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Abstract: Achieving cancer prognosis and molecular typing is critical for cancer treatment. Previous
studies have identified some gene signatures for the prognosis and typing of cancer based on
gene expression data. Some studies have shown that DNA methylation is associated with cancer
development, progression, and metastasis. In addition, DNA methylation data are more stable than
gene expression data in cancer prognosis. Therefore, in this work, we focused on DNA methylation
data. Some prior researches have shown that gene modules are more reliable in cancer prognosis than
are gene signatures and that gene modules are not isolated. However, few studies have considered
cross-talk among the gene modules, which may allow some important gene modules for cancer
to be overlooked. Therefore, we constructed a gene co-methylation network based on the DNA
methylation data of cancer patients, and detected the gene modules in the co-methylation network.
Then, by permutation testing, cross-talk between every two modules was identified; thus, the module
network was generated. Next, the core gene modules in the module network of cancer were identified
using the K-shell method, and these core gene modules were used as features to study the prognosis
and molecular typing of cancer. Our method was applied in three types of cancer (breast invasive
carcinoma, skin cutaneous melanoma, and uterine corpus endometrial carcinoma). Based on the core
gene modules identified by the constructed DNA methylation module networks, we can distinguish
not only the prognosis of cancer patients but also use them for molecular typing of cancer. These
results indicated that our method has important application value for the diagnosis of cancer and
may reveal potential carcinogenic mechanisms.
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1. Introduction

The most important concern for cancer patients is to understand the likely course and chances
of recovery, which is the prognosis of cancer. Many factors affect the prognosis of cancer [1].
The classification of cancer is one of the most prominent of these factors. As a complex polygenic disease,
the same cancer performs differently in different individuals, and the same clinical manifestations
may require different treatment options. The heterogeneity of cancer makes it impossible to assess
tumors by relying on limited clinical indicators, which reflects the need to study cancer at the molecular
level [2].

In recent years, the rapid development of high-throughput sequencing technology and microarray
technology has enabled researchers to systematically study cancer at the molecular level. For example,
molecular biomarkers that predict the prognosis of cancer patients are found based on gene expression
data [3,4]. However, these prognostic genes often have poor generalization ability [5], and most
of these genes are not oncogenes but noise signals [6]. In addition, with advances in epigenetics
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research, the importance of DNA methylation abnormalities in cancer has gradually emerged [7,8].
DNA methylation is an important epigenetic modification that does not alter the DNA sequence,
which is essential for the development, progression, and metastasis of cancer [9,10]. Some DNA
methylation biomarkers have been used to guide clinical practice [11]. The genomic coverage of the
DNA methylation microarray platform is increased, and the cost is reduced, which has prompted us to
study the pathogenesis of cancer at the methylation level.

Cellular function is performed by a module composed of a variety of interacting molecules [12].
In particular, cancer is a system of multigene expression patterns and functional modules that are
constantly changing, and it seems that the gene modules outperform the gene signatures in prognosis
and molecular typing. Modules are not isolated, and there is also cross-talk among them [13]. However,
most studies have ignored the cross-talk [14,15], some important modules related to cancer might
be overlooked.

Based on the above theories, in our research, we collected DNA methylation data, gene expression
data, and corresponding clinical data (including survival time and survival status) of breast invasive
carcinoma (BRCA), skin cutaneous melanoma (SKCM) and uterine corpus endometrial carcinoma
(UCEC) with abundant samples in The Cancer Genome Atlas (TCGA). First, we evaluated the stability
in cancer prognosis of DNA methylation data and gene expression data for each of the three cancers
and proved that DNA methylation data are more suitable for cancer prognosis research. Then, DNA
methylation data were used to construct gene co-methylation networks for the three cancers using the
rank-based method and to identify gene modules in three co-methylation networks. Next, we used the
method of permutation testing to calculate the cross-talk between every two modules, thereby forming
a module network, and then we found the core gene modules in the module network by the K-shell
method. Finally, these core gene modules are used as features to study the prognosis and molecular
typing of cancer and are evaluated by survival analysis.

2. Materials and Methods

2.1. Data Collection and Preprocessing

The datasets of breast invasive carcinoma (BRCA), skin cutaneous melanoma (SKCM) and uterine
corpus endometrial carcinoma (UCEC) were downloaded from The Cancer Genome Atlas (TCGA,
https://tcga-data.ncbi.nih.gov/tcga/) [16]. In each dataset, it contained the DNA methylation data,
mRNA expression data and clinical data (time of death and death status). There were 780 samples in
BRCA, 468 samples in SKCM, and 428 samples in UCEC that matched DNA methylation data, mRNA
expression data and clinical data.

In this work, the mRNA expression data were measured by RNA-seq, and the probes of expression
data were mapped to Gene Symbol. The FPKM (fragments per kilobase of transcript per million
mapped reads) value for each gene was used to represent the expression level. For the DNA methylation
data that was measured by the Illumina HumanMethylation 450K Assay, the methylation level of the
gene was represented by the β value, and the following filtering criteria were applied: removal of
probes that the β values are NA in the samples, removal of probes targeting the X and Y chromosomes,
removal of all probes affected by SNPs [17], and filtering out of probes that have been shown to be
cross-reactive [17]. Finally, the probes that fell in the promoter region were selected and mapped to
Gene Symbol. The methylation levels of the probes for each gene were averaged, and after converting
the β value of each gene into the M value, the transformation relationship was determined to be as
follows [18]

M = log2
β

1− β
(1)

The detailed results of preprocessing are shown in Table S1.

https://tcga-data.ncbi.nih.gov/tcga/
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2.2. Comparison of the Stability of DNA Methylation Data and Gene Expression Data in Cancer Prognosis

In the prognosis of cancer, the largest problem is the stability of the prognostic genes that are
identified based on high-throughput data. We used a method to examine the stability of gene expression
data and DNA methylation data for three cancers in prognosis [19]. First, gene expression data (or DNA
methylation data) for each cancer were randomly divided into two groups of equal numbers. Then,
Cox regression was applied to select the genes of each group whose expression levels (or methylation
levels) were significantly associated with the prognosis of cancer patients (p-value < 0.05). After
that step, the hypergeometric distribution test was used to evaluate whether the overlap of the two
prognostic gene sets obtained from the two groups was significant. By repeating the above steps 100
times, we can obtain 100 p-values of the hypergeometric distribution test for each of the two data types.
We defined the negative logarithm of p-values as an indicator of the stability of the dataset. Finally,
the Mann–Whitney–Wilcoxon test was used to verify whether there is a significant difference in the
stabilities of the gene expression datasets and the DNA methylation datasets [19].

2.3. Construction of the Gene Co-Methylation Networks by Rank-Based Method

In general, participation in a common pathway or functional similarity leads to gene
coexpression [20,21]. This property can also be applied to co-methylation [22], and some studies have
adopted a few methods to construct the co-methylation network [19,22]. The common methods for
constructing gene coexpression networks can be divided into two categories: one is the value-based
method (utilize the similarity values) [23,24], and the other is the rank-based method (utilize the
rank-transformed similarities) [25,26]. The value-based method is significantly limited by the
homogeneous threshold for all genes in the network [27]. In fact, genes in different functional
pathways are regulated by different mechanisms, some genes in one pathway may be strongly mutually
coexpressed, while some genes in another pathway may be weakly coexpressed [27]. Therefore, it may
be more reasonable to construct the gene coexpression network based on the rank-based method.
According to the above theory, we applied the rank-based method to construct the co-methylation
network. First, we used the Pearson correlation coefficient to calculate the correlations of the
methylation levels between every two genes. Then, based on the Pearson correlation coefficient, for
each gene, we selected only the 4 most relevant sites as its neighbors [27]; thus, all selected pairs of
DNA methylation genes constituted a co-methylation network.

2.4. Gene Module Detection in Co-Methylation Networks

Cytoscape 3.6.1 was used to visualize the gene co-methylation networks of the three cancers [28].
In addition, the MCODE plug-in for Cytoscape was used to detect the gene dense clusters in the
network [29], and only the modules that contained no fewer than five genes were retained.

2.5. Construction of the Module Networks by Permutation Method

In the co-methylation network, if the number of edges between two modules is significantly higher
than random, there may be cross-talk between the two modules. The significance of the cross-talk
between every two modules was calculated by permutation test [19]. We proceeded as follows. First,
the number of edges across the two modules in the co-methylation network was calculated. Second,
we selected two random gene sets that contain the same number of genes as the two real modules in
the co-methylation network and calculated the number of edges across the random gene sets. Then,
step 2 was repeated 1000 times, the number of edges across the random gene sets was set as the null
hypothesis distribution, and the p-value of the cross-talk between the two modules was calculated
based on the null hypothesis distribution. According to the permutation test, all significant pairs
(p-value < 0.05) across modules could construct a gene module network.
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2.6. Identifying Core Gene Modules Based on the K-Shell Method

Based on the gene module network, we adopted the K-shell method to identify the core gene
modules. The advantage of the K-shell method is that it considers the relative location of the node in
the network [30]. Deciphering the network architecture by this method could help to discover novel
components in complex systems [31]. In this study, each node represents a gene module, and we
finally found the core gene modules in the gene module networks of the three cancers using the K-shell
method. Then, these core gene modules were used as features for subsequent analysis.

2.7. Survival Analysis Using Core Gene Modules

After obtaining the core gene modules, we applied a strategy similar to the GGI (gene expression
grade index) to calculate the prognostic risk of each patient [32]:

Prognosis Risk =
∑

xi −
∑

y j (2)

For every cancer, we randomly divided samples into equal numbers of training datasets and
test datasets. The prognostic risk for each patient in the test set was calculated by Formula 2. In this
equation, xi is the statistical value (the average value of all genes’ methylation levels in the module) of
the module with a positive Cox coefficient, and yi is the statistical value of the module with a negative
Cox coefficient [33]. Then, the samples in the dataset were divided into two groups with the same
number of samples based on their prognostic risks. In the end, we used the log rank test to test whether
there was a significant difference in the patients’ overall survival between the two groups.

2.8. Cancer Molecular Typing Based on Core Gene Modules by K-Means Algorithm

We used the K-means algorithm to perform molecular typing on cancer patients. Normalization of
data is required before the K-means, and we used the min-max standardization method. To determine
the size of cluster number k, we applied the silhouette coefficient to judge the clustering quality in
different k values (k ∈ [2,8]) [34]. The calculation method is as follows:

S(i) =
b(i) − a(i)

max
{
a(i), b(i)

} (3)

The K-means method divides the data into k clusters. For each point i in the cluster, a(i) represents
the average of the distance of the i vector to all other points in the cluster to which it belongs; b(i)
represents the minimum of the average distance of the i vector to all points of each cluster to which it
does not belong. Finally, the K-means clustering quality at this k value is the silhouette coefficients of
all points at average.

3. Results and Discussion

3.1. DNA Methylation Data are More Stable in Cancer Prognosis

We systematically evaluated the stability of gene expression data and DNA methylation data for
three cancers by the overlap of the prognostic genes selected from different samples. The detailed
definition of data stability is presented in Section 2.2, and the evaluation results are shown in
Figure 1. We can see that selected prognostic genes from DNA methylation data are more stable in
breast invasive carcinoma (BRCA) and uterine corpus endometrial carcinoma (UCEC). Furthermore,
the Mann–Whitney–Wilcoxon (MWW) test was applied to test the differences between the p-values in
gene expression data and DNA methylation data. The p-values of the MWW test are 4.28e-06 and
3.78e-04 in BRCA and UCEC, respectively. However, in skin cutaneous melanoma (SKCM), the stability
between gene expression data and DNA methylation data was not significantly difference (MWW
test p-value = 0.3). In conclusion, for the prognosis of cancer, DNA methylation data are more stable
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than gene expression data. Therefore, the DNA methylation data may be more suitable for a cancer
prognostic study.Genes 2019, 10, x FOR PEER REVIEW 5 of 21 
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Figure 1. Stability verification in prognosis of gene expression data and methylation data in three cancer
datasets. (a) Evaluation results in breast invasive carcinoma dataset; (b) Evaluation results in skin
cutaneous melanoma dataset; (c) Evaluation results in uterine corpus endometrial carcinoma dataset.

3.2. Module Networks of Three Cancers

The gene module network could uncover the cross-talks among the modules. In this work, we first
used a rank-based method to construct a gene co-methylation network based on the DNA methylation
data of cancer patients. Next, MCODE was used to detect the gene modules in the co-methylation
network. Then, a permutation test was applied to calculate cross-talk among the gene modules.
The module networks for the BRCA, SKCM, and UCEC are shown as follows.



Genes 2019, 10, 571 6 of 20

3.2.1. Module Network of Breast Invasive Carcinoma

We constructed the gene co-methylation network by using the DNA methylation data of BRCA
patients in TCGA. In this network, there are 16,850 nodes and 67,400 edges. The nodes’ degrees fit well
with the power-law distributions with a correlation of 0.969 and R-square of 0.939 (Figure S1a). Based
on the co-methylation network, the gene module network of BRCA was constructed with 130 edges
among the 97 modules (Figure S2a).

3.2.2. Module Network of Skin Cutaneous Melanoma

For SKCM, 68,124 co-methylation pairs among 17,031 genes were obtained. The power-law fit of
nodes’ degrees with the number of nodes showed that the network was scale-free with a correlation of
0.975 and R-square of 0.948 (Figure S1b). The module network of SKCM contained 110 edges among
97 modules (Figure S2b).

3.2.3. Module Network of Uterine Corpus Endometrial Carcinoma

The DNA methylation profiles of UCEC patients from TCGA were used to construct the gene
co-methylation network. In the co-methylation network of UCEC, there were 17,081 nodes and
68,324 pairs. The co-methylation network of UCEC was also scale-free with a correlation of 0.973 and
R-squared value of 0.946 (Figure S1c). Based on the co-methylation network, the gene module network
of UCEC was also constructed. There were 104 modules and 147 edges in the network (Figure S2c).

3.3. The Core Gene Modules of Three Cancers

For the module network of each cancer, the K-shell algorithm was applied to identify the core gene
modules. The K-shell method was shown to outperform other known centrality methods, including
degree, betweenness, and PageRank in network-based analyses [31]. In the BRCA module network,
there were 2 core gene modules that contained 46 genes (Table S2). For SKCM, we obtained 4 core gene
modules with 98 genes (Table S3). In the module network of UCEC, there were 2 core gene modules,
including 86 genes (Table S4). These core gene modules of each cancer would be used as features for
prognosis and molecular typing analysis.

3.4. Survival Analysis of Three Cancers

To evaluate the core gene modules, survival analysis of cancer datasets was performed for the
three cancer types. In the gene module network of BRCA, there were 2 core gene modules. Based on the
DNA methylation data of the 2 modules’ statistical values, the prognostic risks of cancer samples could
be calculated. In the test dataset (390 patients) of BRCA, the hazard ratio (HR) of the High-risk group
and Low-risk group divided by our method was 1.63, and the log rank p-value was 0.034 (Figure 2a).
Based on the 4 core gene modules’ statistical values of the SKCM test dataset (234 patients), the HR of
the two groups was 1.75, and the p-value of log rank was 4.2e-04 (Figure 2b). For UCEC, the HR of the
High-risk group and Low-risk group was 2.53 with a log rank p-value of 0.0043 (Figure 2c). These
results indicated that the core gene modules could distinguish the prognostic risks of cancer patients
in three cancers. The good performance of these core gene modules also verified that our approach
represented an improvement on previously reported methods.
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Figure 2. Survival analysis in the three cancer datasets based on core gene modules. (a) Survival
analysis in the breast invasive carcinoma dataset; (b) Survival analysis in the skin cutaneous melanoma
dataset; (c) Survival analysis in the uterine corpus endometrial carcinoma dataset. BRCA: breast
invasive carcinoma; SKCM: skin cutaneous melanoma; UCEC: uterine corpus endometrial carcinoma.

3.5. Molecular Typing Results of Three Cancers

3.5.1. Molecular Typing of Breast Invasive Carcinoma

In the clinic, breast cancer subtypes were defined by immunohistochemical detection of estrogen
receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)
expression [35]. The subtypes were luminal A (ER+, PR+/-, HER2-), luminal B (ER+, PR+/-, HER2+),
HER2+ (ER-, PR-, HER2+), and basal-like (ER-, PR-, HER2-), respectively. According to the rule,
413 patients in the TCGA could be classified, including 249 patients with luminal A, 63 patients with
luminal B, 17 patients with HRE2+, and 84 patients with basal-like disease. We first explored the
relationship between this widely accepted molecular typing and prognosis of patients. The survival
curve is shown in Figure 3, and the log rank p-value was 0.02, which indicated that this molecular
typing was related to the prognosis of breast cancer patients. The silhouette coefficients of clustering
under different k values were shown in Figure S3. In order to compared with this current typing criteria
of BRCA, we used the core gene modules of BRCA as typing features and stratified breast cancer
patients into 4 categories by the K-means algorithm. There were 112 patients in cluster 1, 134 patients
in cluster 2, 150 patients in cluster 3, and 17 patients in cluster 4. The clustering result obtained by
multidimensional scaling (MDS) is shown in Figure S4. The survival curve is shown in Figure 4, with
the log rank p-value of 1e-04. This result indicated that there was a significant correlation between
the classification of our method and the prognosis of patients. Compared with the current typing
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criteria, the molecular typing obtained by our method is more relevant to the prognosis of patients,
demonstrating the reliability of the typing method proposed in this study.

Genes 2019, 10, x FOR PEER REVIEW 8 of 21 

 

the current typing criteria, the molecular typing obtained by our method is more relevant to the 
prognosis of patients, demonstrating the reliability of the typing method proposed in this study. 

 

Figure 3. Survival analysis of primitive typing in breast invasive carcinoma dataset. 

 

Figure 4. Survival analysis of classification by the K-means clustering algorithm in breast invasive 
carcinoma dataset. 

3.5.2. Molecular Typing of Skin Cutaneous Melanoma 

The 4 core gene modules obtained in the SKCM module network were classified as features, and 
the silhouette coefficients of clustering under different k values were shown in Figure S5. When k is 

Figure 3. Survival analysis of primitive typing in breast invasive carcinoma dataset.

Genes 2019, 10, x FOR PEER REVIEW 8 of 21 

 

the current typing criteria, the molecular typing obtained by our method is more relevant to the 
prognosis of patients, demonstrating the reliability of the typing method proposed in this study. 

 

Figure 3. Survival analysis of primitive typing in breast invasive carcinoma dataset. 

 

Figure 4. Survival analysis of classification by the K-means clustering algorithm in breast invasive 
carcinoma dataset. 

3.5.2. Molecular Typing of Skin Cutaneous Melanoma 

The 4 core gene modules obtained in the SKCM module network were classified as features, and 
the silhouette coefficients of clustering under different k values were shown in Figure S5. When k is 

Figure 4. Survival analysis of classification by the K-means clustering algorithm in breast invasive
carcinoma dataset.

3.5.2. Molecular Typing of Skin Cutaneous Melanoma

The 4 core gene modules obtained in the SKCM module network were classified as features, and
the silhouette coefficients of clustering under different k values were shown in Figure S5. When k is
equal to 2, the silhouette coefficient is the highest (0.46). In other words, the classification effectiveness
is optimal. The clustering result obtained by multidimensional scaling (MDS) is shown in Figure S6.
There were 273 patients in cluster 1 and 195 patients in cluster 2. The survival curve of this molecular
typing and patient prognosis is shown in Figure 5. The log rank p-value was 5e-04, proving the
effectiveness of this method.
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(K = 2).

3.5.3. Molecular Typing of Uterine Corpus Endometrial Carcinoma

According to the core gene modules obtained from the UCEC gene module network, we used the
K-means algorithm for clustering. The silhouette coefficients of clustering under different k values are
shown in Figure S7. When k is equal to 2 and 3, the silhouette coefficients are relatively high (0.58 and
0.56, respectively). We analyzed the clustering effectiveness in the two cases. The clustering results
obtained by multidimensional scaling (MDS) are shown in Figure S8 and Figure S9. When the samples
were categorized into 2 subtypes (307 patients in cluster 1 and 121 patients in cluster 2), the log rank
p-value was 0.2 (Figure S10). When the patients of UCEC were grouped into 3 subtypes (91 patients
in cluster 1, 181 patients in cluster 2 and 156 patients in cluster 3), the survival analysis is shown in
Figure 6 with a log rank p-value of 0.01. These results showed that it is more reasonable to categorize
patients into 3 subtypes in UCEC.
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3.6. Biological Functions of the Core Module Networks

We constructed cancer gene module networks based on DNA methylation data and then identified
core gene modules using the K-shell method. These selected gene modules were applied to calculate
the prognosis risk of patients, and survival analysis showed that our modules could significantly
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distinguish the prognosis risks of patients in three cancers. In addition, we used these core gene
modules as typing features, and there was a significant correlation between the molecular types we
identified and the prognosis of cancer samples. All of these results proved the reliability of our method.
Then, the biological functions of genes contained in these modules will be explored next.

3.6.1. Core Module Network Analysis of Breast Invasive Carcinoma

Using the K-shell approach, 2 core gene modules (Module 68 and Module 118) were obtained
in the module network of BRCA. A total of 46 genes were included, as shown in Figure 7a. Ten of
these genes have been reported to be involved in the development, metastasis and prognosis of breast
cancer, as shown in Table 1.

Genes 2019, 10, x FOR PEER REVIEW 11 of 21 

that of patients with lower methylation of RCHY1. To some extent, this result explained the 
carcinogenic mechanism of the gene RCHY1. In other words, the hypomethylation of the RCHY1 
promoter region leads to its overexpression in cancer development, which promotes the binding of 
RCHY1 and p53 to the degradation of p53 protein and then the malignant development of the tumor. 
The expression of the gene RCHY1 in higher-methylation group and lower-methylation group 
was shown

Figure 7. Core module network and survival analysis of RCHY1 as a biomarker in breast invasive 
carcinoma. (a) Core module network of breast invasive carcinoma; (b) Survival analysis of RCHY1 as 
a biomarker in breast invasive carcinoma; (c) The expression of the gene RCHY1 in higher-
methylation group and lower-methylation group. MWW: Mann–Whitney–Wilcoxon. 

Figure 7. Core module network and survival analysis of RCHY1 as a biomarker in breast invasive
carcinoma. (a) Core module network of breast invasive carcinoma; (b) Survival analysis of RCHY1 as a
biomarker in breast invasive carcinoma; (c) The expression of the gene RCHY1 in higher-methylation
group and lower-methylation group. MWW: Mann–Whitney–Wilcoxon.

In the core module network of BRCA, the gene RCHY1 was studies. Because RCHY1 is located
at the junction of the two core modules, it is highly integrated in the core module network and
connected to the gene KDM1B. The gene KDM1B is a histone demethylase that regulates histone
lysine methylation and is an epigenetic marker that regulates gene expression and chromosomal
function [36]. Studies have shown that KDM1B plays an important role in regulating DNA methylation
and gene silencing in breast cancer [37]. Moreover, the RCHY1 gene itself is a known oncogene,
and this gene is a p53-induced ubiquitin–protein ligase that promotes p53 degradation. Loss of p53
function can directly lead to the development of malignant tumors [38]. However, the role of RCHY1



Genes 2019, 10, 571 11 of 20

in breast cancer has not been reported. We thought that the RCHY1 methylation degree is related to
the prognosis of breast cancer; therefore, we divided the patients of BRCA into two groups according
to the degree of methylation of the gene RCHY1 (lower-methylation group and higher-methylation
group). The survival analysis is shown in Figure 7b. The degree of methylation of the RCHY1 gene is
significantly correlated with the prognosis of breast cancer patients (cox p-value = 0.0098), and the
prognosis of patients with a higher degree of methylation of RCHY1 is better than that of patients
with lower methylation of RCHY1. To some extent, this result explained the carcinogenic mechanism
of the gene RCHY1. In other words, the hypomethylation of the RCHY1 promoter region leads to
its overexpression in cancer development, which promotes the binding of RCHY1 and p53 to the
degradation of p53 protein and then the malignant development of the tumor. The expression of the
gene RCHY1 in higher-methylation group and lower-methylation group was shown in Figure 7c. It
can be clearly seen that the RCHY1 expression of patients in lower-methylation group is significantly
higher than that in the higher-methylation group (MWW test p-value = 6.5e-03). This conclusion could
also prove the validity of the results of our study.

Table 1. Known genes associated with breast invasive carcinoma development, metastasis, and
prognosis in the core module network.

Gene Symbol Full Name Gene Function References

CUL4A cullin 4A

CUL4A is the ubiquitin ligase component of a multimeric
complex involved in the degradation of DNA

damage-response proteins. Overexpression of CUL4A is
associated with poor prognosis in BRCA.

[39–41]

FBXO31 F-box protein 31
This gene is a member of the F-box family. The FBXO31

dysregulation is associated with the development of BRCA
and is a candidate tumor suppressor gene.

[42]

KDM1B lysine demethylase 1B

This gene is a flavin-dependent histone demethylase that
regulates histone lysine methylation. Abnormal DNA

methylation of KDM1B is associated with poor prognosis in
BRCA.

[37,43]

PAICS

phosphoribosylaminoimidazole
carboxylase and

phosphoribosylaminoimidazole
succinocarboxamide synthase

PAICS is an enzyme required for biosynthesis of purine. It is
associated with poor prognosis of BRCA. [44,45]

PFKM phosphofructokinase, muscle The gene is associated with increased risk of BRCA. [46]

RAB11B RAB11B, member RAS oncogene
family

RAB11B is a member of the Ras superfamily of small
GTP-binding proteins. It is associated with metastasis of

breast cancer.
[47,48]

SGEF Rho guanine nucleotide
exchange factor 26

The gene encodes a member of the Rho-guanine nucleotide
exchange factor family and is associated with cancer

invasion.
[49,50]

SOS1 SOS Ras/Rac guanine nucleotide
exchange factor 1

The protein encoded by gene SOS1 is a guanine nucleotide
exchange factor of RAS protein, a membrane protein that

binds to guanine nucleotides and participates in signal
transduction pathways. It is associated with invasion and

metastasis of breast cancer.

[51,52]

STAG1 stromal antigen 1
This gene is a member of the SCC3 family and is expressed
in the nucleus. Its overexpression might be regarded as a

tumor marker in BRCA.
[53]

TRIM25 tripartite motif containing 25
Expression of the TRIM25 is upregulated in response to

estrogen, and the TRIM25 is as a diver of poor outcome in
BRCA.

[54,55]

UQCRFS1
ubiquinol-cytochrome c

reductase, Rieske iron-sulfur
polypeptide 1

The gene is a key subunit of the cytochrome bc1 complex
and is associated with the development of breast cancer. [56]

3.6.2. Core Module Network Analysis of Skin Cutaneous Melanoma

We identified 4 core gene modules in the module network of SKCM: Module 73, Module 98,
Module 122, and Module 123, including 96 genes, as shown in Figure 8. Ten of these genes are
associated with metastasis and prognosis of SKCM (Table 2).
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Table 2. Known genes associated with skin cutaneous melanoma development, metastasis, and
prognosis in the core module network.

Gene Symbol Full Name Gene Function References

ABCF1 ATP binding cassette subfamily
F member 1

The protein encoded by this gene is a member of the
ATP-binding cassette (ABC) transporters superfamily, and it

is involved in the development of SKCM.
[57]

CD9 CD9 molecule
This gene encodes a transmembrane 4 superfamily member

whose expression plays a key role in inhibiting the
metastasis of SKCM.

[58,59]

EPOR erythropoietin receptor

The gene encodes an erythropoietin receptor and is a
member of the cytokine receptor family. Its dysregulation is

associated with metastasis and prognosis of cutaneous
melanoma.

[60,61]

EXT1 exostosin glycosyltransferase 1
This gene encodes an endoplasmic reticulum-resident type
II transmembrane glycosyltransferase. It is associated with

the development of SKCM.
[62]

MIA MIA SH3 domain containing

It is a cartilage-derived retinoic acid-sensitive protein. This
gene is associated with metastasis of cutaneous melanoma

and is highly sensitive tumor markers for monitoring of
patients with SKCM.

[63,64]

PROX1 prospero homeobox 1
The protein encoded by this gene is a member of the

homeobox transcription factor family. It is related to the
prognosis of SKCM.

[65,66]

RHOJ ras homolog family member J
This gene encodes a Rho family GTP-binding protein that is

involved in the invasion and metastasis of cutaneous
melanoma.

[67,68]

SDC1 syndecan 1
The protein encoded by this gene is a transmembrane (type

I) heparan sulfate proteoglycan, and it is associated with
invasion of SKCM.

[69,70]

TBK1 TANK binding kinase 1 The gene is a member of the atypical IκB kinase family and
is associated with invasion and migration of SKCM. [71]

UGDH UDP-glucose 6-dehydrogenase

The protein encoded by this gene converts UDP-glucose into
UDP-glucuronic acid, thereby participating in the

biosynthesis of glycosaminoglycans. It is related to the
development of SKCM.

[72]

Similar to Section 3.6.1, we recognized 4 potential prognostic genes in the core module network
of SKCM, namely, APPL1, BCL2L2, TRIM3, and UEVLD. The 4 genes are located at junction among
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modules with higher degrees, and they are linked to known genes that are associated with the
prognosis of SKCM (RHOJ, PROX1, TBK1, and UGDH), as shown in Figure 8. We hypothesized that
the methylation levels of these 4 genes could be used as biomarkers to predict the prognosis of patients
with SKCM. Survival analysis is shown in Figure 9. The methylation degrees of APPL1, BCL2L2, TRIM3,
and UEVLD were significantly correlated with the prognosis of SKCM patients. The p-values of cox
regression were 0.001, 5e-05, 7e-04, and 3e-05, respectively, and patients with a higher methylation
degree of these genes had a better prognosis than those with a lower degree of methylation.
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Figure 9. Survival analysis of APPL1, BCL2L2, TRIM3, and UEVLD as biomarkers in skin cutaneous
melanoma. (a) Survival analysis of APPL1 as a biomarker in skin cutaneous melanoma; (b) Survival
analysis of BCL2L2 as a biomarker in skin cutaneous melanoma; (c) Survival analysis of TRIM3 as
a biomarker in skin cutaneous melanoma; (d) Survival analysis of UEVLD as a biomarker in skin
cutaneous melanoma.

3.6.3. Core Module Network Analysis of Uterine Corpus Endometrial Carcinoma

The 2 core gene modules were identified in the UCEC module network by the K-shell method.
The modules were Module 37 and Module 68, as shown in Figure 10a, which included 86 genes.
Among these genes, 5 genes were known to be associated with the development and prognosis of
UCEC, which are shown in Table 3.
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Table 3. Known genes associated with uterine corpus endometrial carcinoma development, metastasis,
and prognosis in the core module network.

Gene Symbol Full Name Gene Function References

AURKA aurora kinase A

The protein encoded by this gene is a cell
cycle-regulated kinase. It has a significant

relationship with the prognosis of UCEC and can be
used as a clinical biomarker for UCEC.

[73,74]

CHTF18
chromosome

transmission fidelity
factor 18

The protein encoded by the gene is a component of a
replication factor C (RFC) complex. The mutation of

this gene is associated with the pathogenesis of
UCEC.

[75]

EZH2
enhancer of zeste 2

polycomb repressive
complex 2 subunit

This gene encodes a member of the Polycomb-group
(PcG) family and is related to the prognosis of UCEC.

It can be used as a prognostic marker for UCEC.
[76,77]

FBXW7 F-box and WD repeat
domain containing 7

This gene encodes a member of the F-box protein
family. It is associated with the development and

prognosis of UCEC.
[78,79]

JAG1 jagged canonical Notch
ligand 1

This gene encodes a jagged 1 protein. It is closely
related to the invasion and prognosis of UCEC. [80]

In the core module network of UCEC, the gene POP1 was located at the junction of the two
modules and has the highest degrees in the core module network. We used the methylation degree
of POP1 as a prognostic biomarker, and the survival analysis is shown in Figure 10b. The p-value
of Cox regression was 0.016, and the prognosis of patients with a lower degree of methylation was
better than that of patients with higher methylation. Furthermore, in Module 68, although the gene
PSMB9 was not located at the junction of the two modules, it was linked to three genes known to be
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associated with the development and prognosis of UCEC (AURKA, FBXW7, and JAG1). The survival
analysis is shown in Figure 10c. The methylation degree of PSMB9 is significantly correlated with the
prognosis of UCEC patients (Cox p-value = 0.011), and the prognosis of patients with a lower degree of
methylation is better than that of patients with higher methylation.

4. Conclusions

The importance of exact prognosis and rational molecular typing for the treatment of cancer
are self-evident. Because of the heterogeneity of cancer, it is impossible to predict the prognosis and
classification of patients if only some clinical indicators are relied on. Some gene signatures associated
with cancer prognosis and classification were identified based on high-throughput data, but these
signatures selected from one dataset are not applicable in other datasets [5], and most of these genes
are not oncogenes but noise signals [6]. Studies have shown that gene modules are more stable than
gene signatures [13], and cross-talk exists between two modules. However, few studies have noted
this phenomenon. Currently, the abnormality of DNA methylation has been shown to be associated
with cancer prognosis [9,10], and the accumulation of DNA methylation data provides an opportunity
to study cancer at the epigenetic level.

The study was the first to systematically evaluate the stabilities of DNA methylation data and
gene expression data in BRCA, SKCM, and UCEC and proved that DNA methylation data may be more
stable in cancer prognosis. Then, the DNA methylation data were used to construct gene co-methylation
networks for the three cancers, and the gene modules were identified in three co-methylation networks.
Next, the permutation test was used to calculate the cross-talk between every two modules; therefore,
module networks were forming. Then, we found the core gene modules in the module network by
the K-shell method, and these core gene modules are used as features to study the prognosis and
molecular typing of cancer. Finally, we found 2 core gene modules in BRCA, 4 core gene modules in
SKCM, and 2 core gene modules in UCEC. These core modules can significantly distinguish patients’
prognoses. Then, these core modules as clustering features were used to classify three cancers by the
K-means algorithm. The typing results were also significantly correlated with the prognosis of cancer
patients. In addition, after analyzing the topology of the core module networks in three cancers, we
identified DNA methylation prognostic biomarkers in three cancers. These results demonstrate the
effectiveness of our method in cancer prognosis and molecular typing.

Not surprisingly, our study also has certain flaws. The main problem is that no suitable independent
datasets have been found. Although abundant DNA methylation cancer data are available, there
are few datasets with prognostic information of cancer patients. Therefore, we did not find suitable
independent datasets for the three cancers to verify.
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23. Elo, L.L.; Järvenpää, H.; Orešič, M.; Lahesmaa, R.; Aittokallio, T. Systematic construction of gene coexpression
networks with applications to human T helper cell differentiation process. Bioinformatics 2007, 23, 2096–2103.
[CrossRef]

24. Presson, A.P.; Sobel, E.M.; Papp, J.C.; Suarez, C.J.; Whistler, T.; Rajeevan, M.S.; Vernon, S.D.; Horvath, S.
Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue
Syndrome. BMC Syst. Biol. 2008, 2, 95. [CrossRef]

25. Aggarwal, A.; Li Guo, D.; Hoshida, Y.; Tsan Yuen, S.; Chu, K.-M.; So, S.; Boussioutas, A.; Chen, X.; Bowtell, D.;
Aburatani, H.; et al. Topological and Functional Discovery in a Gene Coexpression Meta-Network of Gastric
Cancer. Cancer Res. 2006, 66, 232–241. [CrossRef]

26. Ray, M.; Ruan, J.; Zhang, W. Variations in the transcriptome of Alzheimer’s disease reveal molecular networks
involved in cardiovascular diseases. Genome Biol. 2008, 9, R148. [CrossRef]

27. Ruan, J.; Dean, A.K.; Zhang, W. A general co-expression network-based approach to gene expression analysis:
Comparison and applications. BMC Syst. Biol. 2010, 4, 8. [CrossRef]

28. Shannon, P. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks.
Genome Res. 2003, 13, 2498–2504. [CrossRef]

29. Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics 2003, 27. [CrossRef]

30. Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E.; Makse, H.A. Identification of
influential spreaders in complex networks. Nat. Phys. 2010, 6, 888–893. [CrossRef]

31. Ahmed, H.; Howton, T.C.; Sun, Y.; Weinberger, N.; Belkhadir, Y.; Mukhtar, M.S. Network biology discovers
pathogen contact points in host protein-protein interactomes. Nat. Commun. 2018, 9, 2312. [CrossRef]

32. Sotiriou, C.; Wirapati, P.; Loi, S.; Harris, A.; Fox, S.; Smeds, J.; Nordgren, H.; Farmer, P.; Praz, V.; Haibe-Kains, B.;
et al. Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to
improve prognosis. JNCI J. Natl. Cancer Inst. 2006, 98, 262–272. [CrossRef]

33. Zhou, X.H.; Chu, X.Y.; Xue, G.; Xiong, J.H.; Zhang, H.-Y. Identifying cancer prognostic modules by module
network analysis. BMC Bioinformatics 2019, 20, 85. [CrossRef]

34. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput.
Appl. Math. 1987, 20, 53–65. [CrossRef]

35. Du, X.; Li, X.Q.; Li, L.; Xu, Y.Y.; Feng, Y.M. The detection of ESR1/PGR/ERBB2 mRNA levels by RT-qPCR:
A better approach for subtyping breast cancer and predicting prognosis. Breast Cancer Res. Treat. 2013, 138,
59–67. [CrossRef]

36. Katz, T.A.; Vasilatos, S.N.; Harrington, E.; Oesterreich, S.; Davidson, N.E.; Huang, Y. Inhibition of
histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT
inhibitor-induced apoptosis in breast cancer cells. Breast Cancer Res. Treat. 2014, 146, 99–108. [CrossRef]

37. Chen, L.; Vasilatos, S.N.; Qin, Y.; Katz, T.A.; Cao, C.; Wu, H.; Tasdemir, N.; Levine, K.M.; Oesterreich, S.;
Davidson, N.E.; et al. Functional characterization of lysine-specific demethylase 2 (LSD2/KDM1B) in breast
cancer progression. Oncotarget 2017, 8, 81737–81753. [CrossRef]

38. Sheng, Y.; Laister, R.C.; Lemak, A.; Wu, B.; Tai, E.; Duan, S.; Lukin, J.; Sunnerhagen, M.; Srisailam, S.;
Karra, M.; et al. Molecular basis of Pirh2-mediated p53 ubiquitylation. Nat. Struct. Mol. Biol. 2008, 15,
1334–1342. [CrossRef]

39. Liu, L.; Lee, S.; Zhang, J.; Peters, S.B.; Hannah, J.; Zhang, Y.; Yin, Y.; Koff, A.; Ma, L.; Zhou, P. CUL4A
abrogation augments DNA damage response and protection against skin carcinogenesis. Mol. Cell 2009, 34,
451–460. [CrossRef]

40. Chen, L.C.; Manjeshwar, S.; Lu, Y.; Moore, D.; Ljung, U.M.; Kuo, W.L.; Dairkee, S.H.; Wernick, M.; Collins, C.
The human homologue for the caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary
breast cancers. Cancer Res. 1998, 58, 3677–3683.

http://dx.doi.org/10.1104/pp.108.117366
http://dx.doi.org/10.1093/hmg/ddt158
http://dx.doi.org/10.1093/bioinformatics/btm309
http://dx.doi.org/10.1186/1752-0509-2-95
http://dx.doi.org/10.1158/0008-5472.CAN-05-2232
http://dx.doi.org/10.1186/gb-2008-9-10-r148
http://dx.doi.org/10.1186/1752-0509-4-8
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1186/1471-2105-4-2
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1038/s41467-018-04632-8
http://dx.doi.org/10.1093/jnci/djj052
http://dx.doi.org/10.1186/s12859-019-2674-z
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1007/s10549-013-2432-2
http://dx.doi.org/10.1007/s10549-014-3012-9
http://dx.doi.org/10.18632/oncotarget.19387
http://dx.doi.org/10.1038/nsmb.1521
http://dx.doi.org/10.1016/j.molcel.2009.04.020


Genes 2019, 10, 571 18 of 20

41. Melchor, L.; Saucedo-Cuevas, L.P.; Muñoz-Repeto, I.; Rodríguez-Pinilla, S.M.; Honrado, E.; Campoverde, A.;
Palacios, J.; Nathanson, K.L.; García, M.J.; Benítez, J. Comprehensive characterization of the DNA amplification
at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes. Breast Cancer
Res. 2009, 11, R86. [CrossRef]

42. Kumar, R.; Neilsen, P.M.; Crawford, J.; McKirdy, R.; Lee, J.; Powell, J.A.; Saif, Z.; Martin, J.M.; Lombaerts, M.;
Cornelisse, C.J.; et al. FBXO31 Is the Chromosome 16q24.3 Senescence Gene, a Candidate Breast Tumor
Suppressor, and a Component of an SCF Complex. Cancer Res. 2005, 65, 11304–11313. [CrossRef]

43. Ciccone, D.N.; Su, H.; Hevi, S.; Gay, F.; Lei, H.; Bajko, J.; Xu, G.; Li, E.; Chen, T. KDM1B is a histone H3K4
demethylase required to establish maternal genomic imprints. Nature 2009, 461, 415–418. [CrossRef]

44. Meng, M.; Chen, Y.; Jia, J.; Li, L.; Yang, S. Knockdown of PAICS inhibits malignant proliferation of human
breast cancer cell lines. Biol. Res. 2018, 51, 24. [CrossRef]

45. Gallenne, T.; Ross, K.N.; Visser, N.L.; Salony; Desmet, C.J.; Wittner, B.S.; Wessels, L.F.A.; Ramaswamy, S.;
Peeper, D.S. Systematic functional perturbations uncover a prognostic genetic network driving human breast
cancer. Oncotarget 2017, 8, 20572–20587. [CrossRef]

46. Ahsan, H.; Halpern, J.; Kibriya, M.G.; Pierce, B.L.; Tong, L.; Gamazon, E.; McGuire, V.; Felberg, A.; Shi, J.;
Jasmine, F.; et al. A genome-wide association study of early-onset breast cancer identifies PFKM as a novel
breast cancer gene and supports a common genetic spectrum for breast cancer at any age. Cancer Epidemiol.
Biomarkers Prev. 2014, 23, 658–669. [CrossRef]

47. Hashimoto, A.; Oikawa, T.; Hashimoto, S.; Sugino, H.; Yoshikawa, A.; Otsuka, Y.; Handa, H.; Onodera, Y.;
Nam, J.-M.; Oneyama, C.; et al. P53- and mevalonate pathway–driven malignancies require Arf6 for
metastasis and drug resistance. J. Cell Biol. 2016, 213, 81–95. [CrossRef]

48. Bhuin, T.; Roy, J.K. Rab11 in Disease Progression. Int. J. Mol. Cell Med. 2015, 4, 1–8.
49. Goicoechea, S.M.; Zinn, A.; Awadia, S.S.; Snyder, K.; Garcia-Mata, R. A RhoG-mediated signaling pathway

that modulates invadopodia dynamics in breast cancer cells. J. Cell Sci. 2017, 130, 1064–1077. [CrossRef]
50. Ellerbroek, S.M.; Wennerberg, K.; Arthur, W.T.; Dunty, J.M.; Bowman, D.R.; DeMali, K.A.; Der, C.; Burridge, K.

SGEF, a RhoG Guanine Nucleotide Exchange Factor that Stimulates Macropinocytosis. Mol. Biol. Cell 2004,
15, 3309–3319. [CrossRef]

51. De, S.; Dermawan, J.K.T.; Stark, G.R. EGF receptor uses SOS1 to drive constitutive activation of NF B in
cancer cells. Proc. Natl. Acad. Sci. USA 2014, 111, 11721–11726. [CrossRef]

52. Field, L.A.; Love, B.; Deyarmin, B.; Hooke, J.A.; Shriver, C.D.; Ellsworth, R.E. Identification of differentially
expressed genes in breast tumors from African American compared with Caucasian women. Cancer 2012,
118, 1334–1344. [CrossRef]

53. Giannini, G.; Ambrosini, M.I.; Di Marcotullio, L.; Cerignoli, F.; Zani, M.; MacKay, A.R.; Screpanti, I.; Frati, L.;
Gulino, A. EGF- and cell-cycle-regulatedSTAG1/PMEPA1/ERG1.2 belongs to a conserved gene family and is
overexpressed and amplified in breast and ovarian cancer. Mol. Carcinog. 2003, 38, 188–200. [CrossRef]

54. Walsh, L.A.; Alvarez, M.J.; Sabio, E.Y.; Reyngold, M.; Makarov, V.; Mukherjee, S.; Lee, K.-W.; Desrichard, A.;
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