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ABSTRACT
Introduction: Increased blood pressure variability
(BPV) is detrimental after acute ischaemic stroke, but
the interaction between BPV and neuroimaging factors
that directly influence stroke outcome has not been
explored.
Methods: We retrospectively reviewed inpatients from
2007 to 2014 with acute anterior circulation ischaemic
stroke, CT perfusion and angiography at hospital
admission, and a modified Rankin Scale (mRS) 30–
365 days after stroke onset. BPV indices included SD,
coefficient of variation and successive variation of the
systolic blood pressure between 0 and 120 hours after
admission. Ordinal logistic regression models were
fitted to mRS with predictor variables of BPV indices.
Models were further stratified by CT perfusion
volumetric measurements, proximal vessel occlusion
and collateral score.
Results: 110 patients met the inclusion criteria. The
likelihood of a 1-point rise in the mRS increased with
every 10 mm Hg increase in BPV (OR for the 3 BPV
indices ranged from 2.27 to 5.54), which was more
pronounced in patients with larger ischaemic core
volumes (OR 8.37 to 18.0) and larger hypoperfused
volumes (OR 6.02 to 15.4). This association also held
true for patients with larger mismatch volume,
proximal vessel occlusion and good collateral vessels.
Conclusions: These results indicate that increased
BPV is associated with worse neurological outcome
after stroke, particularly in patients with a large lesion
core volume, concurrent viable ischaemic penumbra,
proximal vessel occlusion and good collaterals. This
subset of patients, who are often not candidates for or
fail acute stroke therapies such as intravenous tissue
plasminogen activator or endovascular thrombectomy,
may benefit from interventions aimed at reducing BPV.

INTRODUCTION
Increased blood pressure (BP) variability
(BPV), independent of the BP mean, is
harmful after ischaemic and haemorrhagic
stroke.1–7 Under normal circumstances,
dynamic autoregulation of the cerebrovascu-
lar bed maintains a relatively constant cere-
bral blood flow (CBF) across a wide range of

BPs.8 9 However, after ischaemic stroke, the
ability to autoregulate is often impaired in
the area of the lesion core and ischaemic
penumbra.10 11 As a result, the penumbra
can be directly exposed to deleterious fluc-
tuations in systemic BP and increased BPV
has been shown to result in lesion core
growth on diffusion-weighted MRI 36–
48 hours post-stroke.12 Prior analyses of BPV
have not evaluated the impact of admission
lesion core volume or other characteristics of
the ischaemic penumbra, which are import-
ant radiological predictors of clinical
outcome and response to acute stroke treat-
ments.13 14 Additional neuroimaging deter-
minants of outcome, such as proximal vessel
occlusion (PVO) and cerebral collateral
vessel status, have likewise not been evaluated
in past BPV studies.8 9 To address these ques-
tions, we examined the impact of CT perfu-
sion (CTP) volumetric measurements, PVO
and collateral vessel status on the interaction
between BPV and neurological outcome
among a cohort of patients with acute ischae-
mic stroke.

METHODS
Patient selection
Patients were retrospectively identified by
searching the electronic medical record of an
academic medical centre for ischaemic stroke
International Classification of Diseases (ICD)-9
codes between 2007 and 2014. Patients were
included who had a CTP and angiographic
imaging at hospital admission, an anterior cir-
culation stroke confirmed by a neurologist, BP
data available for 120 hours after admission
and a follow-up mRS 30–365 days after stroke
onset. If mRS was 0 (no symptoms) or 6
(death) at hospital discharge, it was carried
forward as a follow-up mRS. Lacunar strokes
were excluded because CTP imaging is not sen-
sitive to small perfusion abnormalities. We
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selected the 120-hour interval for calculating BPV because
the two largest studies of BPV included BP data for up to
7 days after stroke onset and many other studies focused
on the first 72 hours after onset.15 The 120-hour interval
allowed us to include most patients while also acquiring a

sufficient number of BP readings per patient to reliably
determine variability. Additional information was obtained
from the chart, including admission National Institutes of
Health (NIH) Stroke Scale (NIHSS), patient demograph-
ics, medical comorbidities, admission laboratory values,
data from angiographic imaging, administration of intra-
venous tissue plasminogen activator (tPA) and perform-
ance of endovascular therapy (defined as mechanical or
aspiration thrombectomy or intra-arterial tPA).

Imaging parameters and analysis
Symptomatic intracerebral haemorrhage (sICH) was
identified on non-contrast head CT or MRI and defined
using the European Cooperative Acute Stroke Study 2
criteria.16 CTP was performed using a 64-section
scanner (Definition or Definition AS; Siemens) using a
four-dimensional spiral technique as previously
described.17 Standard imaging parameters were 80 kVp,
200 mAs, 4 mm slice thickness, 8.4 cm total coverage.
Approximately 40 mL of non-ionic iodinated contrast
was administered intravenously at 7 mL/s using a power
injector.
CTP source images were used to assess for the pres-

ence of cerebral collateral blood vessels (CTP collat-
erals) in the region of the Sylvian fissure and
leptomeningeal convexity based on a validated ordinal
scale.18 Collateral vessels were graded by comparing the
symptomatic hemisphere to the contralateral hemi-
sphere as follows: (1) absent; (2) less than the contralat-
eral normal side; (3) equal to the contralateral normal
side; (4) greater than the contralateral normal side. For
both sICH and CTP collaterals, two experienced raters
(AdH, JSM) graded a representative portion (30%) of
the cohort and the results were compared with two add-
itional raters (AB, SO), who were allowed to continue
grading the remainder of the cohort because their inter-
rater reliability (κ) with the experienced readers was
>0.9. For statistical analysis, the cohort was stratified by
good collaterals (CTP collateral score 3–4) versus bad
collaterals (CTP collateral score 1–2). Further stratifica-
tion was made by PVO, which was defined as occlusion
of the internal carotid artery or M1 segment of the
middle cerebral artery on admission MR, CT or digital
subtraction angiogram.
For volumetric analysis, we used the Food and Drug

Administration (FDA)-approved Olea Sphere software
(Olea Medical: La Ciotat, France) to generate CTP
maps with a Bayesian-based probabilistic deconvolu-
tion method, which recent data suggest is superior to
other delay-insensitive methods.19–21 On the basis of
previously validated CTP threshold definitions, we
defined a lesion core as relative CBF <40% and abso-
lute arterial tissue delay >2 s, and hypoperfused tissue
as relative mean transit time >135%.19 22 23 The CTP
data were used to create dichotomous patient stratifi-
cations based on three volumetric categories
(figure 1): upper and lower halves of lesion core
volume, hypoperfused volume, and mismatch volume

Figure 1 CT perfusion volumetric measurements shown for

dichotomous stratifications of lesion core volume,

hypoperfused volume, and mismatch volume with box plot

representation of median line and IQR, whisker representation

of data range, and outliers as single data points.
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(hypoperfused–lesion core volume), which corres-
pond to the concept of ischaemic penumbra. A
fourth dichotomous stratification was made by the
‘Target Mismatch’ profile (hypoperfused:lesion ratio
>1.8, mismatch volume >15 mL and lesion core
volume <70 mL), which has been validated for both
MR perfusion and CTP.24 25

Statistical analysis
BPV was calculated using systolic BP (SBP) readings
between 0 and 120 hours from hospital admission. Over
80% of patients had haemodynamic data starting within
6 hours of stroke onset and the remainder had it within
24 hours. Haemodynamic data that were considered
non-physiological (SBP>280 or <50 mm Hg) were
changed to missing, which was fewer than 0.05% of
available measurements. BPV was calculated in three

ways—SD:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=(n –1))

P(n)
(i¼1)

(BPi –BPmean)2
s

, coefficient

of variation (CV (%)): SD/BPmean×100, and successive
variation (SV) calculated as the square root of the average
difference in BP between successive measurements

using the equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=(n –1))

P(n�1)

(i¼1)
(BPiþ1 –BPi)2Þ

s
.6

We choose SD, CV and SV based on prior literature
suggesting that multiple approaches to measuring BPV
should be employed.4

Stata V.14.1 was used for all data analyses, with statis-
tical significance defined as p<0.05. Intergroup differ-
ences were evaluated with Spearman’s rank correlation,
independent sample t-test, χ2 test and the
Mann-Whitney U test. The regression analyses were cal-
culated with ordinal logistic regression fitted to the
outcome of mRS. This statistical methodology allows
measurement of shift in mRS, the odds of moving to the
next score, which is particularly beneficial when the
effect of the intervention or clinical factor is spread
across the entire range of ordinal values.26–28 An ordinal
logistic regression model was fitted to the outcome of
mRS with individual BPV indices. Multivariable ordinal
regression models were fitted to control for possible con-
founders using an interactive backward variable selection
(inclusion with p<0.05). The ordinal logistic regression
models were stratified by the four dichotomous categor-
ies of the upper and lower halves of lesion core volume,
hypoperfused volume, mismatch volume and Target
Mismatch. In keeping with recommendations from the
recent meta-analysis on BPV, ORs and 95% CIs are
reported per 10 mm Hg increment in the BPV param-
eter.15 If 2/3 of the BPV indices were significant for a
given model, it was considered a relevant finding.

RESULTS
One hundred and ten patients met the inclusion criteria.
Patient demographics are shown in table 1. There were
6587 BP readings between 0 and 120 hours after stroke

onset and the median number of BP readings per patient
was 57 (IQR 50–66). There were a high number of PVOs at
hospital admission (58/110, 53%). An additional 32/110
(29%) had an M2 or A1 segment occlusion with the
remainder of patients (20/110, 18%) having more distal
M3 or A2 occlusions. Half of the patients were administered
intravenous tPA and 40% (44/110) had endovascular inter-
vention, and 22% (24/110) had both. The high number of
acute stroke interventions is secondary to the referral
pattern for CTP at our institution. A relatively high number
of patients developed sICH (13/110, 11.8%), reflecting the
increased risk for sICH with interventional stroke therapy
and the high median NIHSS (12, IQR 7–19) in our cohort.
The mean±SD lesion core and hypoperfused volumes were
43.8±40.6 mL and 75.9±56.9, creating a moderate mismatch
volume (hypoperfused–lesion volume) of 36.8±31.1 mL.
The median CTP collateral score was 3, but the most
common value was 2 (44/110, 40%).
In the adjusted and unadjusted ordinal logistic regres-

sion models fitted to the outcome of mRS, all three mea-
sures of BPV (SBP CV, SD and SV) were predictive of a
one-point shift in the mRS (OR 2.27 to 5.54, p<0.05;
table 2). SBP mean was not predictive of outcome and

Table 1 Patient demographics, clinical information and

initial imaging data

Variable

All patients

(n=110)

Age, years, mean±SD 61.5±17.0

Male, n (%) 60 (55.6)

Caucasian, n (%) 95 (86.4)

Admission NIHSS, median (IQR) 12 (7–19)

Follow-up mRS, median (IQR) 3 (1–4)

Time to follow-up mRS from stroke, days,

mean±SD

96±51

Hypertension, n (%) 60 (54.6)

Hyperlipidaemia, n (%) 41 (37.3)

Atrial fibrillation, n (%) 33 (30.0)

Diabetes mellitus, n (%) 23 (20.9)

Congestive heart failure, n (%) 14 (12.7)

Current cigarette smoking, n (%) 24 (21.8)

Admission glucose level, mg/dL, mean±SD 127.1±40.2

Collateral score (1–4), median (IQR) 3 (2–4)

Lesion volume, mL, mean±SD 43.8±40.6

Hypoperfused volume, mL, mean±SD 75.9±56.9

Mismatch volume, mL, mean±SD 36.8±31.1

tPA administered, n (%) 55 (50.0)

Endovascular therapy, n (%) 44 (40.0)

Symptomatic intracerebral haemorrhage,

n (%)

13 (11.8)

Proximal vessel occlusion, n (%) 58 (52.7)

SBP SD, 0–120 hours, mean±SD 14.4±4.8

SBP CV, 0–120 hours, mean±SD 11.1±3.7

SBP SV, 0–120 hours, mean±SD 14.1±4.5

SBP mean, 0–120 hours, mean±SD 131.0±16.7

CV, coefficient of variation; mRS, modified Rankin Scale; NIHSS,
National Institutes of Health Stroke Scale; SBP, systolic blood
pressure; SV, successive variation; tPA, tissue plasminogen
activator.
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hence was not included in subsequent models. In
unadjusted ordinal models, the CTP dichotomous stratifi-
cations demonstrated an association between increased
BPV and worse outcome in patients with larger lesion core
volume (OR 8.37 to 18.0, p<0.05), larger hypoperfused
volume (OR 6.02 to 15.4, p<0.05) and mismatch volume
(OR 3.66 to 9.41, p<0.05), but the association was not sig-
nificant in the lower halves of the stratifications. These
relationships maintained significance after adjusting for
possible confounders, including admission NIHSS, patient
sex, tPA administration, sICH and admission glucose
(table 3).
Additional stratifications were made based on the

Target Mismatch profile, PVO at hospital admission and
collateral score. In the unadjusted model, patients
without Target Mismatch had an association between
increased BPV and worse neurological outcome (OR
5.26 to 8.43, p<0.05), which continued to be significant
in the adjusted model (table 4). Patients with PVO and
good collaterals also demonstrated an association
between increased BPV and worse outcome (OR 5.20 to
9.60, 3.58 to 31.9, p<0.05). These associations also
remained significant in the adjusted models (table 4).

DISCUSSION
Our results confirm earlier reports that increased BPV is
harmful after acute ischaemic stroke1–7 and the inclu-
sion of stratifications based on neuroimaging determi-
nants such as CTP volumetric data, PVO and cerebral
collateral status adds a novel perspective. These analyses
revealed that patients with larger ischaemic core or
hypoperfused volumes are particularly vulnerable to the
detrimental effects of increased BPV. This relationship
was also seen in patients with a larger mismatch and
without the Target Mismatch profile. Taken together,
these findings suggest that the impact of increased BPV
is, at its most fundamental level, driven by the larger
absolute volumes of infarcted and peri-infarct tissue.
Increased BPV has been linked to the development of

sICH after ischaemic stroke,29 which would be one
plausible mechanism for why patients with larger core
and hypoperfused volumes had a worse outcome with
higher BPV, but the incidence of sICH was not different
in any of the stratifications and it was included as a cov-
ariate in the adjusted models. A more compelling
explanation is that after moderate-to-severe ischaemic
stroke, the lesion core and its ischaemic penumbra often

Table 2 Unadjusted and adjusted ORs for a one-point shift in mRS at follow-up with predictor blood pressure indices of SBP

SD, CV, SV and mean. ORs are shown for a 10 mm Hg shift

Blood pressure indices

OR for a 1-point

mRS shift 95% CI p Value

Adjusted OR for

a 1-point mRS shift* 95% CI p Value

SBP CV 3.30 1.48 to 7.35 0.003 3.02 0.86 to 10.6 0.085

SBP SD 5.54 1.72 to 17.9 0.004 2.78 1.16 to 6.70 0.022

SBP SV 2.27 1.01 to 5.10 0.047 3.03 1.28 to 7.17 0.012

SBP mean 1.00 0.98 to 1.02 0.722 1.02 1.00 to 1.05 0.038

*Adjusted for admission NIHSS, patient sex, history of congestive heart failure, history of diabetes mellitus and symptomatic intracranial
haemorrhage.
CV, coefficient of variation; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; SV,
successive variation.

Table 3 Adjusted ORs for a one-point shift in mRS at follow-up with predictor variables of SBP SD, CV and SV; stratified by

lesion core volume, hypoperfused volume, mismatch volume, Target Mismatch status, proximal vessel occlusion on admission

and collateral score

BPV indices OR* 95% CI p Value BPV indices OR* 95% CI p Value

Higher lesion core volume (n=55) (mean±SD=72.7±39.2 mL) Lower lesion core volume (n=55) (mean±SD=15.1±10.3 mL)

SBP SD 9.27 2.36 to 36.3 0.001 SBP SD 0.74 0.21 to 2.63 0.643

SBP CV 20.2 3.00 to 137 0.002 SBP CV 0.30 0.05 to 2.07 0.224

SBP SV 18.9 3.69 to 97.1 <0.001 SBP SV 1.27 0.44 to 3.66 0.664

Higher hypoperfused volume (n=55) (mean±SD=121.3

±44.9 mL)

Lower hypoperfused volume (n=55) (mean±SD=30.5

±17.6 mL)

SBP SD 5.41 1.24 to 23.6 0.025 SBP SD 0.85 0.23 to 3.10 0.804

SBP CV 12.9 1.70 to 98.8 0.013 SBP CV 0.28 0.04 to 2.01 0.204

SBP SV 4.09 0.99 to 16.9 0.052 SBP SV 1.63 0.52 to 5.08 0.402

Higher mismatch volume (n=55) (mean±SD=62.3±22.9 mL) Lower mismatch volume (n=55) (mean±SD=11.4±10.4 mL)

SBP SD 3.35 1.03 to 11.0 0.045 SBP SD 2.58 0.58 to 11.4 0.212

SBP CV 5.97 1.05 to 34.0 0.044 SBP CV 1.24 0.16 to 9.36 0.838

SBP SV 3.76 1.13 to 12.5 0.031 SBP SV 2.44 0.61 to 9.87 0.210

*Adjusted for admission NIHSS, patient sex, tPA administration, symptomatic intracranial haemorrhage and admission glucose value.
BPV, blood pressure variability; CV, coefficient of variation; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale;
SBP, systolic blood pressure; SV, successive variation; tPA, tissue plasminogen activator.
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exhibit impaired cerebral autoregulation.10 11 In patients
with blunted autoregulation, increased BPV could
produce deleterious fluctuations in cerebral perfu-
sion,30 and would be particularly relevant in patients
with large lesion, hypoperfused and mismatch volumes.
The detrimental effect of increased BPV was also seen

in patients with PVO, which has been reported in previ-
ous studies,12 31 and in patients with good collaterals,
which is a novel finding. Patients with PVO are more
likely to have a large lesion core and hypoperfused
volume, which could account for the differential effect.
However, the susceptibility of patients with good collat-
erals was unexpected. Following ischaemic stroke, collat-
eral blood vessels will dilate to provide additional blood
flow32 and patients with PVOs recruit more collateral
vessels than those with distal occlusions. We propose that
patients with PVO and good collaterals transmit the
harmful increase in BPV to the area of the stroke, while
those with worse collaterals or distal occlusions have a
more isolated lesion core and ischaemic penumbra. The
good collaterals could also expose the brain to cellular
mediators of inflammation, which are elevated in
patients with high BPV.33 34 Finally, we cannot exclude
other possible mechanisms such as cerebral oedema for-
mation or other organ system damage resulting from
increased BPV.15

This retrospective study has several limitations, including
the non-uniform time intervals between BP measurements,
time from stroke onset to first BP measurement and hos-
pital discharge to clinical follow-up. Cataloguing use of
BP-lowering or vasopressor medications was impractical
given the many complexities in how patients were treated.
The inclusion of only patients with CTP and angiographic
imaging introduces the possibility of selection bias,
although the baseline characteristics of our cohort were
comparable to other studies of moderate-to-severe ischae-
mic stroke. We only included patients who had BP data for

120 hours after admission, but given the more severe
strokes in our cohort and our ability to continue recording
BP measurements if patients were transferred to the
rehabilitation service, we do not feel this biased results.

CONCLUSION
BPV is a predictor of neurological outcome in patients
with a large lesion core volume, concurrent viable
ischaemic penumbra, PVO and good collaterals. Prior
analyses of BPV have not accounted for perfusion
imaging volumetric measurements or collateral status,
rendering our findings novel and important for future
BPV research in patients with acute ischaemic stroke.
Dozens of clinical trials involving over 20 000 patients
have been conducted to determine if pharmacologically
lowering BP after ischaemic stroke is beneficial. The
results have been persistently neutral or negative.35–38 In
contrast, there have been no clinical trials on the effi-
cacy of reducing BPV after ischaemic stroke. Our study
should help begin to clarify the inclusion criteria for
such a trial. Furthermore, patients with ischaemic stroke
who are not candidates for endovascular therapy (no
Target Mismatch, low ASPECTS score from a large
lesion core volume) or may not respond to intravenous
tPA (PVOs recanalise in less than a quarter of patients
administered tPA)39 could specifically benefit from ther-
apies aimed at reducing BPV, such as calcium channel
blockers40 or low-dose vasopressors.41 42
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Table 4 Adjusted ORs for a one-point shift in mRS at follow-up with predictor variables of SBP SD, CV and SV; stratified by

lesion core volume, hypoperfused volume, mismatch volume, Target Mismatch status, proximal vessel occlusion on

admission and collateral score

BPV indices OR* 95% CI p Value BPV indices OR* 95% CI p Value

Target Mismatch (n=57) No Target Mismatch (n=53)

SBP SD 1.94 0.63 to 6.02 0.250 SBP SD 6.61 1.40 to 31.1 0.017

SBP CV 2.39 0.45 to 12.7 0.305 SBP CV 5.32 0.70 to 40.1 0.105

SBP SV 2.56 0.81 to 8.09 0.109 SBP SV 5.96 1.20 to 29.6 0.029

Proximal vessel occlusion (n=58) No proximal occlusion (n=52)

SBP SD 5.38 1.44 to 20.2 0.013 SBP SD 1.63 0.53 to 5.03 0.398

SBP CV 8.14 1.19 to 55.5 0.032 SBP CV 1.49 0.35 to 6.25 0.588

SBP SV 3.47 1.05 to 11.4 0.041 SBP SV 3.55 0.91 to 13.8 0.068

Good collaterals (n=60) Bad collaterals (n=50)

SBP SD 5.78 1.23 to 27.2 0.027 SBP SD 1.85 0.60 to 5.74 0.289

SBP CV 8.60 1.02 to 72.5 0.048 SBP CV 1.51 0.26 to 8.83 0.650

SBP SV 3.82 1.15 to 12.7 0.029 SBP SV 2.09 0.58 to 7.47 0.258

*Adjusted for admission NIHSS, patient sex, tPA administration, symptomatic intracranial haemorrhage and admission glucose value.
BPV, blood pressure variability; CV, coefficient of variation; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale;
SBP, systolic blood pressure; SV, successive variation; tPA, tissue plasminogen activator.
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