic sulfamides, linear analogues
of compound B268, and nonanalogues of B268 (see Figure
S5). Experimental data on kinetic rates for these compounds
are available from Markgren et al.,32 and the koff values for
these compounds range from 0.00022 to 83.3 s−1. The
structures of 12 of the protein−inhibitor complexes are
available in the PDB database, and the rest were modeled by
introducing small substitutions into cocrystallized structures of
similar compounds complexed with HIV-1 protease. Three of

Figure 1. COMBINE analysis model for the koff rate constants of HSP90 inhibitors. (A) 30 LJ and 12 coulombic protein residue−inhibitor
interaction energy terms were selected based on variance over the inhibitors for deriving the PLS model. On the crystal structure (PDB ID: 5J20)
of compound 11 (cyan sticks) complexed with N-HSP90 (ribbon representation), the residues are colored according to whether their coulombic
(blue), LJ (red), or both coulombic and LJ (magenta) interaction energies with the bound inhibitor contribute to the model. (B) Weights for
different LJ and coulombic interaction energy contributions derived from the PLS analysis (projection to 3 latent variables, the value of constant C
was 0.158). (C) Plot of calculated vs experimental log(koff) values for the training data set (R

2 = 0.80) and LOO cross-validation (Q2 = 0.69). The
straight line corresponds to y = x (ideal case). (D) Comparison of the binding modes and the key interactions for a helix-binder (compound 11,
crystal structure PDB ID: 5J20), a faster dissociating loop-binder (compound 9, model based on PDB ID: 5OCI), and a slower dissociating loop-
binder (compound 4, crystal structure PDB ID: 5NYI), respectively. Hydrophobic moieties (shown with a black circle in the left panel) of helix-
binders occupy a transient hydrophobic cavity formed by the helix conformation of N-HSP90 and mediate strong LJ interactions with hydrophobic
residues. Most of the loop binders are smaller in size and dissociate faster (middle panel). Some of the slower dissociating loop-binders have
additional polar moieties (marked with red and black circles in the right panel) that mediate additional electrostatic interactions with the binding-
site residues.
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these inhibitors (U75875, B249, and B376), were identified as
outliers. Two of these outliers: B249 and B376, which are
dihydroxy analogues of compound B268, have a variety of
substituents at the valine side chains of B268 and no crystal
structures were available for them. These small substitutions in
B268 resulted in large increases of koff rates by almost 1000-
fold, and this effect was not captured by the COMBINE
analysis as the modeled complexes of these compounds were
very similar to the reference structure. Therefore, we decided
to exclude these compounds from our analysis. Due to the
small size of the data set, all of the remaining 33 compounds
were used to train the model and the model was assessed by
different cross-validation techniques (Table 1).
HIV-1 protease is a homodimer with each monomer

consisting of 99 amino acid residues. Therefore, for each of
the 33 protease inhibitors, 198 coulombic and 198 LJ energies
were calculated using gCOMBINE.31 To select a subset of
interaction energy terms for PLS, a standard deviation cutoff
range (from 0.2 to 1.0 kcal/mol) was tested and the choice of a
cutoff of 0.65 kcal/mol resulted in the best model. Seventeen
coulombic and 17 LJ terms that have standard deviations
higher than the cutoff value were used for PLS analysis (see
Figure 2A). The models were derived for different numbers of
latent variables and validated using several validation methods
(see Tables 1 and S4). The model with the best predictive
ability and least sensitivity was obtained when projection was
made to six latent variables. The R2, AAET, and RMET for the
training set are 0.94, 0.26 (log10 (s

−1) units), and 0.34 (log10
(s−1) units), respectively. The Q2 value for different validation
methods ranged from 0.51 to 0.70 (Table 1). Of the 17
coulombic and 17 LJ interactions considered in the PLS
analysis, many make an unfavorable contribution to the
dissociation kinetics (see Figure 2C). It was observed that
some of the interactions of the inhibitors, specifically with the
residues in the flap region of HIV-1 protease, favor fast
unbinding. For example, the cyclic urea and cyclic sulfamide
inhibitors have direct polar contacts with the I50 residues
located in the flap regions of the HIV-1 protease dimer and
have fast dissociation rates. The flaps are very dynamic in
nature and are known to exist in different conformations
ranging from open to semiclosed to closed. Their fast
movements could lead to these small cyclic compounds
being driven out of the binding pocket. The cyclic urea
inhibitors A008 and DMP323 have the highest koff rate
constants, and they have hydroxyl groups that make hydrogen
bonds with the amide backbone atoms of both D30 residues in
the bound complexes. The interaction with D30B was
identified as unfavorable by the COMBINE analysis (Figure
2C, bottom inset). The acyclic inhibitors, on the other hand,
are peptidomimetic and have relatively slow dissociation rates.
They do not form direct contacts with the flap residues and
their aromatic groups mediate favorable LJ interactions with
residues such as P81 and R08 (Figure 2C, top inset). In some
of the crystal structures of acyclic inhibitors complexed with
HIV-1 protease, bridging waters mediate the interaction
between the inhibitors and binding site residues such as D30
and I50. While interfacial water molecules can be considered
explicitly in COMBINE analysis,13 we omitted them in this
study. Thus, the effect of the water-mediated interactions that
tend to correlate with slow dissociation rates appears to be
represented implicitly by direct hydrogen-bonding to the
corresponding residues in the complexes of fast dissociating
inhibitors having negative weights in the PLS model.

In summary, we obtained models for koff rates with very
good predictive power (Q2

LOO = 0.69, R2
PRED = 0.86 for N-

HSP90 and Q2
LOO= 0.70 for HIV-1 protease) and identified

the key ligand−receptor interactions that contribute to the
variance in binding kinetics. These specific interaction energy
components provide insights into the mechanisms of specific
slow and fast dissociating classes of compounds. Additionally,
COMBINE analysis could be used to predict the effect of
specific mutations in the protein on the dissociation kinetics of
its inhibitors. COMBINE analysis was originally developed to
derive QSARs for binding affinity (or KD, the equilibrium
dissociation constant) for a congeneric series of compounds
with a similar binding mode to a protein target. Here, we have
not used congeneric series, but rather diverse sets of
compounds with very different scaffolds and binding modes.

Figure 2. COMBINE analysis model for the koff rate constants of
HIV-1 protease inhibitors. (A) 17 LJ and 17 coulombic protein
residue−inhibitor interactions were selected based on variance over
the inhibitors. Residues are shown on the crystal structure (PDB ID:
1OHR) of nelfinavir (cyan sticks) bound to HIV-1 protease (ribbon
representation) colored according to whether their LJ (red),
coulombic (blue), or both LJ and coulombic (magenta) interaction
energy terms, contribute to the PLS model. (B) Plot of calculated vs
experimental log(koff) values for the training data set (R

2 = 0.94) and
LOO cross-validation (Q2 = 0.70). The straight line corresponds to y
= x (ideal case). (C) Weights for different LJ and coulombic
interaction energy terms derived from the PLS analysis (projection to
six latent variables, the value of constant C was 0.134). A negative
weight means that an energetically favorable (negative) interaction
energy term tends to shorten the residence time. The labels of some
of the interaction energy terms that characterize slow and fast
dissociating inhibitors are highlighted, and the corresponding residues
are also shown in the inset figures. The top inset shows a few of the
interactions (yellow) contributing to the long residence time of the
slowly dissociating inhibitor saquinavir (koff = 0.00023 s−1) and the
bottom inset shows the interactions (magenta) contributing to the
short residence time of a very fast dissociating cyclic urea inhibitor
DMP323 (koff = 83.3 s−1) in the crystal structures with PDB IDs
3OXC and 1QBS, respectively.
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We find that our COMBINE analysis models for KD are not as
predictive as the COMBINE models for koff for these diverse
sets of compounds (Tables S6−S9). We do however, obtain
better statistics for a COMBINE model for KD generated with
a smaller data set of resorcinol compounds that inhibit HSP90
and have a similar scaffold (Table S10). A possible explanation
for the better predictions for koff than KD may be that
dissociation rates are independent of the unbound state, and
therefore differences in ligand and protein desolvation and
conformational free energies are not so important. The current
applications to HSP90 and HIV-1 protease data sets with very
diverse sets of inhibitors, using both crystal structures and
modeled protein-inhibitor complexes, demonstrates the
potential of COMBINE analysis as a robust QSKR approach
with increasing scope for application as more data sets of
measured kinetic parameters become available. COMBINE
analysis complements a growing number of methods based on
biomolecular simulation and machine learning to predict
drug−target binding kinetics.33 Indeed, a possible extension of
the COMBINE analysis approach would be to the analysis of
structures from molecular dynamics simulations, including
intermediates along drug binding or unbinding pathways.

■ EXPERIMENTAL PROCEDURES
The structures of the protein−inhibitor complexes used were crystal
structures or modeled by analogy by introducing small substitutions
into crystal structures of similar compounds complexed with the
proteins. Preprocessing of the structures was performed with the
Schrödinger suite (release 2015-4).34 The force field parameters and
topology files were constructed, and the systems were energy
minimized using the Amber14 software.35 ff14SB36 was used for the
proteins and the general Amber force field (GAFF) for the inhibitors.
The partial atomic charges of the inhibitors were fitted using the
RESP37 program to the molecular electrostatic potential computed
using the GAMESS program.38 The gCOMBINE program31 was used
to compute the coulombic and LJ interaction energies, decompose
them on a per-residue basis, and perform chemometric PLS analysis.
Methodological details are given in the Supporting Information.
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(25) Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic
Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109−130.
(26) Wold, S.; Ruhe, A.; Wold, H.; Dunn, W. J., III The Collinearity
Problem in Linear Regression. The Partial Least Squares (PLS)
Approach to Generalized Inverses. SIAM J. Sci. Stat. Comput. 1984, 5,
735−743.
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