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encoding in large databases can reveal frequency information that can allow the re-identification of
encoded values.

Objectives

We propose a frequency-based attack to evaluate the privacy guarantees of multiple dynamic match-
key encoding. We then present two recommendations that can be used in this match-key encoding
approach to prevent such a privacy attack.

Methods

The proposed attack analyses the frequency distributions of individual match-keys in order to identify
the attributes used for each match-key, where we assume the adversary has access to a plain-
text database with similar characteristics as the encoded database. We employ a set of statistical
correlation tests to compare the frequency distributions of match-key values between the encoded
and plain-text databases. Once the attribute combinations used for match-keys are discovered,
we then re-identify encoded sensitive values by utilising a frequency alignment method. Next, we
propose two recommendations; one to alter the original frequency distributions and another to make
the frequency distributions uniform. Both will help to prevent frequency-based attacks.

Results

We evaluate our privacy attack using two large real-world databases. The results show that in certain
situations the attack can successfully re-identify a set of sensitive values encoded using the multiple
dynamic match-key encoding approach. On the databases used in our experiments, the attack can
re-identify plain-text values with a precision and recall of both up to 98%. Furthermore, we show
that our proposed recommendations are able to make this attack harder to perform with only a small
reduction in linkage quality.

Conclusions

Our proposed privacy attack demonstrates the weaknesses of multiple match-key encoding that
should be taken into consideration when linking databases that contain sensitive personal infor-
mation. Our proposed recommendations ensure that the multiple dynamic match-key encoding
approach can be used securely while retaining high linkage quality.

Introduction ing PPRL approaches have a trade-off between linkage quality,
scalability, and privacy [1], with some being vulnerable to pri-

Privacy-preserving record linkage (PPRL) is the process of link- vacy attacks [2,3,4].

ing records that belong to the same individual across different The multiple dynamic match-key approach [5] is a recently

databases while preserving the privacy of the individuals that proposed method for PPRL which aims to provide privacy pro-

are represented by the records in these databases [1]. Exist- tection against frequency attacks, while achieving high linkage
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quality. As we describe next, the main idea of this approach
is to generate distinct hash-codes (called match-key values)
using attribute value combinations (called match-keys) and
compare these match-key values across databases to identify
matching pairs of records.

Multiple dynamic match-key approach

We now briefly describe the main steps of multiple dynamic
match-key encoding as proposed by Randall et al. [5]. Com-
mon notations used throughout the paper are shown in Table
1. We assume a sensitive database, D, with n records, where
each record has k attributes. A match-key is a combination of
attributes from D. Given there are k attributes in D, there can
be 2k - 1 attribute combinations. A list of match-keys mk is
first selected and then match-key values are created for each
record r € D. These match-key values are hash-codes gener-
ated by hashing the concatenated values of each match-key
mke € mke, as illustrated in Figure 1. An encoded database
(consisting of hash-codes) generated from D is denoted as H,
a matrix of hash-codes. Essentially the matrix H is generated
with n rows and m columns where n = |D| and m = |mke,|.
A row in H corresponds to a record r € D and each row con-
tains a list of m hash-codes. A column in H corresponds to
a certain match-key mk, € mk,, where a given column con-
tains the hash-codes generated for all r € D. Hence a cell H;;
represents a hash-code, hj;, generated for the i*" record using
the jt" match-key, where 1 < i< nand1<j < m.

The list mk, is determined using the probabilistic record
linkage method proposed by Fellegi and Sunter [6], which
utilises the error characteristics of the databases that are being
linked. As described in detail by Randall et al. [5], for each
potential match-key a weight score w is calculated using the
method proposed by Fellegi and Sunter [6]. For the multiple
dynamic match-key approach, these weight scores w are then
compared against a user-defined weight threshold, w;. Only
those match-keys that have a weight score of at least w; are
selected for mk, to generate match-key values. The authors of
the multiple match-key approach also recommended selecting
match-keys with at least two attributes [5].

Due to the large number of match-keys that are possi-
ble for k attributes (2% - (k+1) in total), the authors have
employed a superset pruning approach to reduce the number
of match-keys that are being selected in order to reduce the
computational costs [5]. For instance, if the match-key {First-
Name, LastName} has a total score of at least w; then all the
supersets of this match-key are pruned. This is because hav-
ing a superset such as {FirstName, LastName, Gender} will
not result in any additional matches compared to the matches
already identified by the match-key { FirstName, LastName}.

Once a list of match-keys mk, is selected, match-key val-
ues are generated for each match-key using the corresponding
attribute values of each record. To generate match-key val-
ues, a keyed cryptographic hash function, such as the hashed
message authentication code (HMAC) [7] that uses a hash
function and a secret key (known only to the owners of the
databases that are being encoded for linkage) can be used. If
one of the attribute values used in a match-key is missing, then
that match-key value is left empty. Given the list of selected
match-keys mk,, each record in the database D will have up
to |mk,| match-key values assigned to it (less if the record has

missing values in one or more of the attributes used in mk,).
We provide an example of this generation of match-key val-
ues in Figure 1. The match-key values for each r € D are
stored as lists (i.e. with an order), and only match-key val-
ues at the same position in these lists are compared between
records. This will reduce the computational complexity of the
comparison since one match-key value of a record will only be
compared with one match-key value of another record.

In a linkage protocol, the owners of the sensitive databases
to be linked first generate such a list of match-key values for
each record in their database. Assuming two databases, Da
and Dpg, these databases are encoded into two matrices of
match-key values (hash-codes), Ha and Hp, respectively. In
the comparison and classification step, assumed to be con-
ducted by a third party known as the linkage unit [1], the cor-
responding match-key values (hash-codes in the same column
in Ha and Hp) are then compared to classify each candidate
record pair either as a match or non-match. Following Randall
et al. [5], a record pair is classified as a match (assumed to
refer to the same individual) if one or more of its match-key
values are the same. If none of the corresponding match-key
values of a record pair are the same, then the record pair will
be classified as a non-match (assumed to refer to different
individuals).

Contribution

In this paper, we analyse the privacy guarantees of this multi-
ple dynamic match-key approach using a privacy attack that
aims to re-identify the plain-text values that were encoded
into hash-codes, using a known (publicly available) plain-text
database. The attack tries to identify the attributes used for
match-keys by analysing the frequency distributions of individ-
ual match-key values. Using two large real-world databases, we
show that the attack can re-identify plain-text values with an
acceptable level of accuracy. We then propose two improve-
ments as countermeasures for multiple match-key encoding
and discuss how these methods can strengthen the privacy
guarantees of the match-key encoding approach and prevent
this type of privacy attacks.

Methods

We define the following terms which we use to describe the
match-key approach and the proposed privacy attack (as also
summarised in Table 1). Assume a sensitive database D is en-
coded using the multiple dynamic match-key approach, which
results in a matrix H of hash-codes, as shown in Figure 1. Each
column in H contains hash-codes generated using a unique
match-key, mk. € mk.. We refer to these columns as encoded
match-keys. As with existing attacks on PPRL [2,3,4], we as-
sume the adversary has access to a plain-text database V with
a frequency distribution of attribute values similar to the en-
coded database D. Such plain-text databases can be sourced
externally (e.g. a telephone directory or voter database) or
internally (if the attack is conducted by an insider who has
access to some type of plain-text database that is similar to
the encoded database). We then generate a list of match-keys,
mk,, from the plain-text database V to compare against the
encoded match-keys. We refer to these match-keys as plain-
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Table 1: Common notation used throughout the paper.

Notation Definition
D Sensitive database
Vv Plain-text database
r A record in a database
k Number of attribute values in a database
mk,, mk, List of encoded match-keys, and list of plain-text match-keys
H, Hy Encoded matrix of hash-codes, and a column in H which represents a mk. € mk,
M, M; Plain-text match-key matrix, and a column in M which represents a mk, € mk,
C, Cix, Cx Correlation matrix, a row in C (mk, € mk,), and a column in C (correlation metric)
f A frequency distribution
i j ith row and jt column in a matrix
Figure 1: An example encoding process assuming three attribute combinations (match-keys) where |mke| = 3. The top table

refers to the plain-text database attributes before encoding and the bottom table refers to the generated match-key values using
HMAC [7]. Note that no match-key value (hash-code) is generated if a match-key has a missing attribute value.

Plain-text sensitive database (D)

Record ID  FirstName (F) LastName (L) Gender (G) BirthYear (B)
rl John Smith M 1985
r2 Peter Miller 1990
Encoded database (H)
Record ID c¢'!=(F+L+G) c?=(F+L+B) c=(L+G+B)
rl HMAC(JohnSmithM)  HMAC(JohnSmith1985) HMAC(SmithM1985)
r2 HMAC(PeterMiller1990)

text match-keys. The resulting plain-text match-key matrix
is denoted as M where each column is a plain-text match-
key mk, € mk,. We assume that the plain-text database V
contains some or all attributes that are used for the encoded
match-keys in D. We also assume different levels of knowledge
of the adversary, as we discuss in the Results section.

As we describe in detail below, the proposed privacy attack
consists of five main steps:

1. Calculate the frequency distributions of encoded match-
keys (f;°) and plain-text match-keys (f;?).

2. Calculate the correlations between the frequency distri-
butions of each encoded match-key Hx € H with all
plain-text match-keys M« € M, and for each Hx; build
a correlation matrix, C.

3. Select candidate plain-text match-keys for each encoded
match-key Hx by comparing correlation values in C.

4. Assign highly correlated plain-text match-keys mk, to
each encoded match-key mke.

5. Re-identify plain-text values using frequency alignment
of plain-text match-keys.

The first two steps of the attack are illustrated in Figure
2. We discuss these two steps in detail in the following two
sections.

Step 1: Calculating frequency distributions

In the first step of the attack we calculate the frequency distri-
butions of match-key values, f;¢, for each encoded match-key
(i.e. column Hx € H) where 1 < j < |mk,|. Since the match-
key values of records are stored as lists (i.e. with an order),
we are able to calculate frequency distributions of match-key
values for each encoded match-key.

Next, we generate different match-keys of the plain-text
database V. Assuming there are k attributes in V (includ-
ing some or all attributes used for the encoded match-keys)
we generate all match-keys from length two to k, assuming
match-keys have only been generated from combinations of
two or more attributes [5]. For the resulting list of plain-text
match-keys, mk,, for each record r € V, we generate a list
of plain-text match-key values using all mk, € mk,. This
results in a matrix of plain-text match-key values, M, where
a column Mx; € M represents a plain-text match-key mk, €
mk,. Then, for each column M, we calculate the frequency
distribution, f;®, of concatenated attribute values in mk, from
M.

For instance, if there are three attributes FirstName,
LastName, and BirthYear in the plain-text match-key
database M, we can generate four match-keys M« =
{(FirstName+LastName), (FirstName+BirthYear), (Last-
Name+BirthYear), (FirstName+LastName+BirthYear)}.
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Figure 2: An overview of the first two steps of the proposed privacy attack. We first generate the plain-text match-key matrix, M,
and then we calculate the frequency distributions, f;¢ and f;?, of all encoded match-keys Hx; € H and plain-text match-keys M+;
€ M. Next, every possible pair of f;¢ and f;? is compared using several correlation metrics. This results in a correlation matrix C

for each encoded match-key Hx;.

Encoded
match-key matrix

Sensitive
database

Correlation
calculation

Corr(fg, £,7)
Corr(fg, £57)

Corr(fe, £2)

Plain-text
match-key matrix

; ¢ Plain-text
£p database
—

l where x = |mK,|

H.; = mk, € mk,

C

Correlation
Matrix for

H*j

Here + is used to represent the string concatenation. We
then calculate frequency distributions for all four match-keys.
At the end of the first step the adversary has the frequency
distributions of all encoded match-keys from H (f;¢) and all
plain-text match-keys from M (f;?).

Step 2: Measuring the correlation of frequency
distributions

In the second step, we use a series of statistical tests to com-
pare the frequency distributions of all plain-text match-keys,
f;, with one given encoded match-key, f;¢. For each encoded
match-key, Hx;, we build a correlation matrix, C which con-
tains all correlations calculated between each plain-text match-
key, M«;, and that encoded match-key, Hx; (each pair of f;°
and f;?), using different correlation metrics. Then by compar-
ing these correlation values, we obtain the most similar plain-
text match-keys for the current encoded match-key, Hx. In
the following we discuss this process in more detail.

The statistical tests we use can be divided into two cat-
egories. The first consists of basic statistics which can be
calculated for a distribution, while the second consists of cor-
relation tests which can be used to compare two distributions.
As for the basic statistics we calculate the mean, standard-
deviation, variance, and skewness of two frequency distribu-
tions and calculate the absolute difference of those values for
different pairs of f;¢ and f#. Then we employ the following
correlation metrics to compare the two distributions f;¢ and
fjp:

1. Earth mover’s distance (EMD) [8]: The EMD is used
to measure the dissimilarity between two probability dis-
tributions over some feature space. Given one distribu-
tion as the baseline, EMD calculates the least amount
of work needed to reach the second distribution.

5= mkp S mkp

. Kolmogorov-Smirnov (KS) test [9]: The KS test is

used to measure the equality of two continuous probabil-
ity distributions to inspect if one distribution is a sample
of another distribution.

. Pearson’s correlation coefficient [10]: Given two con-

tinuous variables x and y, Pearson’s correlation coeffi-
cient measures the correlation between these two vari-
ables. The relationship calculation is based on the
method of co-variance.

. Spearman’s rank correlation [10]: Spearman’'s Rank

correlation measures the ranked correlation between two
variables. Specifically, it calculates the strength and di-
rection of association between two ranked variables.

. Relative entropy (Kullback-Leibler divergence) [11]:

Relative entropy is used to measure how one probabil-
ity distribution differs from another reference probability
distribution. We use relative entropy to measure how
much one frequency distribution is different from the
second distribution.

. Histogram intersection [12]: Histogram intersection

measures the similarity of two probability distributions
by calculating the intersection of their histograms. For
this calculation the two histograms of the probability
distributions should be of the same length or both these
distributions can be placed into a same number of bins
using an appropriate binning technique such as equal
depth binning. Given two histograms, x and y, with b
bins in each, the intersection of the two histograms can
be calculated as:

b
(=1)
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where min() outputs the minimum of x; and y;. To nor-
malise the intersection value, we can divide /(x,y) by the
average of the two histograms:

21(z,y)

I(xvy)norm - b

Z(izn Ti + Y

In our attack, we use histogram intersection to calculate
the intersection of the frequencies of distribution pairs
f;¢ and f;*. The higher the value of I(x,y)norm, the more
similar the two distributions are.

These six metrics are commonly used to compare the cor-
relations between probability or frequency distributions. Given
we are interested in measuring the correlations between two
frequency distributions, we aim to identify correlated match-
keys by employing these metrics. Furthermore, our evaluation
using these metrics will help us to determine the usability of
these correlation metrics in such an attack scenario.

The correlation values calculated using the above statisti-

cal tests will be added to a single vector, ¢, of ten values (i.e.
four values from the basic statistical metric differences and six
values from the above discussed correlation metrics) for each
pair of frequency distributions f;¢ and f;?. For each encoded
match-key, Hx;, and its corresponding frequency distribution,
f;, we obtain a set of correlation vectors by comparing f;*
with the frequency distributions f;? of all possible plain-text
match-keys in M. This results in a correlation matrix C; (for
that particular encoded match-key Hx;) where C;x (row i) rep-
resents a correlation vector c calculated for a certain plain-text
match-key and Cx; (column j) represents a vector of correla-
tions for a certain correlation metric (i.e. one of the above ten
tests). In practice it is important to understand which cor-
relation metrics are robust when calculating correlations with
different distributions. This aspect is outside the scope of
this paper and we considered the performance of all correla-
tion metrics to be equal in our context. In the following steps
we describe how we can use the obtained correlation values
to filter plain-text match keys that are unlikely to match to
encoded match keys.
Frequency based filtering: Given there are k attributes in V,
potentially there are 2% - (k+1) attribute combinations that
we need to analyse. Hence, we propose a filtering step to re-
duce this number of candidate plain-text match-keys by com-
paring their frequencies. We identify not possible plain-text
match-keys through their top most frequent plain-text values.
For instance, an encoded match-key with the highest frequency
of 50 will not be compared with a plain-text match-key that
has a highest frequency of 150. This is assuming that the
two databases have a similar number of records and frequency
distributions in their attribute values. We define a frequency
range parameter, ¢, for the range of frequency values that can
be used to filter plain-text match-keys. An encoded match-key
with highest frequency of max(f;¢), will only be compared with
a plain-text match-key with highest frequency of max(f;?) if
(max(f;)-e) < max(f;P) < (max(f;®)+e). Here max() rep-
resents the top frequency (highest count) of that particular
frequency distribution. The value for £ needs to be adjusted
based on the encoded and plain-text database sizes, |D| and
[V|.

Step 3: Filtering candidate plain-text match-
keys

In the third step of the attack we first normalise the correlation
values in the matrix C for each statistical test using min-max
normalisation. Here correlation values are normalised in such
a way that the highest correlation will become 1.0 and the
lowest correlation will become 0.0. However, the distance val-
ues (such as Earth mover's distance and Relative entropy) are
normalised in such a way that the highest value will become
0.0 and the lowest value will become 1.0. This ensures that
all values obtained using different statistical tests are in the
same range and comparable.

Next, for each correlation metric, Cx;, we sort the plain-
text match-keys mk, in descending order based on their nor-
malised correlation values. We then select the top plain-text
match-keys based on this sorted list. For each pair of plain-text
match-keys, mk, and mk,;, we calculate the difference ratio,
oy, of their normalised correlation values. We do this to fil-
ter the candidate plain-text match-keys that have the highest
correlation values with small differences between them. Only
plain-text match-keys that have a difference ratio below a user
defined difference ratio limit of o will be considered. Assum-
ing the correlation values of mk, and mk,.; are s, and s,4;
respectively, the difference ratio between those two values, o4,
is calculated as:

2 Sy — S:v+1

Qg = .
Sy + Szr1

If g < o, then we select both match-keys mk, and mky+;.
If g > o then we stop the selection of candidate match-keys
at that point. This process is performed for all statistical tests,
resulting in a filtered matrix of plain-text match-keys for each
encoded match-key. Table 2 shows an example matrix C ob-
tained after the filtering process for the encoded match-key
(LastName+Gender+BirthYear). Plain-text match-keys with
crossed-out correlation values are not selected for that par-
ticular correlation metric due to having a too low correlation
value, as discussed in the above filtering step.

At the end of this step, we obtain one filtered correlation
matrix C; per encoded match-key, H«. This C; will contain
plain-text match-keys, mk,, that have the highest correlation
values based on the most similar frequency distributions to
that encoded match-key Hsx;.

Step 4: Re-identifying encoded match-keys

In the fourth step of the attack, we try to identify the cor-
rect plain-text match-key for each encoded match-key, Hsx;,
from its corresponding matrix C;. In this section, since we are
analysing a single encoded match-key at a time, we exclude j
from all notations to improve readability. Therefore, it is im-
portant to note that the following process is applied for each
encoded match-key H+; separately.

For a given filtered matrix C, we first calculate an overall
correlation, a, of each plain-text match-key mk, by averaging
the correlation value vector of that match-key. As we discussed
above, this vector consists of the normalised correlation values
for the ten different statistical tests. Given that a plain-text
match-key mk, € C has a correlation vector c,, the overall
correlation a. can be calculated as:
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Table 2: An example correlation matrix C for the encoded match-key (LastName+Gender+BirthYear) after the filtering process
discussed in the third step of the attack. Crossed-out values represent the plain-text match-keys that are not selected for the

corresponding metric due to their low correlation.

Plain-text match-key Mean Skewness ... EMD Entropy KS-test
(FirstName+LastName+Gender) 0.985 6541 ... 0.967 0.901 0389
(FirstName+LastName+BirthYear) 0-662 0.877 ... 0989 @578 0.998
(LastName+ Gender+BirthYear) 0.988 0.921 ... 0969 0.974 0.986

o 231'021) Ci €Cp
N 10

Next we look at the number of unique match-key values the
plain-text match-key (number of unique concatenated plain-
text values) and the encoded match-key (number of unique
hash-codes) have. Note that even if the distributions of an
encoded match-key and a plain-text match-key is similar these
two match-keys might have different numbers of unique values.
Therefore, apart from correlation measurements, the number
of unique values can also be used to compare the two match-
keys. If the encoded match-key has g unique values and a
plain-text match-key mk, € C has g, unique values, we cal-
culate the difference ratio d. of those values as:

d. - 2abs(qp - qe)
Qp + Qe

where abs() calculates the absolute value. We next calculate
the average of the two values, a. and d.. This can be calcu-
lated as a weighted average, where we assign certain weights
to each value. Assuming the weight values for a. and d. are
w and 1 - o respectively (with 0 < w < 1), the average value
sc is calculated as:

Se = wae + (1 — w)d,.

For each encoded match-key we obtain |C| of these aver-
age values where |C| is the number of plain-text match-keys
assigned to that encoded match-key. We then sort the plain-
text match-keys according to these s. values and assign the
plain-text match-key with the highest s. value to that encoded
match-key. We repeat this step for all the encoded match-keys
Hx. At the end of this step we get a ranked list of plain-text
match-keys that are likely to be more similar to each of the
encoded match-keys.

Based on the superset pruning method suggested by the
authors of the multiple dynamic match-key approach [5], we
can also check for super- or subsets in the identified plain-
text match-keys for each encoded match-key H«;. If any of
the encoded match-keys, Hx;, has already been assigned to a
plain-text match-key mk,*, then any of the super- or subsets
of the mk,* cannot be assigned to another encoded match-
key, under the assumption that the first assignment of mk,* is
correct. An example is discussed in the Introduction section.

Step 5: Re-identification of plain-text values

Once the plain-text match-keys for each encoded match-key
Hx are identified, the final step of the attack is to perform

plain-text value re-identification by applying a frequency align-
ment method [2]. For each encoded match-key, Hx;, we obtain
the frequency distribution of match-key values, and for the
identified plain-text match-key, mk,/, of Hx;, we obtain the
frequency distribution of the corresponding plain-text values.
Both these frequency distributions are then sorted in descend-
ing order as shown in Table 3. First, we adjust these frequency
values according to the sizes of the databases D and V. We
can adjust either the frequency values of match-keys by mul-
tiplying each value by |V| / |D|, or alternatively we can adjust
the frequency values of plain-text values by multiplying each
value by |D| / |V|. Then we loop over each pair of frequency
aligned match-key value and plain-text value and assign the
ith plain-text value to the corresponding it match-key value.
We continue this process until the differences of their frequen-
cies is greater than A, a user defined threshold. Given the
frequencies of the /" match-key value and plain-text values
are fi and f.' we calculate the frequency difference A; as:

NP Rl 1)
l fi+fe

where abs() returns the absolute value. If A; > A, then we
stop the alignment of plain-text values to encoded match-key
values (hash-codes).

Furthermore, if several adjacent frequencies of match-key
values and plain-text values in the sorted lists are the same
then it will be difficult to determine which plain-text value
corresponds to which match-key value. For instance if fi =
fi+1 = £/ = f/+1, we cannot be certain that the i*" match-
key value refers to ith plain-text or (i+1)" plain-text value.
In such scenarios we assign both the it and (i+1)t" plain-text
values to both the ith and (i+1)th match-key values, respec-
tively. An example of this plain-text alignment process is illus-
trated in Table 3. As shown, records with the same frequency
values are aligned together in order to improve the accuracy of
the alignment. It is also important to note that this alignment
works when the underlying attribute value distributions are
similar in both V and D. In cases where attribute value distri-
butions are dissimilar this frequency alignment can potentially
lead to incorrect assignments.

Using the above discussed process we can now identify
the combined plain-text values from V for the most frequent
match-key values in each encoded match-key Hx;. In the fol-
lowing section we describe experiments conducted using our
proposed attack method and discuss the results we obtained.
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Table 3: An example of plain-text alignment for match-key FirstName+LastName+BirthYear (F4+L+B) using frequency values
of match-key values and plain-texts values. As discussed in step 5 of the attack, record d1 from the encoded database D will be
aligned with record v1 from the plain-text database V. Since all three records d2, d3, and d4 have a frequency of 7 and the three
records v2, v3, and v4 in the plain-text database also have the same frequency, we assign each of d2, d3, and d4 to all three values
of v2, v3, and v4. Similarly, we assign each of d5 and d6 to both values of v5 and v6 since they all have a frequency of 4.

Encoded database D

Plain-text database V

Record ID Match-key value Frequency Record ID (F+L+B) Frequency
d1 heYcgrjawf3AVtt 10 vl brittany+nicole+1987 10
d2 JbsJvZQ7lucFDcE 7 v2 brian+johnson+1968 7
d3 NDZ5v3pzT7tvlko 7 v3 james+smith+1991 7
d4 1XW13iYzExn4KGZ 7 v4 ronald+young+1982 7
d5 5qliMWET4suKARu 4 v5 ashley+johnson+1975 4
dé b97VABaDFZSg90OM 4 v6 johnny+motley+1989 4

Results

We evaluated our proposed attack method on the multiple
dynamic match-key approach [5] using two large real-world
databases. We investigated different parameter settings un-
der different attack scenarios to measure the feasibility of our
attack in real linkage situations.

Databases

We first used a North Carolina Voter Registration (NCVR)
database?, where we used six snapshots collected in October,
August, and February 2019, October 2018 and 2017, and Oc-
tober 2011. We used the snapshot from October 2019 as the
sensitive encoded database, D, and the other snapshots as the
plain-text databases, V, to represent several time intervals (2
months, 8 months, 1 year, 2 years, and 8 years, respectively)
between the encoded and the plain-text databases. Our aim
is to evaluate how the temporal differences in records, such
as attribute changes, between databases affects the accuracy
and scalability of the attack. Our hypothesis is that the larger
the time difference the larger the differences in attribute value
distributions between D and V, as more voters change their
names and/or addresses.

The second database was the Michigan voter registration
(MVR) database®, where we used four snapshots collected
in September and January 2016, September 2014, and June
2013. We used the snapshot from September 2016 as the sen-
sitive encoded database, D, and the other snapshots as the
plain-text databases, V. As with the NCVR databases, our
aim is to evaluate how the time difference between databases
affects the attack.

The selected databases contained between 6,233,661 and
8,114,702 records. The number of changes in attribute
values monotonically increase as the time differences be-
tween database pairs increases for both the NCVR and MVR
databases. For example, between the October 2019 and Oc-
tober 2011 snapshots of NCVR, the attributes StreetAddress
and MiddleName had 47.7% and 8.1% changes in their val-
ues, respectively, while between the September 2016 and June

1Available at: http://dl.ncsbe.gov/?prefix=data
2Available at: http://michiganvoters.info

2013 snapshots of MVR, the attributes StreetNumber and
LastName had only 2% and 1% changes in their values, re-
spectively.

Evaluation criteria

To evaluate the quality of the identification of plain-text
match-keys for each encoded match-key H+;, we analysed the
top three to five plain-text match-keys assigned for each en-
coded match-key and see whether the attack was able to iden-
tify the correct match-key with a high correlation. We then
evaluated the accuracy of the re-identified plain-text values
for match-key values using precision and recall [13,14] of how
many plain-text values identified are correct and how many
correct values are in the identified set of plain-text values.

We also define three different attack scenarios based on
the assumed knowledge an adversary has about the match-
key encoding settings. The scenarios we considered are as
follows;

¢ Knowledge on attribute combinations (Comb): In
this scenario we assume that the adversary has knowl-
edge about the actual attribute combinations (match-
keys) used in the match-key generation process, but does
not know which encoded match-key H+x; corresponds to
which plain-text match-key M«. In this situation the
adversary would not have to consider all possible plain-
text match-keys. Only the known combinations need to
be evaluated to measure the correlation of frequency dis-
tributions. This scenario can be considered as the best
possible attack scenario on an encoded database from
an adversary’s point of view.

e Knowledge on used attributes (Attr): In this sce-
nario we assumed that the adversary has knowledge only
about the set of attributes used for the match-key gen-
eration, but does not know which combinations of at-
tributes are used. Unlike the previous scenario, in this
situation the adversary would have to conduct the first
step of the attack (as discussed in the Methods section)
using all possible plain-text match-keys to identify the
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best matching plain-text match-keys for each encoded
match-key, and then perform the second step of the at-
tack.

e Domain knowledge (Dom): In this final scenario we
assumed that the adversary does not have any specific
knowledge about the attributes, nor the match-keys,
used in the match-key generation process. The adver-
sary only knows what kind of entities are encoded in H
(such people with their names, addresses, and so on)
and therefore can partially assume what kind of quasi-
identifiers are being used for the encoding. Hence, the
adversary needs to run the attack on all possible match-
keys using all attributes available in V that potentially
were encoded into match-keys. This scenario can be
considered as the worst case scenario on an encoded
database for an adversary.

We implemented all attack methods using Python 2.7 and
the experiments were run on a server with 64-bit Xeon 2.1 GHz
16-Core CPU, 512 GBytes of memory and running Ubuntu
18.04. To facilitate reproducibility the prototype programs are
available from: https://dmm.anu.edu.au/pprlattack/.

For attack parameter settings, we set oo = 0.05, w = 0.7,
A; = 0.2. An adaptive value is selected for the parameter
¢ based on the maximum frequency value of the considered
encoded match-key. A ratio from 0.1 to 0.9 was first selected
and then the selected ratio is multiplied by the maximum fre-
quency value of the encoded match-key to calculate €. These
settings provided good results in a series of set-up experiments.

The parameter oo can be set to an appropriate value by
analysing the correlation values obtained for each correlation
metric. If the frequency distributions of the encoded and plain-
text match-keys are similar then o can be set to a low value
such as a < 0.1. Inversely, with contrasting frequency distribu-
tions, o can be set to a higher value such as o« = 0.3 to select a
wide range of candidate plain-text match-keys. However, set-
ting o to even a higher value such as a > 0.4 will potentially
result in a large selection of candidate plain-text match keys.
We set the weight w of to a higher value than 0.5 because the
average correlation value a. was consistently more accurate in
correctly identifying encoded match-keys than the difference
ratio d. in our experiments. The value for A; should be set to
a low value such as A; < 0.3 to get accurate re-identifications.
If the frequency distributions of the two databases are known
to have differences, a higher value such as A; = 0.4 can be
set. This should however be done carefully because this could
lead to inaccurate plain-text re-identifications, because allow-
ing substantial differences in value distributions to be mapped
can be wrongly used by the attack to map dissimilar plain-
texts with each other. It is also worth noting that the optimal
values for these parameters are data dependent and therefore
should be set over several iterations of experiments.

Match-key generation

Following the originally proposed dynamic match-key encoding
[5], we used the following sets of attributes for the experiments
for the two databases NVCR and MVR.

e NCVR: FirstName, MiddleName, LastName, BirthYear,
StreetAddress, and ZipCode

o MVR: FirstName, MiddleName, LastName, BirthYear,
StreetNumber, StreetName, and ZipCode

These attributes are commonly used in linking records
across different databases [1]. Following Randall et al. [5],
we selected a list of match-keys that provided the highest
linkage quality (according to the F-measure) using the above
attributes to encode the sensitive databases.

Discussion

In Tables 4 and 5 we show the re-identification results for
each encoded match-key used in different databases from dif-
ferent time intervals using the NCVR and MVR databases. As
can be seen, with NCVR we are able to identify the attribute
combinations used for each encoded match-key with high ac-
curacy despite the time difference and corresponding percent-
ages of attribute changes between these databases. The cor-
rect match-key was always amongst the top three identified
plain-text match-keys. Furthermore, the attack was able to
identify the correct combination as the first (the match-key
with highest correlation) 20 out of 24 times.

With the MVR databases the re-identification accuracy of
the match-keys are lower compared to the NCVR databases.
However, as can be seen in Table 5, the identified match-keys
are always a superset or a subset of the correct match-key.
The correct match-key was amongst the top five identified
match-keys 17 out of 21 re-identifications. The lower accu-
racy results are caused by having low and similar values in
the frequency distributions f;¢ of match-keys. As shown in
Table 5, the highest frequency values of encoded match-keys
in MVR are only 3 and 2 compared to the NCVR databases
where they are ranging from 4 to 26. Therefore, the correlation
values measured using different plain-text match-keys (espe-
cially the supersets and subsets of the correct match-key) are
all highly similar and it is difficult to distinguish the correct
match-key from other possible candidates. While the results
on the NCVR databases illustrate the robustness of the attack
in re-identifying encoded match-keys when there is enough
frequency information in match-keys, at the same time the
results on the MVR databases highlight the need of enough
frequency information and distinct frequency distributions for
the attack to be highly successful.

Table 6 shows the precision, recall, and the number of re-
identifications of plain-text values for the NCVR and MVR
databases. These are the results obtained in the final step
of the attack as discussed in the Methods section. As can
be seen, with the NCVR databases, the attack was able to
re-identify plain-text values encoded in match-key values with
high accuracy when the time difference between databases was
small. However, both precision and recall drop when the time
difference between databases is increasing. This is because,
even if the attack was able to identify the correct attribute
combinations used for encoded match-keys by analysing the
frequency distributions, exact re-identifications of plain-text
values as described in the fifth step of the attack are diffi-
cult due to having changes in actual attribute values. With
different scenarios the attack maintains fairly consistent re-
sults. As expected with the Dom scenario the numbers of
re-identifications are slightly lower than the other scenarios
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Table 4: Re-identification results of encoded match-keys for the NCVR databases with different time intervals. The attributes used
are FirstName (F), MiddleName (M), LastName (L), BirthYear (B), StreetAddress (S), and ZipCode (Z). We show the top three
plain-text match-keys identified for each encoded match-key and the s. value of each plain-text match-key when compared with a
corresponding encoded match-key. In the left-most column we also show the maximum frequency value of the frequency distribu-
tion of that match-key. The value None shows where the particular match-key is not used for the encoding of the corresponding
database due to not having an overall score above w;, as described in the Introduction section.

Encoded Identified plain-text match-keys with different time intervals D to V
match-key with
its top frequency 2 months 8 months 2 years 8 years
F+M+L+B+S / 0.996
FAM+L+B+S M+L+B+S+Z / 0.895 None None None
A F+M+B+S+Z / 0.893
F+L+B+S+Z / 0.983 F+L+B+S+Z / 0.964
F+L+B+S+Z  F4HM+L+B+Z /0917  F+M+L+B+Z /0.909 None None
4 F+M-+L+B+S / 0.908 F+M-+L+B+S / 0.906
F+M+L+B+Z / 0.981
F+M+L+B+Z F+L+B+S+Z / 0.948 None None None
4 M+L+B+Z / 0.922
F+M+L+S+Z / 0.990 F+M+L+S+Z / 0.989
F+M+L+5+7 F+L+S+Z / 0.912 F+L+S+Z / 0.905 None None
4 F+M+S+Z / 0.776 F+M+S+Z / 0.763
M+L+B+S+Z / 0.982 M+L+B+S+Z /0.975 M+L+B+S+Z / 0.967
M+L+B+S+Z  F4M+B+S+Z /0950  F+M+B+S+Z /0963  F+L+B+S+Z /0.915 None
4 F4+M+L+B+S / 0.893 F4+M+L+B+S / 0.867 F+M+L+B+S / 0.912
F+M+B+S+Z / 0.997 F+M+B+S+Z /0.973  M+L+B+S+Z / 0.966
F+M+B+5+Z  M4L+B+S+Z /0964  M+L+B+S+Z /0971 F+M+B+S+Z / 0.962 None
5 F-+M+L+B+S / 0.915 F-+M+L+B+S / 0.922 F+M+L+B+S / 0.936
F+M+L+B / 0.991 F+M+L+B /0981  F+M+L+B / 0.925
F+M+L+B None F-+M+L+S / 0.780 M+L+S+Z / 0.781 F+M+L+Z / 0.731
8 M+L+S+Z / 0.774 F+M+L+Z / 0.776 M+L+B+Z / 0.710
F+M+L+Z /0986  F+M+L+Z / 0.955
F+M+L+2Z None None M+L+B+Z / 0.973 M+L+B+Z / 0.936
6 F+L+B+Z / 0.916 F+L+B+Z / 0.843
F+L+B+Z / 0.984 M+L+B+Z / 0.943
F+L+B+Z None None F+L+B+S+Z / 0.957 F+M+L+Z / 0.874
4 M+L+B+Z / 0.955 F+L+B+Z / 0.868
F+M+L+S / 0.982
F+M+L+5 None None F+B+S+Z / 0.721 None
20 M+B+S+Z / 0.639
F+L+S+Z / 0.987
F+L+5+7 None None F+M+L+S+Z / 0.940 None
4 F+M+S+Z / 0.811
L+B+S / 0.938
L+B+5+Z None None None L+B+S+Z / 0.928
14 F+M+S+Z / 0.920
M+B+S+Z / 0.965
M+B+5+Z None None None M+B+S / 0.960
26 F+B+S+Z / 0.874
F+B+S / 0.916
F+B+S+Z None None None F+B+S+Z / 0.915
11 F+M+B+Z / 0.795




Vidanage, A et al. / International Journal of Population Data Science (2020) 5:1:26

Table 5: Re-identification results of encoded match-keys for the MVR databases with different time intervals. The attributes used
are FirstName (F), MiddleName (M), LastName (L), BirthYear (B), StreetNumber (Sq), StreetName (S,), and ZipCode (Z). We
show the top five plain-text match-keys identified for each encoded match-key and the s value of each plain-text match-key.

Encoded match-key

2 years

Identified plain-text match-keys with different time intervals D to V

3 years

with its top
frequency 8 months
L+F+M+B+S4+S, / 0.830
L-+F+M+B+S4+Z / 0.827
L+F+M+B+S5.4+Z  L4+F4+M+B+S,+Z / 0.827

2 L+F+M+B+S4 / 0.825
L+F+M+B+S, / 0.825

L+F+M+B+S4+S, / 0.830
L+F+M+B+S4+Z / 0.827
L+F+M+B+S4+S, L+F+M+B+S,+7Z / 0.827
9 L+F+M+B+Sy / 0.825
L+F+M+B+S, / 0.825

L+M+B+S,+Z / 0.974
L+F+M+B+S¢+Z / 0.960
3 L+F+M+B+S, / 0.953
L+M+B+Sq / 0.946

L+M+B+S, / 0.970
F+M+B+Sq+Z / 0.947
F+M+B4+Sy+S,4+2Z L+F+M+S4+S, / 0.929
3 F+M+B+S4+S, / 0.928
L+F+M+S4+Z / 0.918

L+F+B+Sq+Z / 0.957

L+F+B+S4+S, / 0.955

L+F+B+Sy4+Sa+Z L+F+M+B+S,, / 0.933

3 L+F+M+B+S4 / 0.933
L+F+M+B+S¢+S, / 0.922

L+F+M+Sq / 0.978
L+M+B+S, / 0.976
L+F+M+S4+Sn+Z L+F+M+Sq+Z / 0.974
3 L+F+M+S4+S,+Z / 0.965
L+F+M+S4+S,, / 0.962

L+F+M+B+S4+S, / 0.830

L+F+M+B+Sq+2Z / 0.827

L+F+M+B+Sq+7Z L+F+M+B+S,+Z / 0.827
3 L+F+M+B+S4 / 0.825
L+F+M+B+S, / 0.825

L+F+M+B+S4+S, / 0.844
L+F+M+B+Sq+7Z / 0.839
L+F+M+B+S,+Z / 0.838
L+F+M+B+Sy / 0.835
L+F+M+B+S, / 0.834

L+F+M+B+Sy+S, / 0.844
L+F+M+B+S4+Z / 0.839
L+F+M+B+S,+Z / 0.838

L+F+M+B+Sy / 0.835
L+F+M+B+S, / 0.834

L+M+B+S4+S.+2Z / 0.979
L+M+B+S4+Z / 0.952
L+M+B+S4 / 0.938
L+M+B+S44S, / 0.911
L-+F+B+S,+Z / 0.894

L+M+B+S, / 0.967
F+M+B+S4+S, / 0.965
F-+M+B+S4+Sa+Z / 0.953
F+M+B+Sq+Z / 0.949
L+M+B+S,+Z / 0.947

L+F+M+B+Z / 0.953
L+F+B+Sq+Z / 0.947
L+F+B+S4+S,+Z / 0.945
L+F+B+S4+Sn / 0.900
L+M+B+S4+Z / 0.894

L+F+M+Sy / 0.987
L+F+M+S4+S,+Z / 0.987
L+F+M+Sy+Z / 0.985
L+F+M+S4+S, / 0.984
F+M+B+S4q+Sn+Z / 0.975

L+F+M+B+S4+S,, / 0.844
L+F+M+B+S4+Z / 0.839
L+F+M+B+S,+Z / 0.838
L+F+M+B+S4 / 0.835
L+F+M+B+S, / 0.834

L+F-+M+B+S4+S, / 0.844
L+F+M+B+S4+Z / 0.840
L+F+M+B+S,+Z / 0.837
L+F+M+B+S4 / 0.835
L+F+M+B+S, / 0.833

L+F+M+B+S4+S, / 0.844
L+F+M+B+Sq+Z / 0.840
L+F+M+B+S,+Z / 0.837

L+F+M+B+Sq4 / 0.835
L+F+M+B+S, / 0.833

L+M+B+S4+Z / 0.920
L+F+B+S,+Z / 0.910
L+M-+B+S,+Z / 0.890
L+F+B+S, / 0.889
L+M+B+S4+S, / 0.884

F+M+B+S4+S,42Z / 0.957
F+M+B+S4+S, / 0.936
L-+F+M+S4+S, / 0.934

L+F4+M+Sy+S,+Z / 0.927
F+M+B+S4+Z / 0.926

L+F+B+Sq / 0.953
L+F+B+Sq+Z / 0.950
L+F+B+S,+Z / 0.908

L+F+B+S4+Sn+Z / 0.903
L+F+B+S4+S, / 0.883

L+F+M+S4+S, / 0.985
L+F+M+S4+S,+Z / 0.977
F+M+B+S4+S, / 0.974
L+F+M+S4+Z / 0.973
L+F+M+Sq / 0.972

L+F+M+B+S4+S, / 0.844
L+F+M+B+S4+Z / 0.840
L+F+M+B+S,+Z / 0.837
L+F+M+B+S4 / 0.835
L-+F+M+B+S, / 0.833
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Table 6: Precision (Prec) and recall (Reca) results for plain-text re-identifications for most frequent match-key values. The total
number of re-identifications (Total re-ident.) identified by each experiment is also presented. Results are shown for both the NCVR
and MVR databases and for different time durations in D and V. Results are further categorised into attack scenarios Comb, Attr,

and Dom.
Time interval Comb Attr Dom
DtoV Prec / Reca Total Prec / Reca Total Prec / Reca Total
(%) re-ident. (%) re-ident. (%) re-ident.

2 months 98.6 / 98.4 1137 98.6 / 98.4 1137 91.8 /911 951

8 months 81.7 /814 14415 81.7 /814 14415 77.0 / 80.9 736

NCVR 1 year 69.7 / 69.3 705 58.0 / 59.9 705 70.4 / 70.1 887
2 years 477 / 414 451 58.3 / 54.0 1481 61.4 / 62.1 1480

8 years 30.0 / 30.4 1196 31.7 / 29.4 1186 16.3 / 15.3 1798

8 months 48.6 / 48.5 4972 46.6 / 35.6 45 142 /113 30

MVR 2 years 321 /332 1675 372 /377 1657 424 / 456 1657
3 years 26.6 / 27.6 1671 32.3 /323 1727 28.7 / 32.0 1735

because the accuracy of the re-identification of match-keys is
lower.

With the MVR databases, the plain-text alignment accu-
racy is relatively low compared to the NCVR database ex-
periments. This is because plain-text alignment is done only
using the top most selected plain-text match-key as discussed
in the Methods section. According to Table 5, the attack was
not able to identify the correct encoded match-key as the top
selected plain-text match-key most of the times. Therefore,
the plain-text alignment did not perform as accurately as with
NCVR databases. However, we are still able to identify some
of the attribute values correctly because all identified plain-
text match-keys for the MVR are either a superset or a subset
of the correct encoded match-keys.

With regard to the time efficiency, the first and the second
steps are the most time consuming steps of the attack requir-
ing a maximum of 3,840 and 7,352 seconds respectively. The
third and fourth steps took less than one second for all exper-
iments, and the fifth step took a maximum of 307 seconds.
Overall the attack took less than 3.5 hours to complete for all
databases and attack scenarios®.

Out of all the tests we utilised to compare frequency dis-
tributions, the correlation metrics Earth mover’s distance, KS
test, Pearson’s correlation, Spearman'’s rank correlation, Rela-
tive entropy, and Histogram intersection provided consistently
good results with different attack scenarios and databases with
different time intervals compared to the four basic statistical
measures used. This is due to the ability of correlation metrics
to identify common characteristics of distributions even with
differences in actual frequency values.

Privacy improvements and recommendations

Considering the identified privacy vulnerabilities in the match-
key generation process, we now propose two recommendations
to strengthen the privacy guarantees of the multiple dynamic
match-key encoding approach. We further show empirical ev-

idence to support our claim of using these recommendations
to make the match-key encoding resilient to frequency-based
privacy attacks.

Recommendation 1: As we discussed in the Introduction sec-
tion, match-keys are encoded and stored as lists so that only
corresponding match-key values are compared when matching
two records. For instance, if records are encoded using four
match-key values, [mke!, mke?, mk.3, mke?], when a record
pair rl and r2 is compared, r1[mke!] is only compared with
r2[mke!] and r1[mke?] is only compared with r2[mk.?], and so
on. This is because the match-key values are stored in the
same order for all records.

This ordering of match-key values allows the calculation
of frequency distributions of each match-key in the attack.
An adversary can safely assume that a single column in the
encoded database D (a column Hx € H) corresponds to a
single encoded match-key. To prevent such assumptions by
the adversary we propose to store match-key values in sets as
opposed to lists. Each row H;x € H in the encoded database
should be a set of match-key values where there is no order.
Now the adversary cannot assume a single column represents
a certain encoded match-key.

As opposed to improved privacy, there is a trade-off with
this technique. A single match-key value from a record now
needs to be compared with every match-key value from an-
other record which will lead to increased time consumption.
Furthermore, the possibility of obtaining false positives will
also increase. For instance if two record rl and r2 have the
following attribute values: rl: {FirstName = "Paul’, Last-
Name = "Thomas", BirthYear = "1992"} and r2: {FirstName
= "Thomas", LastName = “Paul’, BirthYear = 1992}, then
match-key (F+B) of rl and match-key (L+B) of r2 will have
the same value and the record pair (r1, r2) will be classified
as a match. Increasing false positives will reduce the overall
quality of the linkage. However, this can be solved by prefix-
ing an attribute specific value (such as an attribute qualifier
or an attribute index) to the plain-text value before hashing.

3Additional evaluation results of the proposed attack such as time complexity and database analysis (excluded from the paper due to space constraints)

are available at: https://dmm.anu.edu.au/pprlattack/

11


https://dmm.anu.edu.au/pprlattack/

Vidanage, A et al. / International Journal of Population Data Science (2020) 5:1:26

For example if we use 'F’ for first name and ‘L’ for last name,
we obtain match-key values such as “F-Thomas1992" and “L-
Thomas1992”. This approach is different from record specific
salting values as used in the context of Bloom filter encoding
to avoid frequency attacks. Therefore, adding an attribute
specific string however may not affect the frequency distri-
bution, rather it is recommended to avoid the false positive
rate.

Recommendation 2: As discussed in the Methods section,
our proposed attack compares the correlations between the
frequency distributions of encoded match-keys with plain-text
match-keys. In order for this to be successful, the encoded
match-keys need to have distinct frequencies for different
match-key values. If the frequency distributions are close to
uniform, an adversary will not be able to compare those dis-
tributions with plain-text frequency distributions.

As our second recommendation, we propose making the
frequency distributions of encoded match-keys close or equal
to uniform. In the encoded database H, we set the match-
key values that have frequency larger than x, where x > 1, as
missing. This will ensure that all the remaining match-key val-
ues (hash-codes) for each encoded match-key are unique and
the frequencies of all those match-key values will be between
1 and x making the distribution close to uniform. Hence, the
adversary can no longer conduct any correlation analysis on
these distributions since they are uniform and cannot be dis-
tinguished from each other. As with our first recommendation,
this method also has a trade-off for improved privacy at the
cost of reduced linkage quality. Setting match-key values as
missing will lower the overall recall of the linkage since po-
tential matches could be missed. At the same time, overall
precision of the linkage will be improved since potential false
positives could be removed when using this technique.

We conducted multiple experiments with x = {50, 20, 10,
5, 2, 1} where we set the match-key values with frequency
> x as missing. As expected, the precision of the linkage
has increased with a minimum and a maximum increase of
+0.69% and +10.4%, respectively. The recall has dropped
due to the true matches being missed because their match-key
values are removed. The overall recall had a minimum and a
maximum decrease of -0.04% and -1.29% respectively. The
small changes in both precision and recall is because the num-
ber of records with match-key value frequencies > 1 is small
compared to the 7 million records in the databases. How-
ever, if the databases have more errors or missing values in
attributes this will potentially lead to a selection of encoded
match-keys, Hx;, with a small number of attributes which will
improve the recall of the linkage. As we further discuss be-
low, selecting encoded match-keys with a smaller number of
attribute values (such as only 2 or 3 attributes in a Hx) will
increase the frequencies of those encoded match-keys. In such
a case using this recommendation to improve privacy will also
lead to a potentially substantial reduction of recall.

It is possible to apply one or both of the above two rec-
ommendations to increase the privacy of the sensitive values
in the encoded database. However, we recommend to initially
apply the first recommendation and then check if any distinct
frequency distributions can still be obtained and aligned be-
tween the plain-text and encoded databases. Depending on
the results of the first modification we can then apply the
second recommendation if further improvement of privacy is
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required. Furthermore, it is also worth noting that if the sec-
ond recommendation is applied first, then there is no practical
advantage of applying the first recommendation next because
the attack will not be possible after the application of the
second recommendation.

Practical considerations of the multiple

match-key encoding

While the original multiple dynamic match-key encoding pro-
posed by Randall et al. [5] provides high linkage quality with
acceptable privacy, there are few practical aspects that need
to be taken into consideration when using this encoding for
PPRL in real-world applications.

1. The selection of match-keys depends on the Fellegi and
Sunter agreement and disagreement weights of individ-
ual attributes. In [5] the authors have conducted their
experiments on selected match-key that provided the
highest F-measure values for a given database. However,
in practice these agreement and disagreement weights
need to be estimated based on partially available ground
truth or domain knowledge. Hence, with estimated val-
ues, there is no guarantee that the F-measure and thus
linkage quality of the final record linkage will be optimal.

2. The multiple match-key encoding approach depends on
exact matching of hash-codes. As also discussed by the
authors in [5] this could be a disadvantage if the match-
ing databases contain errors or variations in attribute
values. Even a small typographical error or a character
change (Christine vs. Christina) in an attribute value will
lead to a completely different hash-code, whereas with
approximate matching techniques such as Bloom filter
encoding [15] this might not lead to false negatives. Fur-
thermore, in our experiments, we observed that selected
match-keys always contain a name attribute (FirstName,
MiddleName, or LastName), as can be seen in Tables 4
and 5. This is because name attributes generally have
more discriminatory power compared to other attributes
used. Therefore, if the name attributes in the databases
to be linked contain more errors or changes in their val-
ues, then this could lead to lower linkage quality despite
low amounts of errors in other used attributes.

3. When the sizes of the databases get bigger, it is more
likely for them to have a distinct frequency distribu-
tion for each match-key (attribute combination). Even
if the authors of the multiple match-key encoding [5]
suggested to have two or more attribute values in a
match-key, our experiments showed that having even
three attribute values in a match-key will still lead to a
discrete frequency distribution for that particular match-
key which can lead to re-identifications. In our experi-
ments on databases with seven million records, the fre-
quencies start to get close to uniform with match-keys
with four or more attributes. But then again, if we are
using five or more attributes for a match-key we need to
make sure the attributes do not contain a large number
of errors or missing values because that will lead to lower
linkage quality.



Vidanage, A et al. / International Journal of Population Data Science (2020) 5:1:26

Conclusion

We have presented a privacy attack on the recently proposed
multiple dynamic match-key encoding method for PPRL [5].
The proposed attack employs correlation calculations on fre-
quency distributions to identify attribute combinations used
to generate match-key values. Based on the identified match-
keys, the attack then re-identifies attribute values that cor-
responds to individual match-key values (hash-codes). The
experimental results showed that multiple dynamic match-
key encoding is susceptible to frequency attacks under certain
parameter settings. As countermeasures, we have proposed
two recommendations to improve the privacy of the multiple
match-key encoding approach and have discussed the trade-
offs between linkage quality and improved privacy when using
these methods. These recommendations show that with a
small number of errors and missing values in databases, pri-
vacy can be strengthened while keeping high linkage quality.

As future work, we plan to investigate methods of im-
proving the performance and the accuracy of the attack by
analysing potential filtering techniques for match-keys. One
such technique could be to analyse if multiple match-keys are
the same for a given record pair. Such patterns of same match-
keys in record pairs can potentially lead to the identification
of attribute values used in encoded match-keys and thereby
the re-identification of encoded plain-text values.
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