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Identification of protein–ligand binding sites plays a critical role in drug discovery. However,
there is still a lack of targeted drug prediction for DNA-binding proteins. This study aims at
the binding sites of DNA-binding proteins and drugs, by mining the residue interaction
network features, which can describe the local and global structure of amino acids,
combined with sequence feature. The predictor of DNA-binding protein–drug-binding
sites is built by employing the Extreme Gradient Boosting (XGBoost) model with random
under-sampling. We found that the residue interaction network features can better
characterize DNA-binding proteins, and the binding sites with high betweenness value
and high closeness value are more likely to interact with drugs. The model shows that the
residue interaction network features can be used as an important quantitative indicator of
drug-binding sites, and this method achieves high predictive performance for the binding
sites of DNA-binding protein–drug. This study will help in drug discovery research for DNA-
binding proteins.
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1 INTRODUCTION

DNA-binding protein plays a crucial role in many biological processes, such as regulating gene
expression, DNA duplication, DNA recombination, DNA repair, histone modification, and other
biological activities associated with DNA (Ptashne, 2005; Audia and Campbell, 2016; Luscombe et al.,
2000). Identifying these proteins is beneficial to find out the cause of disease for most medical
researchers, which helps them pinpoint the cause of the disease. BRD4 is a DNA-binding protein that
has attracted wide attention in the field of anticancer drugs. The suppression of BRD4 is not only an
effective way to cut off the communication between super-enhancers and target promoters but also
represses the expression of oncogenes subsequently, which is related to cancer cell death (Lu et al.,
2020). DNA-binding protein 43 is the culprit for amyotrophic lateral sclerosis (ALS). The unusual
accumulation of DNA-binding protein 43 in motor neuron cells leads to neurotoxicity, which is a
pathological hallmark of several other neurodegenerative diseases (Watanabe et al., 2020). Another
research has found DNA-binding protein A (dbpA) may be a new and effective therapeutic target,
which is useful for colorectal cancer (CRC). The downregulation of dbpA is a pivotal method to
inhibit cell proliferation and induce cell apoptosis as well as cell cycle arrest in cancer cells because it
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can not only restrict the growth of tumor but also improve the
drug sensitivity of CRC cells in vivo (Tong et al., 2020). These
studies have shown that DNA-binding proteins exist in living
cells widely and participate in many cell activities. Then, the
predictive studies of DNA-binding proteins are key tasks in drug
development and treatment of diseases for most researchers
(Rahman et al., 2018; Wang et al., 2021).

With the continuous development of biotechnology, it has
become important to understand protein functions and drug
discovery to predict the protein–ligand binding sites. In the past
years, structure-based, sequence-based, and hybrid system
method (both sequence and structure characteristics), etc. were
used to predict protein–ligand binding sites, among which the
ligand binding sites of the established 3-demensional protein
structure can be effectively forecasted by structure-basedmethods
(Xie and Hwang, 2015; Allen et al., 2015; Wu et al., 2018). The
molecular docking has also been widely regarded for its function
in finding ligand binding sites (Wu et al., 2018). Considering the
protein structures are few in number to satisfy the growing
demand, sequence-based methods were applied in predicting
the protein–ligand binding sites directly (Yang et al., 2013;
Ding et al., 2017; Zhao et al., 2019). For instance, Ding (Ding
et al., 2017) obtained the position-specific scoring matrix feature
through the protein sequence, and subjected the feature to
discrete cosine transform, and then obtained the PSSM–DCT
feature, and finally used under-sampling and ensemble classifier
to build a prediction model. In addition, there are some methods
that combine sequence and structure information to obtain better
performance of prediction (Liu and Hu, 2011; Lu et al., 2019). For
example, HemeNet (Liu and Hu, 2011) has demonstrated that
hybrid models working together will achieve a better performance
in specific prediction of HEME binding residues than that of
single prediction.

It is known that structure method and structure/sequence
method can predict the results accurately than sequence method.
But, due to the lack of three-dimensional structures, this
structure/sequence-based method and structure-based method
is limited. Herein, we attempt to invent an innovative
computational method which is based on DNA-binding
protein sequences and network topological characteristics to
identify drug-binding sites. Also, although these advancements
have been made in protein–ligand binding sites predictions, the
research level in predicting DNA-binding protein–drug ligand
binding sites is still at the initial stage. At the same time, the
research studies on the DNA-binding protein–drug-binding sites
based on bioinformatics method are very few at present. We
manually screened 120 DNA-binding protein–drug complexes to
construct the data set for this study. Also, we look forward to
clarifying the intrinsic correlation between DNA-binding protein
and drug interactions through identifying the drug-binding sites
of DNA-binding proteins.

In this study, we consider three popular classifiers (XGBoost,
SVM, and CART) for conducting research on the prediction of
drug-binding sites using the DNA-binding protein–drug
complexes. To search the most suitable predictor, three
different machine learning methods (XGBoost, SVM, and
CART) are used to predict the binding sites for drugs

comparatively by utilizing the DNA-binding protein–drug
complexes, and the best one is chosen by us. Through
comparative research, the 20-dimensional position-specific
scoring matrix feature and the 7-dimensional residual
interaction network feature as a preferable feature set are
selected to improve the proposed predictor. The XGBoost-
based method proposed in this study shows better AUC and
ACC scores on either the training data set or the independent
data set. The working flowchart of the proposed DNA-binding
protein–drug-binding sites prediction method is shown in
Figure 1.

2 MATERIALS AND METHODS

2.1 Datasets
In this study, the DNA-binding protein–drug complexes were
derived from the sc-PDB database (Kellenberger et al., 2006).
Until now, sc-PDB contains 16034 entries, which correspond to
4782 different proteins and 6326 different ligands. We obtained
17460 protein complexes from sc-PDB. After testing the
consistency and deleting the redundancies, we obtained
120 DNA-binding protein–drug complexes, which include 107
drugs and 120 DNA-binding proteins.

A molecule is regarded as a ligand when it meets the following
requirements: 1) it is not a water molecule, but is a small
molecular weight molecule, such as drug, nucleotide, and
endogenous ligand; 2) it has a limited solvent exposure to the
surface. There is at least one residue atom less than 6.5 Å for any
ligand atom; or 3) it does not covalently bind to peripheral
proteins. Among them, the corresponding binding sites are
formed by all DNA-binding protein residues with one or more
atomwithin 6.5 Å of any drug atom. Therefore, 3853 binding sites
were extracted from the protein–drug targets.

Among the total 120 DNA-binding protein–drug complexes
containing 3,853 binding sites, a random sample (non-
replacement) of 100 DNA-binding protein–drug complexes is
chosen to train a model which contains 3,229 binding sites. These
remaining 20 DNA-binding protein–drug complexes are used as
independent test sets which contained 624 binding sites. The
binding sites verified by experiments are represented as positive
samples (i.e., binding sites), and all the remaining residues are
labeled as negative samples (i.e., non-binding sites). To deal with
the problem of class imbalance, sample scaling is the most direct
method. We used random under-sampling method to select non-
binding sites from all negative samples, and constructed a
training set with a ratio of 1:1 for positive and negative
samples to train the model.

2.2 Feature Extraction
2.2.1 Position-Specific Scoring Matrices
There are some results showing that sequence-based calculation
methods are of great use to predict binding sites (Wang et al.,
2017; Wang et al., 2019c). The evolutionary information of the
protein sequence is encoded by the position-specific scoring
matrix (PSSM). The PSSM of each sequence uses PSI-BLAST
(Altschul et al., 1997) to perform three iterations in the non-
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redundant protein sequence (nr) database, and the E-value is
0.001. PSSM is an L × 20 matrix, where the L row indicates the L
amino acid residues contained by the protein sequence, and the
20 columns are the probabilities that each residue mutates to 20
local residues. The matrix is presented as follows:

PSSM �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P1,1 P1,2 / P1,20

P2,1

..

.

PL,1

P2,2

..

.

PL,2

/
..
.

. . .

P2,20

..

.

PL,20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where the characteristics of each individual amino acid residue
are described, and the PSSM feature has 20 dimensions.

2.2.2 Residue Interaction Network Features
In the work of Wang et al. (Wang et al., 2019b; Wang et al.,
2019a), we find it is closely related to the structural environment
for the nucleic acid-binding protein. Instead of the nucleic acid
sequences, local DNA and RNA structures are recognized by
many proteins, such as G-quadruplexes, i-motifs, triplexes, left-
handed DNA/RNA form, and many others. In addition, the
studies of Bartas et al. have shown that protein structure
depends on amino acid interactions (Bartas et al., 2021).
Therefore, it is a great challenge to utilize these useful features
to predict drug-binding sites, especially when the amino acids’s
functional role is not fully recognized by the researchers
currently. To deal with this conundrum, a residue interaction
network is employed to depict protein structure in our work.

Residue interaction network (RIN) can represent the structure
of a protein as a network, where amino acid residues are nodes,

and the amino acids that interact with the amino acid are their
edges. It is shown that RIN plays a useful role in bioinformatics’
applications (Pan et al., 2017; Astl and Verkhivker, 2019; Amitai
et al., 2004; Li et al., 2011). Residues with high betweenness tend
to have a lot of contacts (Sen et al., 2019). Moreover, betweenness
is proved to be a better measure of the centrality in the interaction
network, which can be interpreted as a correction to the number
of contacts per residue. Residues with high closeness values
interact directly or by a few intermediates with all other
residues of the protein (Arumugam and Isacc, 2017). The
nodes with high eigenvector centrality have a large influence
on the overall information passing by flow, higher value, and
better connectivity (Negre et al., 2018). Observing the previous
studies, we find the functional importance of a protein site is
closely related to its role in sustaining protein structure.

In this work, NAPS (Broto et al., 2019) is adopted to calculate
the 7 topological features which mean the local features of the
target residue include degree, closeness, betweenness, clustering
coefficient, eccentricity, average nearest neighbor degree, and
eigenvector centrality. The 7-dimensional network topology
features are obtained through protein structure information.

We use betweenness(B) to indicate the ratio about all the
shortest paths passing through a node and the total number of
shortest paths. The formula can be described as

Cb(u) � ∑
s≠u∈V

∑
t≠u∈V

σst(u)/σst, (2)
where σst (u) is the number of shortest paths between t and s
getting through the nodes u. σst indicates the number of shortest
paths between vertices t and s, and V indicates the set of all nodes.

FIGURE 1 | Flowchart of DNA-binding protein–drug-binding sites prediction. Red represents the independent set data, blue represents the training set, light blue,
and yellow represent the positive and negative sample data of the training set, respectively. A reference data set of 120 DNA-binding protein–drug complexes is
generated from sc-PDB. The characteristic set is composed of network and sequence feature, and a prediction model is constructed by XGBoost. Finally, the
performance of the training data set and the independent data set is evaluated.
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Closeness (Cl) represents the centrality measure of the vertex,
which is defined as the average geodesic distance from the node to
all other vertices. The formula can be defined as

Ccl(u) � (n − 1)/∑
v∈V

dist(u, v), (3)

where dist (u, v) is the shortest path distance between nodes v and
u, and n represents the number of nodes.

Eigenvector centrality (EC) is expressed as the component of
the eigenvector corresponding to the largest eigenvalue of the
adjacenct matrix. The formula is defined as follows:

xp � 1
λ
∑N

q�1Apqxq, (4)

where Apq defines the strength of the physical correlation between
nodes p and q, λ is the largest eigenvalue of A and xi is the
eigenvector centrality of node p.

The eccentricity (E) signal that the shortest path distance of
the node to the farthest node in the network. The formula can be
expressed as follows:

Ce(u) � max(dist(u, v)). (5)
Degree(D) is expressed as the number of edges incident to a

vertex. This is calculated as

Cd(u) � ∑
v∈V

Auv, (6)
where Auv is the number of contacts between nodes u and v.

The clustering coefficient (CC) is a measure of the closeness of
the neighbors of a vertex. It can be defined as

Ccc(u) � λ(u)/γ(u), (7)
where λ(u) is the neighbors of u connected by an edge. The
formula for γ(u) is

λ(u) � Cd(u)(Cd(u) − 1)/2. (8)
Average nearest neighbor degree (AN) is the average of the

degree of its immediate neigh bours. It can be defined as

Can(u) � ∑
v∈N(u) Cd(u)/N(u), (9)

where N(u) is the neighbors of u.

2.3 Extreme Gradient Boosting Algorithm
The gradient boosting algorithm (Chen and Guestrin, 2016)
retains the merits of the decision tree and constructs a set of
strong learners from weak learners. The extreme gradient
enhancement algorithm is an improvement of the gradient
enhancement algorithm. Thus, the extreme gradient
enhancement algorithm has a series of improvements in
parallelism and prediction accuracy compared with the
gradient enhancement algorithm.

In this study, we identify the binding sites and non-binding sites
in DNA-binding protein–drug complexes. A two-category problem
is proposed to identify binding sites and non-binding sites. We use
feature vectors Fi (Fi = {f1, f2, ···, fn}, i = 1,2, ···, X) as the input and
the class label yi (yi = {0,1}, i = 1,2, ···, X) as the output respectively,
where X represents the number of rows of the feature vector,
meanwhile 1 and 0 indicate binding sites and non-binding sites
correspondingly. The XGBoost algorithm combines the techniques
of classification and regression tree (CART) (Breiman et al., 1984)
and a series of the gradient boosting machine.

2.4 Model Training
As mentioned before, we used three classification algorithms,
i.e., XGBoost, SVM (Cherkassky, 1997), and CART to construct
the proposed binding sites predictor in this study. For the purpose
of training the classifier, we utilize the training data set to verify
whether there is an improvement of the prediction accuracy.
Then, we can get a better decision between binding sites and non-
binding sites. Additionally, the models are trained with various
feature combinations through different cross-validations. Among
the three classifiers, XGBoost is considered as the best classifier,
when the ratio of positive and negative samples of the training
model is 1:1 and 10-fold cross-validation is performed.

2.5 Performance Evaluation
Classification performance is evaluated by accuracy (ACC),
sensitivity (SEN), specificity (SPE), precision (PRE), and
Matthews correlation coefficient (MCC). The area under the
receiver operating characteristic curve (AUC) is used to
evaluate the overall predictive quality of the binary model. The
following formulas are used to determine ACC, SEN, SPE, PRE,
and MCC, respectively:

ACC � TP + TN

TP + TN + FP + FN
, (10)

TABLE 1 | Performance comparison of different feature combinations in XGBoost.

Feature group ACC PRE SEN SPE MCC AUC

PSSM 0.7262 0.8872 0.5348 0.9240 0.5139 0.7396
RIN 0.8057 0.9149 0.6607 0.9235 0.6563 0.8261
PSSM + RIN 0.8684 0.9246 0.8092 0.9304 0.7592 0.8990

TABLE 2 | Performance of XGBoost in comparison with other classifiers on the
combination feature set.

Method ACC PRE SEN SPE MCC AUC

SVM 0.7994 0.7735 0.8212 0.7962 0.6349 0.8141
CART 0.8386 0.8271 0.8492 0.8284 0.6936 0.8699
XGBoost 0.9316 0.9575 0.9110 0.9573 0.8844 0.9464
Independent testing 0.8894 0.9250 0.8950 0.9166 0.7538 0.7538

TABLE 3 | Performance obtained from different cross-validation tests based on
XGBoost algorithm.

CV-fold ACC PRE SEN SPE MCC AUC

Jackknife 0.8321 0.9104 0.7394 0.9206 0.6934 0.8593
5-fold 0.8583 0.9147 0.8003 0.9229 0.7404 0.8928
10-fold 0.9316 0.9575 0.9110 0.9573 0.8844 0.9464
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SEN � TP

TP + FN
, (11)

SPE � TN

TN + FN
, (12)

PRE � TP

TP + FP
, (13)

MCC � TP × TN − FP × FN����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)
√ . (14)

Among them, true positive (TP) represents the number of true
protein–drug-binding sites that are predicted correctly; true
negative (TN) represents the number of true non-binding sites
that are correctly predicted; false negative (FN) represents the
true protein–drug-binding sites and the number of points, these
sites are designated as non-binding; false positive (FP) represents
the number of true non-binding sites, these sites are designated as
binding sites.

3 RESULT AND DISCUSSION

3.1 Performance Assessment of the Model
The 27-dimensional feature consists of two types, namely the
residue interaction network (RIN) and position-specific scoring
matrices (PSSMs) features. By means of the XGBoost algorithm,
three different feature classifications are presented in our work.
As shown in Table 1, we found that the network features appear
better prediction performance between RIN and PSSM, with the
highest ACC, MCC, and AUC values of 0.8057, 0.6607, and
0.8261, respectively. In addition, it can be seen from the table that
the combined characteristics of PSSM and RIN achieve the best

performance. Therefore, we can draw the conclusion that these
two types of features may be complementary, and their
combination can help predict the drug-binding sites and non-
binding sites.

In this study, the extreme gradient boosting classifier
(XGBoost) is used to build the final model with 27 features.
Through the experiment, we have found that the XGBoost can
achieve the best performance comparing with SVM and CART.
Based on 10-fold cross-validation on the training data set, the
prediction results of XGBoost, SVM, and CART is shown in
Table 2. The values of AUC obtained of XGBoost, SVM, and
CART are 0.9464, 0.8141, and 0.8699, respectively. Compared
with the SVM and CART methods, the XGBoost model is found
to have higher ACC, SEN, MCC, and AUC scores, which
improved the prediction performance.

To evaluate the performance further, we compared XGBoost
with SVM and CART, on the independent data sets (PSSM +
RIN). XGBoost shows the best performance among the three
classification methods for predicting the drug-binding sites.
Therefore, we trained the training data set under the condition
of jackknife cross-validation, 5-fold, and 10-fold cross-validation
tests through the cross-validation test. From these three cross-
validation tests, we selected the best classifier to optimize the
performance of the three classification methods of SVM, CART,
and XGBoost. We have found that the XGBoost exhibited the best
performance than SVM and CART.

In order to test the performance of the model, we first applied
the jackknife cross-validation test with the extreme gradient
boosting classifier and achieved an AUC score 0.8593 with
83.21% accuracy for the training data set by using the
combination feature (PSSM + RIN). From the results of 5-fold
and 10-fold cross-validation tests, we observed that the

FIGURE 2 | Normalization of network topological features for binding site and non-binding site. “×” is average value; C is closeness; B is betweenness; EC is
eigenvector centrality; D is degree; CC is clustering coefficient; E is eccentricity; and AN is average nearest neighbor degree.
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performances are better than the jackknife cross-validation. In the
10-fold cross-validation test, the XGBoost classifier has an
accuracy rate of 93.16% and the highest AUC value between
SVM and CART. Table 3 shows the overall performance of
XGBoost model in detail.

3.2 Discussion of Network Topology
Feature
From a biological point of view, the mutual constraint among
residues is essential for the correct function of the appropriate
structure (Balch et al., 2014). Seven well-established network

topological features, eccentricity, closeness, clustering
coefficient, betweenness, eigenvector centrality, degree, and
average nearest neighbor degree are used to characterize
DNA-binding proteins–drug sites in this work. Network
topological features obtain the best performance. In order to
determine the difference extent about DNA-binding
proteins–drug sites in terms of such topological features, we
perform an analysis. For the convenience of comparison, seven
network topology features are normalized respectively, and we
also analyze the difference between binding sites and non-binding
sites in topological features.

As shown in Figure 2, the closeness feature and betweenness
feature of binding sites are significantly different from that of
non-binding sites, followed by the feature of eigenvector
centrality. From the basic aspects of protein structure, we
understand a special local structure is often maintained by the
cooperation of several residues. Figure 2 shows that DNA-
binding protein–drug-binding sites may have more neighbors
than non-binding sites. Obviously, the closeness of the binding
sites is higher. Binding sites residues with high betweenness tend
to have a high number of contacts. The high eigenvector
centrality value of the binding site indicates that it has better
contact with other residues in the network. And the mean value of
binding sites is significantly higher than that of non-binding sites.
For degree, eigenvector centrality, eccentricity, and the average
nearest neighbor degree, the distributions of binding sites and
non-binding sites are less distinct.

Therefore, three well-established network topological features,
closeness, betweenness, and eigenvector centrality are used to
further characterize in Figure 3. We found that higher
frequencies are detected for binding sites in the high scoring
region obviously. In biology, key residues have a higher
betweenness value, and this residue may interact with more
residues (Figure 3A). According to these reports, closeness
can indicate the functional role of residues. Thus, the fact that
the high closeness value is observed at the binding site is not
surprising (Figure 3B). In addition, the high eigenvector
centrality value should focus on not only the nodes that are
important per se, but the “neighborhood” of those nodes
(Figure 3C). Therefore, it is reasonable to use these features to
describe the structure and function of residues.

3.3 Analysis of Amino Acid Properties
Saha’s research divides the amino acid indexes in the AAindex
database into 8 clusters, and 8 high-quality amino acid indexes
are extracted from each cluster (Saha et al., 2012).We denoted the
eight indices as HQI1 to HQI8, and analyzed the amino acid
properties at the drug-binding site, which are displayed as
Figure 4. In the electric charge property indices (HQI1), blue
occupies 2/3 of the total. It is observed that drugs tend to act on
positively charged amino acids (Porfireva et al., 2020). According
to the electric field theory, dissimilar charges attract each other.
This indicates that DNA-binding protein is more likely to bind to
negatively charged drug molecules. It can be seen fromHQI2 that
hydrophobic amino acids account for 71%, which indicates that
drugs tend to bind to hydrophobic amino acids (Lon and Martin,
2021). Usually, the surface of a protein is surrounded by

FIGURE 3 | Frequency distributions of (A) betweenness; (B) closeness;
and (C) eigenvector centrality.
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hydrophilic amino acid residues, and the residues with
hydrophobic side chains are located inside the molecule
principally. This indicates that the binding process of DNA-
binding protein and drug is more likely to occur inside the
protein. HQI3 denotes beta-strand propensities, and HQI4
denotes alpha helix and turn propensities. The tendency of
amino acids to form β-chain accounts for 30%, and the
tendency to form α-helix accounts for 55%. In general, the
amino acids in the complex that tend to form alpha helices
and turns are more likely to interact with drugs. The proportion
of large-volume amino acids (56%) is slightly more than that of
the small-volume amino acids (44%) (Rani et al., 2016). Drugs are
more likely to bind to larger amino acids, which indicates that
sites with larger surface areas are more likely to interact with
drugs. HQI6 represents transmembrane residue propensities.
Amino acid in the complexes is favored to be localized in the
transmembrane regions. The region of the protein sequence that
spans the cell membrane is usually an α-helical structure, which
corresponds to the conclusion of HQI4. HQI7 represents the
amino acid compositions of intracellular proteins (Abe and Nitta,
1984). This means that the residues at the binding site (such as
Leu, Phe, Ala, and Val) are easier to interact with the drug. The
higher ratio the relative partition energies (HQI8) of the residues
ranks, the easier the amino acid contacts with other residues. This

conclusion shows that the residues at the binding site contacting
more other residues can bind the drug better.

3.4 Analysis of Drug–Ligand
In this study, we obtained a total of 3,853 drug-binding sites. In
order to explore the propensity of different drug-binding sites to
bind to amino acid residues, we divided the drug ligands into 19
categories according to the biological types of DNA-binding
protein–drug complexes. We selected two types of organisms
that have the largest proportion: Homo sapiens and Escherichia
coli. Among them, Homo sapiens contains 1,546 amino acid sites,
and Escherichia coli contains 692 amino acid sites. We presented
the relationship diagram of drug ligands’ tendency to bind to
amino acids and select some cases as shown in Figure 5. From
Figures 5A,B it can be seen that the drug (choose one of the drugs
as the representative) is located in the center, the 20 amino acids
are represented by circles with different colors. The size of the
circle indicates the binding ability of the amino acid to the drug.
At the same time, the distance between the amino acid and the
drug indicates the tendency of binding to the drug. The Figure 5A
is drugs of Escherichia coli, in general, the drugs tend to bind Leu,
Gly, and Ser, and combine amino acid property analysis. We
found that amino acids that tend to form a helix and favor to be
localized in the transmembrane regions are more likely to bind to

FIGURE 4 | Proportion of eight high-quality amino acid indices (HQI) on the drug-binding sites. The eight indices from HQI1 to HQI8 denote electric charge
properties, hydrophobicity, beta-strand propensities, alpha helix and turn propensities, volume, transmembrane residue propensities, amino acid composition, and
relative partition energies, respectively. HIGH (blue color) denoted above the average of this indicator, while LOW (orange color) denoted below the average of this
indicator.
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drugs. Through the analysis of the Figure 5B (drug of Homo
sapiens), we found that the drugs of homo sapiens are easier to
bind to Leu, Ile, Phe, and Met. These amino acids carry more
electric charge, are less hydrophobic, prefer to form alpha helices
and turns, and have a larger volume.

In order to verify the correctness of our conclusions, 5 drugs
belonging to the Escherichia coli biotype (Figure 5C) and 5 drugs

belonging to the Homo sapiens biotype (Figure 5D) were selected,
and radial graphs were drawn respectively. The outer circle
represents the proportion of a certain property of the type of
drug ligands that tend to bind to amino acids in all properties.
The seven inner circles are represented by different colors,
respectively indicating the hydrophobicity, polarity, alpha helix
propensities, beta-strand propensities, turn propensities, aromatic

FIGURE 5 | Schematic diagram of drug-binding amino acid preferences. (A) is the drug ligand of Escherichia coli; (B) is the drug ligand of homo sapiens. In the
figure, the drug is located in the center, and the binding site residues are distributed around, and we used circles of different sizes and colors to indicate the number and
type of amino acids. (C) is the case of Escherichia coli drug-associated protein; (D) is the case of Homo sapiens drug-associated protein. Different colors are used to
indicate the proportion of the characteristics.
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amino acids, and the proportion of large-volume amino acids. At the
bottom of the figure, the first four digits are the ID name of the PDB
and the parentheses are the name of the drug ligand. In addition to
the conclusions drawn from Figures 5A,B, we found that these two
classes of drugs have a common feature of low binding ability to
aromatic amino acids.

4 CONCLUSION AND PROSPECT

Predicting the drug-binding sites accurately plays an essential role to
understand the underlying molecular recognition mechanism in
DNA-binding protein complexes. In this research, we extracted the
drug-binding sites fromDNA-binding protein–drug complexes.We
utilized sequence information to obtain PSSM and used network
information to obtain RIN to predict the binding site of drug ligands.
Then, we used the XGBoost method to construct the prediction
model. The experiment results show that our method performed
better than the other methods on both training set and independent
set. In this work, in order to study the correlation among residues, we
provided a network to represent the protein structure. In addition,
network topological features appropriately reflect the role of DNA-
binding protein–drug-binding sites in not only local structures, but
also global ones by exploiting their correlation with other residues.
Through the analysis of the physicochemical properties of the drug-
binding site, we found that residue-binding sites carry more positive
electric charge, are more hydrophobic, prefer to form alpha helices
and turns, and large amino acid volumes are easier to bind drug
ligands. In the future, we expect there is a protein structure network
with finer residue interactions that can reflect the structure and
function of the residue in the protein more accurately. It is also
believed that with the identification of more DNA-binding
proteins–drug-binding sites , the volume of the training set will
be expanded. As technologies continue to mature in machine
learning, there will be more excellent binding site prediction
methods.
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