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Abstract: Autonomous vehicle technology increasingly allows drivers to turn their primary attention
to secondary tasks (e.g., eating or working). This dramatic behavior change thus requires new
input modalities to support driver–vehicle interaction, which must match the driver’s in-vehicle
activities and the interaction situation. Prior studies that addressed this question did not consider
how acceptance for inputs was affected by the physical and cognitive levels experienced by drivers
engaged in Non-driving Related Tasks (NDRTs) or how their acceptance varies according to the
interaction situation. This study investigates naturalistic interactions with a fully autonomous vehicle
system in different intervention scenarios while drivers perform NDRTs. We presented an online
methodology to 360 participants showing four NDRTs with different physical and cognitive engage-
ment levels, and tested the six most common intervention scenarios (24 cases). Participants evaluated
our proposed seven natural input interactions for each case: touch, voice, hand gesture, and their
combinations. Results show that NDRTs influence the driver’s input interaction more than interven-
tion scenario categories. In contrast, variation of physical load has more influence on input selection
than variation of cognitive load. We also present a decision-making model of driver preferences to
determine the most natural inputs and help User Experience designers better meet drivers’ needs.

Keywords: fully autonomous vehicle (FAV); input interactions; non-driving related task (NDRT);
intervene vehicle system

1. Introduction

Increased vehicle autonomy, driven largely by the development of Artificial Intel-
ligence (AI), means that vehicle operation is no longer the driver’s primary task [1,2].
As vehicle automation levels rise from the Society of Automotive Engineers (SAE) Level 0
(no automation/the driver is fully responsible for driving) to Level 5 (fully autonomous
vehicle), drivers are able to relinquish more vehicle control and engage in Non-Driving
Related Tasks (NDRTs), such as relaxing, working on a laptop, or even sleeping [3–7].
This difference in activities may be accompanied by a change in position inside the Fully
Autonomous Vehicle (FAV), for example, reclining the seat to use a laptop would position
the driver farther from the dashboard than during normal driving [8,9]. Yet drivers engaged
in NDRTs still need to interact with the vehicle [10] (e.g., adjust the infotainment system)
or intervene to assume control (e.g., instruct the vehicle to pass a slower car ahead) [11–13].
Further, different NDRTs demand of drivers different physical and cognitive loads [9,14,15],
which are also influenced by differences between maneuver- and nonmaneuver-based
intervention scenarios [16,17]. Consequently, conventional touch and voice interactions
may not be sufficient to accommodate these changes in physical and cognitive load thus
do not adequately support drivers to perform different intervention scenarios.

While developments in interior design [5,9,18] were studied to better accommodate
drivers, their interaction needs inside FAVs have yet to be fully addressed [10,19,20].
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Researchers should consider the conditions of individual drivers and what they might
need to do. In addition to the common touch interaction, remote interaction techniques
such as voice, hand gesture, and gaze are particularly strong candidates to suit the FAV
interaction environment. Thus, it is important to test these input interactions and suggest
hybrid forms (e.g., voice + hand gesture, voice + touch, etc.) to suit all possible situations.

In nonautonomous vehicles, identifying the best input interactions often aims to
increase safety by reducing driver distraction or cognitive demands [21–23]. Since FAVs
integrate more technology and require a broader variety of interaction than nonautonomous
vehicles [24], identifying the best input interactions will also enhance AV acceptance and
allow drivers to seamlessly continue performing NDRTs safely, efficiently, and intuitively.
In other words, these input interactions should be easy to learn and intuitive to use,
and must not increase driver stress [18–20]. Our goal is to understand the most natural
input interactions that allow drivers to perform multiple intervention scenarios while
engaged in different levels of NDRTs. This study also investigates factors that influence
driver selection of input interaction technique while considering their level of engagement
in different NDRTs and various possible intervention scenarios to increase driver acceptance
and satisfaction about user interface in autonomous vehicles. Based on these goals, we ask
the following Research Questions (RQ):

• RQ1: What are the most and least preferable natural input interactions in FAVs
regardless of NDRTs and intervention scenarios? How could FAVs help regulate
interactions based on the driver’s in-vehicle activity and the driving context?

• RQ2: Based on previous studies [14,25–27] that show that physical and cognitive
load negatively affect user interaction and influence human–computer interaction and
design, how do NDRTs with various physical and cognitive engagement levels affect
driver acceptance of input interactions inside FAVs?

• RQ3: As maneuver-based intervention is an essential technique since it gives AV
drivers a feeling of control and satisfaction compared to pure automation [24,28],
how do maneuver and nonmaneuver-based intervention scenarios affect a driver’s
selection of input interactions? Additionally, which factor most influences the selection
of input interactions inside FAVs?

To address these questions, we employed an online video-based comprehensive
survey to efficiently present and test a large number of factors across a large number of
participants [29–31]. The videos depict a driver involved in four NDRTs who is asked to
perform six intervention scenarios using the suggested seven input interactions. Then,
participants relate their impression and suggestions about the tested input interactions.
These videos reflected a real-world driving environment to help participants immersive
themselves in the scenario and better imagine themselves in the driver’s seat. Participants’
answers were then analyzed to formulate the following contributions:

1. Demonstrate the most naturalistic input interaction possibilities in FAVs for NDRTs,
according to variation in physical and cognitive load demands.

2. Understand the factors that affect a driver’s natural input interaction while interven-
ing with the FAV system and highlight their impacts.

3. Suggest guidelines to design natural input interaction channels for FAVs based on the
driver’s level of engagement in NDRTs and the specific intervention scenario. In other
words, design a mental model to represent the driver’s method of selecting the most
appropriate input interaction inside the FAV.

1.1. Literature Review

In nonautonomous vehicles, the driver controls the vehicle throughout the trip and
interactions with the vehicle tend toward nonmaneuver-based interventions, such as using
infotainment or a navigation system [21]. With increasing levels of vehicle autonomy,
maneuver control, such as steering, braking, or stopping, is still needed, though not at
all times, and AVs can still hand over control to the driver [32–34]. In a Level 5 (SAE)
vehicle, neither traditional maneuver control nor takeover ability exists [13,16]. However,
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having the ability to control the vehicle was identified as a leading factor in AV accep-
tance [15,20,28,35,36]. Roedel et al. [37] found that inexperienced, young drivers show low
acceptance for AVs as they feel bored and out of control.

Feelings of control in the AV rely on effective communication with the vehicle.
For lower-level automation (SAE Levels 2 and 3) [1], maneuver-based driving was in-
troduced to keep the driver in the loop by controlling or cooperating with the vehicle
to guide and handle system limitations rather than hand over control [38,39]. Similarly,
in higher-level automation, maneuver-based intervention has been proposed as the way
for drivers to communicate with the FAV in order to intervene in the automated system to
execute the desired maneuver, such as suddenly stopping the vehicle [13,16,40]. Maneuver-
based intervention improves trust and acceptance of the AV by keeping the driver in
control [13,41], yet applying these interventions in FAVs requires new input control chan-
nels to execute the command, as steering wheels and pedals are not designed to be used for
this purpose. Previous studies [16,17,42] have discussed intervention scenarios where the
driver wants to spontaneously influence FAV behavior (e.g., stop the car to pick up a friend,
overtake the car ahead, or select a parking lot). These studies have focused on intervention
scenarios based solely on controlling vehicle driving (maneuver-based driving), which,
unfortunately, may not cover all possible interaction aspects [43]. Previous studies have
shown that drivers are most interested in performing the following NDRTs (listed in order
of preference): using multimedia, such as a phone or tablet; working on a laptop; relaxing;
eating; and sleeping [3–7,44]. Similarly, manual driving studies have investigated how the
physical and cognitive demands of NDRTs affect driving quality [15,26,45,46]. For instance,
eating and holding a phone have been shown to differently affect a driver’s physical load
and require different levels of cognitive and physical engagement [14,15,45].

In FAVs, maintaining vehicle control is no longer the driver’s main task. As there is no
possibility for a takeover request from the FAV, drivers can freely and confidently engage
in NDRTs [6]. This study [47] has tested only one NDRT (using a smart phone) on overall
participant preference order for the tested input interactions (voice, touch, gaze-head)
while sampling driver experience about the AV action.

Even though performing NDRTs was found as a major advantage of FAVs [36,48],
previous studies have not considered how different NDRTs affect drivers’ acceptance
of input interaction [16,17]. In manual driving, where driving itself is the primary task,
typical input interactions (e.g., buttons, touch, voice, and hand gestures) are designed to
increase safety rather than improve performance [21,23,45,49]. Previous AV studies have
investigated the use of touch panels for drivers to select one of the vehicle’s suggested
propositions (e.g., pass the car ahead or hand over driving control) when the automated
system has reached its limit [32,34], or to select AV maneuvers (e.g., change lanes) via
touch input implemented on the steering wheel [33]. However, these approaches require
the driver’s hands to be free to interact with the AV—a less-than-ideal condition when
engaged in an NDRT—and that the driver be close enough to the steering wheel to reach
the touch panel. Further, some participants did not prefer touch input because they had to
switch their eyes from the road view to the touch interface while interacting [32].

In addition to touch interaction, hand gesture has been applied for maneuver-based
intervention [16] and to control in-car lateral and longitudinal AV motions [12], show-
ing promising usability as a remote input interaction in both studies. Still, problems persist
with overlapping commands and rates of misrecognition, and drivers struggle to remember
each hand gesture. Automotive researchers have tried to solve these problems by propos-
ing a multimodal input that combines eye gaze and hand gesture inputs, where gaze is
used to localize the target and hand gesture to coordinate pointing [21,23]. The combined
multimodal input has shown promise as users can interact with a wide range of vehicle
functions without having to learn new gestures.

Voice input can supplement the drawbacks of touch or hand gesture inputs by sup-
porting remote and hands-free input interactions. Voice input, one of the most common
input interactions in today’s vehicles and AV studies, has been implemented to sup-
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port driver–vehicle cooperation and select vehicle maneuvers. Drivers prefer voice to
touch input [32,47] and hand gestures [16], since voice commands do not require physical
movement and allow them to keep their eyes on the road during hands-free interaction.
However, voice input may not work well in a noisy environment (e.g., group conversa-
tions), and drivers may not completely trust speech recognition or may become confused
about the appropriate command to initiate a desired action [10,16].

To simplify voice input commands, AV and non-AV studies suggest voice multimodal
inputs such as voice + touch or voice + hand gesture [17,21,22,50,51]. While participants
reported that voice + hand gesture was more natural, intuitive, and less cognitively de-
manding than voice + touch [17], the latter was preferred for its shorter interaction gen-
eration [21]. In addition, voice + gaze has been shown to reduce interaction duration as
compared to voice as a single input modality [21,22].

Despite these findings, Natural User Interface (NUI) studies have not considered the
effects of the cognitive and physical load of NDRTs on the user’s preference of interface in
FAVs [16,17]. Moreover, since each input interaction has its own cognitive and physical load
(e.g., voice input increases cognitive load, touch input increases physical load), the various
conditions of NDRTs may impact the driver’s interaction behavior with FAVs [20].

1.2. Proposed Input Interactions, NDRTs, and Intervention Scenarios

Proposed Input Interactions: This present study explores both single and multimodal
NUI input interactions to determine how different NDRTs affect driver acceptance for
natural input interaction [16,17,21,52]. Those inputs include voice, touch, hand gesture,
voice + touch (e.g., where touch is used to select the object and voice input to trigger the
selection), voice + gaze, voice + hand gesture, and gaze + hand gesture, see Figure 1.
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Figure 1. Which input interaction is most naturalistic? We analyzed preferences of seven input interactions associated with
the proposed non-driving related tasks and intervention scenarios.

Proposed Non-driving Related Tasks: We investigated the most frequent NDRTs in an
AV to assess how their physical and cognitive loads affect a driver’s input interactions [4–6].
The NDRTs were categorized in descending order (high to low) based on physical and
cognitive load [9,26,45]. For example, previous studies have shown that watching a video
NDRT creates a significant negative correlation between mental demand and takeover
time [15]. Therefore, our study considers watching a video as an example of a high cognitive
load NDRT (Table 1).
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Table 1. Description of Non-driving Related Tasks (NDRTs) and condition distribution for physical and cognitive load.

NDRTs (1–4) Description Physical Load Cognitive Load

Relaxing The driver was in a resting condition, reclining and
looking forward. Low Low

Eating The driver was holding a food container in one hand
and an eating utensil in the other. High Low

Working on a laptop Using both hands, the driver was typing on a laptop
located on his lap. High High

Watching video The driver deeply engaged in watching a video
playing from the in-vehicle touch screen. Low High

Proposed Intervention Scenarios: Our study presented six intervention scenarios that
cover both Maneuver-Based Interventions (MBIs) (four scenarios) and Nonmaneuver-Based
Interventions (NMBI) (two scenarios). MBIs include lateral control, longitudinal control,
stopping the vehicle at a designated area [12,17,53], and rerouting the navigation [18].
NMBIs include requesting information (e.g., about an interesting building or available
parking near the final destination) [12,17,53] which is then shown on the head-up display,
the most preferred display [25,54], and controlling in-vehicle features, such as playing a
video using the in-vehicle infotainment system [11,21], (Table 2). Our proposed scenarios
were parameterized in the perspective of driver intervention in the FAV to control vehicle
movement (MBI) or for entertainment (NMBI).

Table 2. Description of the driver intervention scenarios.

Category Scenario Description

Maneuver-based
Intervention

Scenarios

1- Overtake another Vehicle Ask the vehicle to pass the car ahead for some reason
(e.g., blocks the front view).

2- Control Speed Ask the vehicle to slow down then maintain the
lower speed.

3- Stop the Vehicle Ask the vehicle to stop at a stated location.

4- Reroute Navigation Ask the vehicle to reroute the navigation.

Nonmaneuver-based Intervention
Scenarios

5- Request Information Ask the vehicle to provide information about a point
of interest.

6- Control Car Features Control the vehicle infotainment, e.g., play a
YouTube video.

The paper is organized as follows: Section 2 discusses key steps for structuring and
conducting our video-based survey, subjects’ demographic characteristics, and explains
how we filtered our data. Section 3 reviews our survey data results. Section 4 discusses
our findings, proposes a decision-making model, and acknowledges the limitations of our
study. Lastly, Section 5 presents our conclusion and discusses future work.

2. Method

Many AV studies rely on survey-based video, which allows researchers to test more ele-
ments with a larger number of responses than other qualitative methods [30,55]. The method-
ology can breach the communication barrier between participant and researcher and, com-
pared to text-only surveys, allows researchers to collect more quantitatively and qualitatively
complete data. It also prompts participants to be more relaxed and aware and thus heightens
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their sense of immersion [56]. For these reasons, we used a survey-based video to investigate
a wide range of factors that influence driver preferences of input interaction techniques.

Stanton et al. [57] presented lane change examples in 60 videos to determine whether
participants could distinguish between AV behavior and manual driving behavior. In a
similar study, [30] presented scenarios about AV behaviors to collect user-centered percep-
tions about how they would like semi-AVs to act and alert them of the vehicles’ decisions.
For vehicle-to-pedestrian displays, [31] presented a 30 creative design concepts to a large
number of participants. Moreover, Fuest et al. [58] compared a video-based method with a
real world experiment regarding communication between AVs and pedestrians and found
that both were in agreement. Following these findings, we employed comprehensive
survey-based videos that present NDRTs with different levels of physical and cognitive
load and various intervention scenarios to understand participants’ preferences and accep-
tance about the suggested input interactions, and how their preference is influenced by the
variances in NDRTs and intervention scenarios.

Our video-based survey was distributed using Amazon Mechanical Turk (MTurk),
an online recruiting and crowdsourcing platform in which workers (known as MTurk-
ers) accept and complete a Human Intelligence Task (HIT), or a single, self-contained
task. For each completed HIT, the MTurker collects a reward. Compared to traditional
recruitment methods, the MTurk platform has been found to be efficient for recruiting
diverse, more representative participants and to deliver higher speed of completion at a
lower price [59,60]. MTurk has supported many researchers in collecting a wide range of
responses while providing options to control a specific characteristic (e.g., age or education
level) in the recruited participants from suggested categories [56,60].

2.1. Procedure

To achieve our survey goal, in a pilot test, we recruited 20 participants to complete
our survey and interviewed them about whether our videos and questionnaires delivered
our concept clearly. In order to avoid participant fatigue and maintain their engagement,
we designed short videos so that the total survey time did not exceed 1 h [61]. The pilot
test confirmed that the total survey time was between 25 and 30 min. Based on participant
feedback, we revised unclear points in the survey and set a completion time of 1 h for
each survey.

Next, we recruited 360 participants using MTurk. Participant ages ranged from 18 to
70 years (M = 37.08, SD = 10.2; Gender: Male = 268, Female = 92). Drivers’ population is too
large; therefore, selecting a large research sample that achieves a high confidence level with
a low margin of error is challenging. In relation, an online survey was designed to study
AV-to-pedestrian interactions [31], where 200 participants were recruited. Another study
recruited 300 participants to check how drivers prefer the semiautonomous vehicle to
inform them about the vehicle’s decisions in different situations [30]. Therefore, we infer
that a sample between 200 to 300 participants or more is sufficient for further statistical
research, where acceptable confidence level and margin of error can be achieved.

Using a between group design, 120 answers were received for each intervention sce-
nario. Seventy-two percent of participants had knowledge of or experience with Advanced
Driver Assistance Systems (ADAS; e.g., forward collision alert, lane departure alert, auto-
matic emergency braking, pedestrian collision alert) while 28% did not. Each participant
was compensated approximately 7 USD after completing the survey.

To guarantee data quality and reliable participants [59,62], we screened our data
by specifying additional qualifications for our participants. Participants must be mas-
ter MTurkers who have achieved a HIT approval rate greater than 95% positive with a
minimum of 1000 previous HITs. To ensure that they were experienced drivers, we also
specified that each participant had to own a car, be aware of our tested driving scenarios,
and be familiar with input interactions in today’s in-vehicle infotainment systems (e.g.,
touch, voice). We informed participants their responses would be used for a research study
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and each answer would be carefully checked, which [59] found reduces invalid answers
and increases time on task.

2.2. Survey Design

We captured our videos by driving on real roads on and near our university campus, as
illustrated in Figure 2. Our videos were created using a semiautonomous vehicle (Hyundai
Genesis GV80) capable of performing adaptive cruise control with semiautonomous driving
mode (Level 2.5), automated emergency braking with pedestrian detection, and lane-
departure warning with lane-keeping assist. The vehicle incorporates a machine learning-
based smart cruise control that maintains distance by sensors, such as the front camera,
and radar from the vehicle in front, while traveling at a speed set by the driver, a core
technology for the ADAS. Videos were taken by two GoPro cameras showing the driver’s
side view and the vehicle front view inside and outside the vehicle.
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Figure 2. Example snapshot from our video (a) showing one intervention scenario (requesting building information) and a
driver engaged in an NDRT (working on laptop). (b) A map of the routes used to create our survey videos.

In total, 24 videos were processed and presented in the survey (four videos presenting
the four NDRT cases for each of six intervention scenarios). The first video (around 2 min)
is a combination of seven short clips of the driver’s side view and the car’s front view
side-by-side. In each clip, participants were informed about the NDRT (“Relax”) and the
corresponding intervention scenario (e.g., overtake the car ahead) and one of seven possible
input interactions the driver could use. During each video, the driver’s input interaction
was highlighted and the video was briefly paused to allow participants to focus on the type
of input interaction used. The videos were designed to allow participants to watch various
combinations of input interactions that could fit the FAV environment. The second, third,
and fourth videos (15 s each) showed the remaining NDRTs (Table 1). Participants were
asked to watch the videos in full screen to increase the feeling that they were driving the
FAV and, obviously, to watch all input interactions completely.

In total, we surveyed six intervention scenarios: four maneuver-based interventions
and two nonmaneuver-based interventions (Table 2). For each intervention scenario,
participants were shown a split-screen video of a driver engaged in an NDRT (e.g., relaxing)
intervening with the vehicle to perform a request (e.g., overtake the car ahead) using
various input interactions (e.g., touch, voice, etc.). The right side of the screen video
showed the car front view, which displays the action being performed, while the left
side showed the driver requesting the intervention scenario using the assigned input
interactions (Figure 1). To minimize the learning effect, we designed a counterbalanced,
between-group study design. Each participant answered questionnaires related to only
two intervention scenarios and watched their related video scenarios to lessen participant
fatigue and frustrations. In total, we created 30 survey copies with a different order of
intervention scenarios.
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To ensure that participants understood our survey concept and increase data vali-
dation, the survey began with an introduction explaining the major differences between
FAVs and nonautonomous vehicles with respect to design, possible non-driving-related
activities, level of autonomy, and driver interaction possibilities. The driver’s in-vehicle
activities were specifically highlighted and shown as examples of what participants could
do inside the FAV. To inform the participants of the survey structure, the introduction was
followed by a description of the survey steps and goal.

After providing a brief introduction about our survey, participants were asked to
answer questions related to two intervention scenarios according to each of the four
NDRTs, Figure 3. For each intervention scenario, participants started with the relaxing
condition, which we considered as a baseline for data collection because it has the lowest
physical load and cognitive load. In the relaxing condition, we showed participants the
two minute video and asked them to rank the seven input interactions from most to least
preferred to perform the given intervention scenario.
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The ranking question was then followed by asking participants to evaluate each input
interaction using a 5-point Likert scale (1—very low, 5—very high) based on 7 parameters:
“Familiarity”, “Quick to learn”, “Easy to use”, “Satisfactory”, “Naturalistic”, “Controlling”,
“Useful”, and overall participant satisfaction. Previous studies have found that these seven
parameters are paramount for general user interface design, particularly for in-vehicle
infotainment systems [18,48,63]. Since the evaluation of “Familiarity” and “Quick to learn”
parameters are not affected with a change in NDRTs, these parameters where evaluated
once in each survey. However, since the evaluation of the other five parameters is subject
to change with a change in NDRT, they were evaluated across all NDRT conditions for all
input interactions.

• Familiarity: I know how to use this input interaction or have used it before.
• Quick to learn: I think I can learn this input interaction quickly and easily.
• Easy to use: I think it is easy to use this input interaction to request this scenario while

performing the current NDRT (e.g., eating).
• Satisfactory: I feel satisfied using this input interaction to request this scenario (e.g.,

to request the overtaking) while performing the current NDRT.
• Naturalistic: I think I would feel natural interacting with the car using this input

interaction to request the current scenario (e.g., to request the overtaking) while I am
involved in the current NDRT.

• Controlling: I feel I am optimally controlling vehicle behavior using this input inter-
action to request this scenario while performing the current NDRT.
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• Useful: I think this input interaction could match the typical interactions in today’s
cars to be used to request the current scenario (e.g., stopping the car!) while performing
the current NDRT (e.g., relaxing).

After rating all input interactions in the relaxing condition, participants also ranked
each input interaction for the given intervention scenario related to other NDRTs (working
on a laptop, watching a video) (Table 1), while following the same sequence: watch a 15 s
video, answer the ranking question, rate each input interaction, and describe in words how
to perform their most preferred input interaction.

Our task included explicitly verifiable questions to allow us to filter invalid data [30,59].
We removed data that contained irrelevant responses between participant descriptions
about the preferred input and their input interaction rankings. This was used to validate
the responses if the participant’s description matched their ranking. Although the 1 h
completion time was hidden from participants, it allowed us to eliminate responses from
participants who were not engaged and did not complete the survey [59]. Following this
data filtration of our total gathered responses (n = 120) for each scenario, 108 valid responses
remained (total 324 responses).

3. Results

We explore the results with a hierarchical approach to identify factors in regard to how
drivers’ preferences of input interaction are affected by the NDRT and the intervention sce-
nario. Our survey results were filtered with Microsoft Excel then analyzed with Statistical
Package for the Social Sciences (SPSS) [64]. Our statistical method includes nonparametric
tests such as an independent samples Kruskal–Wallis H test and Friedman’s ANOVA test
for the data that were not normally distributed, and parametric tests such as a one-way
ANOVA and an independent samples t-test for the data that were normally distributed [65].
Analysis Of Variance (ANOVA) is a group of statistical models used as a method for
testing significance of difference between means. Equivalence tests were performed to
analyze pairwise comparisons (Bonferroni-corrected or Games–Howell-corrected as post
hoc tests) [66].

3.1. Identifying Input Interaction Preferences
3.1.1. Input Interaction Preference Order Based on the Ranked Data

Our participants were asked to watch the proposed videos then rank the seven input
interactions from 1 (lowest, “this input interaction could be chosen last”) to 7 (highest,
“this input interaction could be chosen first”) in each NDRT condition. The average
preference of input interaction ranking across all scenarios and NDRTs were assessed
to identify overall preference order. The results showed that regardless of NDRT and
intervention scenarios, single input interactions ranked higher than multimodal input
interactions, where voice input was most preferred.

Friedman’s ANOVA test found differences between the tested input interactions to
be statistically significant χ2(6) = 542.944, p = 0.022, where χ2 value (“chi-square”), (“df”)
the degrees of freedom associated with our test statistic, and “p” value the significance
level. Voice input (M = 5.87, SD = 0.53) was rated significantly higher than all other
input interactions (p = 0.000). Participants then preferred touch (M = 4.82, SD = 0.56),
hand gesture (M = 4.51, SD = 0.58), voice + touch (M = 3.91, SD = 0.38), voice + hand
gesture (M = 3.43, SD = 0.34), voice + gaze (M = 3.25, SD = 0.52) and gaze + hand gesture
(M = 2.20, SD = 0.51), in that order, where M indicates the mean value and SD indicates
the standard deviation values for the input interaction preference score. The significant
differences between these inputs are illustrated in Figure 4, where the high ranked input
indicates greater preference.



Sensors 2021, 21, 2206 10 of 25

1 

 

 

 

4 

 

 

 

5 

 

 

Figure 4. Average preference for seven input interactions according to the “ranking data” across all intervention scenarios
and NDRT conditions.

3.1.2. Input Interaction Preference Order Based on the Five Parameters Rate

After participants ranked the seven input interactions, they were asked to rate each
input interaction based on five parameters (easy to use, satisfactory, naturalistic, controlling,
and useful) using a 5-point Likert scale (1—very low, 5—very high). To assess each input’s
average rating based on the five parameters, we tested the parameters’ overall consistency
by finding Cronbach’s alpha to measure internal reliability. Cronbach’s alpha (α) measures
how closely related a set of items are as a group, where α greater than 0.7 indicates high
internal consistency and reliability. Our results shows that Cronbach’s α = 0.97, which in-
dicates that the average of the parameters has high reliability and are not distinguishable
from each other. Consequently, we analyzed the preference order for all inputs based on the
five parameters across all NDRTs and intervention scenarios. We found that the preference
order based on the five parameters almost same as the preference order based on ranking
data. This implies that the selected five parameters are sufficient to reflect participants’
overall ranking of the input interactions and can represent a detailed demonstration of
how a user weighs each input internally. Voice input was the most preferable among all
inputs because it has the highest rate for all five parameters. Controlling, naturalistic,
and easy to use parameters are the main contributor to the preference order of the rest of
input interactions.

The one-way ANOVA test shows significant differences between these input inter-
actions: F (6, 742) = 68.23, p = 0.000. Voice input was again the most preferred input
(M = 4.18, SD = 0.37) followed by touch (M = 3.74, SD = 0.34), voice + touch (M = 3.65,
SD = 0.32), hand gesture (M = 3.56, SD = 0.33), voice + gaze (M = 3.45, SD = 0.39),
voice + hand gesture (M = 3.43, SD = 0.35), and gaze + hand gesture (M = 3.24, SD = 0.48),
in that order. The preference order of the input interactions in relation to the five parame-
ters changed: Voice + touch with hand gesture inputs and voice + gaze with voice + hand
gesture switched preference order. The significant differences between these inputs are
illustrated in Figure 5, where the more preferred input interaction scored high for the
average of the five parameters.
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Figure 5. Average preference for the seven input interactions according to “the five parameters” across all intervention
scenarios and NDRTs.

To further investigate the influential parameters for trends and having a detailed
description for the parameters that led to this ranking, we assessed the order of the five pa-
rameters in each input interaction, Figure 6. The one-way ANOVA test showed significant
differences for the rated parameters in the following input interactions: F (4, 530) = 5.524,
p = 0.000 for touch; F (4, 530) = 3.496, p = 0.008 for hand gesture; F (4, 530) = 3.557, p = 0.007
for voice + touch; F (4, 530) = 3.689, p = 0.006 for voice + gaze.
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Figure 6. The influence order of five parameters in each input interaction (left) and the significance of the parameters in
each input interaction (right). The deeper blue arrow indicates more influential parameters.

To understand the reason behind the change in the preference order between (hand
gesture with voice + touch) and (voice + gaze with voice + hand gesture) inputs, in Figure 5,
we analyzed the average rate of the five parameters in these inputs. The ANOVA test was
shown that voice + touch was rated significantly high: controlling (M = 3. 73, SD = 0.36,
p = 0.000), useful (M = 3. 69, SD = 0.37, p = 0.001), and naturalistic (M = 3. 65, SD = 0.37,
p = 0.02), more so than hand gesture, where voice + gaze input was significantly easier to
use (M = 3. 56, SD = 0.34, p = 0.04) than voice + hand gesture (M = 3. 46, SD = 0.35).

3.2. Influence of NDRTs on the Input Interactions

In Section 4.1, we discuss the preference order of input interactions regardless of the
NDRT; however, in this section, we analyze the influence of NDRT on user preferences and
how the overall rank may change. To do that, we calculated the average of the ranked data
in each NDRT for all input interactions regardless of the six intervention scenarios.



Sensors 2021, 21, 2206 12 of 25

3.2.1. Preference Order of Input Interactions in Each NDRT

To understand how each NDRT influences input interaction preference order, we as-
sessed the preference order of all input interactions in each NDRT separately regardless of
the intervention scenarios. For each NDRT, input interaction ranking was performed using
Friedman’s ANOVA test. We found that both voice and gaze + hand gesture inputs kept
their preference order position across the change of NDRTs (first and last, respectively),
but the preference order of other input interactions changes with the change of NDRT,
though none of these changes were significant. For the watching a video NDRT, the input
interactions preference order matches the case of preference order regardless of NDRTs and
the intervention scenarios in Figure 4. Therefore, the NDRT condition affects the preference
order as a numerical value but has little practical effect.

In the relaxing condition, the ANOVA test shows significant differences overall be-
tween input interactions: χ2(6) = 504.072, p = 0.000. Participants preferred voice input first
(M = 6.10, SD = 0.63) followed by touch input (M = 5.12, SD = 0.67), voice + touch (M = 4.29,
SD = 0.61), hand gesture (M = 4.05, SD = 0.72), voice + hand gesture (M = 3.53, SD = 0.65),
voice + gaze (M = 2.91, SD = 0.64), gaze + hand gesture (M = 1.98, SD = 0.64), in that
order. There were no significant differences in the preference order between hand gesture
and voice + hand gesture and between hand gesture and voice + touch input interactions.
See Figure 7a.
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Figure 7. Preference scores for the seven input interactions in the four NDRTs: (a) relaxing, (b) eating, (c) working on laptop,
and (d) watching video.

In the condition, our test shows significant differences overall between input inter-
actions: χ2 (6) = 387.497, p = 0.000. Participants also preferred voice input first (M = 5.66,
SD = 0.81) followed by hand gesture (M = 4.70, SD = 0.77), touch input (M = 4.50, SD = 0.86),
voice + touch (M = 3.61, SD = 0.62), voice + gaze (M = 3.64, SD = 0.89), voice + hand ges-
ture (M = 3.39, SD = 0.57), gaze + hand gesture (M = 2.48, SD = 0.78), in that order.
There were no significant differences in the preference order between touch and hand ges-
ture, voice + touch and voice + gaze, voice + hand gesture and voice + touch, voice + hand
gesture and voice + gaze input interactions. See Figure 7b.

In the working on laptop condition, our analysis shows significant differences overall
between input interactions: χ2 (6) = 433.280, p = 0.000. Participants preferred voice input
first (M = 6.07, SD = 0.68) followed by touch input (M = 4.57, SD = 0.79), hand gesture
(M = 4.52, SD = 0.75), voice + touch (M = 3.83, SD = 0.62), voice + gaze (M = 3.52, SD = 0.79),
voice + hand gesture (M = 3.34, SD = 0.57), gaze + hand gesture (M = 2.12, SD = 0.72),
in that order. There were no significant differences in the preference order between touch
and hand gesture, voice + touch and voice + gaze, voice + hand gesture and voice + touch,
voice + hand gesture and voice + gaze input interactions. See Figure 7c.

In the watching a video condition, the ANOVA test shows significant differences overall
between input interactions: χ2(6) = 476.208, p = 0.000. Participants preferred voice input
first (M = 5.65, SD = 0.73) followed by touch input (M = 5.07, SD = 0.68), hand gesture
(M = 4.74, SD = 0.79), voice + touch (M = 3.91, SD = 0.57), voice + gaze (M = 3.45, SD = 0.52),
voice + hand gesture (M = 2.93, SD = 0.63), gaze + hand gesture (M = 2.22, SD = 0.71),
in that order. There were no significant differences in the preference order between touch
and voice, touch and hand gesture, voice + hand gesture and voice + touch, voice + hand
gesture and voice + gaze input interactions. See Figure 7d.

3.2.2. Input Interaction Preference Rate across NDRTs

In order to understand how preference of the input interaction is influenced by NDRT,
we assessed the average ranking of each input interaction in the four conditions of NDRTs.
With the exception of voice + hand gesture, the preference of all input interactions has been
highly influenced by the NDRT.

A Kruskal–Wallis H test for the average ranked data in each NDRT shows significant
differences between NDRTs in these input interactions: voice (H (3) = 36.319, p = 0.000),
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touch (H (3) = 49.221, p = 0.000), hand gesture (H (3) = 48.922, p = 0.000), voice + touch
(H (3) = 57.810, p = 0.000), voice + gaze (H (3) = 73.394, p = 0.000), gaze + hand gesture
(H (3) = 24.614, p = 0.000), where there was no significant differences shown in voice +
hand gesture (H (3) = 6.354, p = 0.096), as illustrated in Figure 8.
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Figure 8. Preference scores for each input interaction associated with the type of NDRT.

In detail, participants preferred voice input (p = 0.000) in the relaxing and working
on a laptop NDRTs but not in the eating and watching a video NDRTs. Touch input was
significantly preferred (p = 0.000) when relaxing or watching a video compared to when eating
or working on a laptop. Hand gesture was least preferred when relaxing compared to eating
(p = 0.000), working on a laptop (p = 0.000), and watching a video (p = 0.000). Voice + touch
input was preferred when relaxing compared to when eating (p = 0.000), working on a laptop
(p = 0.000), and watching a video (p = 0.000). Voice + touch input was also preferred when
watching a video (p = 0.001) or when working on a laptop (p = 0.006) compared to while eating.
Voice + gaze input was significantly preferred when eating (p = 0.000) and when working
on a laptop (p = 0.000) compared to when watching a video or relaxing. Lastly, gaze + hand
gesture was significantly preferred when eating (p = 0.000) compared to when working on a
laptop or relaxing.
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3.3. Influence of Physical and Cognitive Load

We explored the influence of participants’ physical and cognitive load of perform-
ing NDRTs on preference of the input interaction regardless of intervention scenario.
We grouped the NDRTs according to load level (high or low) for testing the physical
load and another two groups in testing the cognitive loads. In the case of physical load,
for example, eating and working on a laptop NDRTs were combined for high physical load,
and relaxing and watching a video were combined for low physical load. We similarly com-
bined high cognitive load (working on a laptop with watching a video) NDRTs and for the low
cognitive load (relaxing with eating) NDRTs, Table 1.

3.3.1. High Physical Load vs. Low Physical Load

Assessing the average ranking of each input interaction according to low and high phys-
ical load NDRTs across all the intervention scenarios helps us understand how engagement
in high physical load NDRTs influences participant preference of input interaction. Partici-
pants’ responses revealed that changes in physical load of NDRTs influences the preference
order of input interactions, with the exception of voice input, as shown in Figure 9.
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Figure 9. Average preference for the seven input interactions according to physical load of NDRTs: low physical load vs.
high physical load.

The Kruskal–Wallis test shows participants significantly prefer to use some input
interactions while engaged in low physical load NDRTs: touch input (M = 5.09, SD = 0.55),
H (1) = 30.962, p = 0.000, voice + touch (M = 4.10, SD = 0.46) H (1) = 27.979, p = 0.000,
and voice + hand gesture (M = 3.49, SD = 0.43) H (1) = 5.640, p = 0.018. On the other
hand, participants significantly preferred the following input interactions when engaged
in high physical load NDRTs: hand gesture (M = 4.61, SD = 0.64), H (1) = 5.845, p = 0.016,
voice + gaze (M = 3.58, SD = 0.73), H (1) = 46.912, p = 0.000 and gaze + hand gesture
(M = 2.30, SD = 0.65) H (1) = 4.277, p = 0.039.

3.3.2. High Cognitive Load vs. Low Cognitive Load

We assessed the average ranking of each input interaction according to low and
high cognitive load NDRTs across all intervention scenarios in order to understand how
engagement in high cognitive load NDRTs influences participant preference of input
interaction. We found that, unlike physical load, the cognitive load of NDRTs slightly
impacts preference of input interactions, specifically in regard to hand gesture.
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When cognitive load is high, the Kruskal–Wallis test shows hand gesture (M = 4.63,
SD = 0.68), H (1) = 10.052, p = 0.002 was the only input significantly preferred. Compared to
their physical load, the cognitive load of NDRTs influences input interaction preferences
relatively little, as shown in Figure 10.
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3.4. Influence of Intervention Scenarios (MBI vs. NMBI)

To explore further the influential factors on the preference of input interactions and
understand how they differ between intervention scenarios, we assessed the average rank-
ing of each input interaction in MBI and NMBI scenarios across all NDRTs. To do this,
the six intervention scenarios were classified within two groups, a Maneuver-Based Inter-
vention (MBI; scenario 1, 2, 3, 4) and Nonmaneuver-Based Intervention (NMBI; scenario
5, 6). Our finding shows that regardless of NDRTs, MBI and NMBI scenarios influence
input interaction preferences. Touch-based inputs were highly preferred in MBI scenarios,
and gaze + hand gesture was preferred in NMBI, see Figure 11.
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The independent-samples Kruskal–Wallis H test found that two input interactions
were significantly preferred in MBI scenarios compared to NMBI scenarios, touch input
(M = 4.95, SD = 0.56), H (1) = 4.548, p = 0.033 and voice + touch input (M = 3.99, SD = 0.47),
H (1) =6.445, p = 0.011, where participants significantly preferred gaze + hand gesture
(M = 2.40, SD = 0.85), H (1) = 7.328, p = 0.007 in the NMBI scenario rather than MBI scenario.

4. Discussion

Our results show that preference order of the proposed input interactions was influ-
enced by the type of NDRT and the intervention scenarios. In this section, we discuss four
parts based on our research questions and offer a decision-making model diagram to help
understand how drivers select an input interaction to intervene in FAVs.

4.1. Evaluate the Proposed Natural Input Interactions

In our survey, participants were asked to rank all input interactions from 1 to 7 for
each NDRT condition. The overall average of the proposed input interactions was assessed
regardless of NDRT and intervention scenarios to understand the preference order of the
input interactions across all NDRTs and intervention scenarios. The rank of the proposed
input interactions is voice, touch, hand gesture, voice + touch, voice + hand gesture,
voice + gaze, and gaze + hand gesture. Voice input interaction ranked first, which makes it
the most intuitive and naturalistic input interaction regardless of NDRT and intervention
scenario category. This result confirms findings in previous studies where voice input
ranked first for FAV use compared to touch input [32] and compared to hand gesture
input [16]. In contrast, gaze + hand gesture ranks last. This does not mean it is the worst
input interaction, however, as participants may prefer to use it in specific circumstances,
as we discuss later.

Evaluating the input interaction according to user rank gives an absolute preferable
value. Therefore, after ranking, participants were asked to rate each input interaction
based on five parameters (easy to use, satisfactory, naturalistic, controlling, and useful).
However, to make sure that our parameters covered all participants’ perceptions in relation
to scoring each input interaction, we assessed the order of the input interactions according
to the average of five parameters across all NDRTs and intervention scenarios, as shown
in Figure 5. The overall preference order for input interactions based on the given five
parameters: voice; touch; voice + touch; hand gesture; voice + gaze; voice + hand gesture;
and gaze + hand gesture, has two differences compared to the order based on the absolute
ranking scale shown in Figure 4. In the absolute rankings, participants ranked hand
gestures and voice + touch as the third and fourth most-preferred input interactions,
respectively. When the five parameters are taken into account, participants switched that
order: voice + touch ranked third and hand gestures ranked fourth as most-preferred input
interaction. Similarly, in the absolute rankings, voice + hand and voice + gaze ranked
fifth and sixth overall, respectively, yet when the five parameters are taken into account,
their respective rankings traded places.

Even though the reversal in the order preferences of theses inputs (hand gesture
with voice + touch and between voice + hand gesture with voice + gaze) occurred when
evaluated by using the five parameters, in general there are no significant differences
between them. This implies that the parameters used to evaluate our input interactions
were efficient and covered participants’ rating aspects.

To better understand why the preference order of theses inputs changed and what
parameters contributed to that change, we assessed the influence of each parameter be-
tween these inputs, as shown in Figure 6. We found that voice + touch ranked higher
than hand gesture because it was shown as significantly higher and more naturalistic,
controlling, and useful, whereas the easy to use and satisfactory parameters were relatively
even between the two input interactions. Similarly, voice + gaze ranked higher than voice +
hand gesture because it was shown as significantly higher and more easy to use than voice
+ hand gesture input.
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To conclude, voice input interaction was the most preferred input in all cases because
it rates highest in all five parameters and shows no significant difference between them.
The preference order for the other input interactions were mainly influenced by the control-
ling, naturalistic, and easy to use parameters. This implies that controllability, naturalness,
and ease of use are the main factors to consider while designing or suggesting an input
interaction.

Since preference order based on the five parameters was almost the same as the
preference order based on ranking data, the following analysis is based on the ranking data.

4.2. Effect of NDRT on the Selection of Input Interaction Regardless of Intervention Scenarios

In order to understand how input interaction preference is influenced by NDRT regard-
less of intervention scenario, participants were asked to rank the seven input interactions
in the four conditions of NDRTs according to their preferences.

For each NDRT, we assessed the preference order of all input interactions. Even though
the preference order changed according to NDRT, single input interactions were more
preferred than multimodal input interactions in almost all cases; the lone exception is
that participants preferred voice + touch input to hand gesture input during the relaxing
condition, Figure 7. Moreover, the preference order of input interactions for each NDRT
largely mirrored the overall preference order of input interactions, independent of NDRT
and intervention scenario, see Figure 4. To further investigate how preference of input
interaction is influenced by NDRT, we assessed each input interaction according to the four
conditions of NDRTs, Figure 8.

• Voice input: Participants significantly preferred voice input when relaxing or working
on a laptop than when eating or watching a video. Indeed, voice input was known to
minimize distraction [34] and require minimum visual attention [21]. Conversely,
voice input disrupts driver attention when another sound source is active in the FAV,
like when watching a video, and is inconvenient when the driver’s mouth is busy.
This confirms findings in [16,34].

• Touch input: Participants significantly preferred touch input while relaxing or watching
a video than while eating or working on laptop. Unsurprisingly, touch input is preferred
more when the NDRT does not require the use of hands. In other words, since the
use of touch input increases physical load, drivers prefer not to use it while they are
engaged in high physical load NDRTs.

• Hand gesture: Participants preferred hand gesture while watching a video, eating, and
working on a laptop significantly higher than when relaxing. Indeed, when relaxing,
drivers would not want to initiate physical activity like hand movement and risk
their relaxation. However, drivers are physically active when eating or working on a
laptop, which explains why hand gesture would be easier to use as an input interaction
for those NDRTs. While watching a video, hand gestures seem like the least obtrusive
option; i.e., drivers prefer not to avert their gaze from the screen, give a voice command,
or lean forward to perform touch input. Therefore, for this NDRT, hand gesture could
be an ideal candidate.

• Voice + Touch: Participants preferred voice + touch when relaxing significantly higher
than in all other NDRTs. However, using voice + touch input while eating ranked
significantly lower than using it when working on laptop or watching a video. Participants
still do not prefer to use voice inputs while eating, and adding touch to voice would
increase physical load for the driver. Therefore, voice + touch input interaction is
preferable while relaxing mainly, though not as preferable as voice alone. Although an
input interaction that includes voice would seem counterintuitive to watching a video,
a single word could be used to trigger an interaction, which the driver could complete
using touch input. Therefore, it also scores relatively high while engaging in watching
a video. Tscharn et al. [17] found that voice + touch input causes a physical and
cognitive load and redirects attention from the driver’s current view to the touch
panel to interact. Thus this input was preferred only while relaxing which has no high



Sensors 2021, 21, 2206 19 of 25

physical or cognitive load and nothing to be distracted from. On other hand, it was
not preferable while eating, working on laptop, or watching a video, NDRTs that require
driver attention. Furthermore, each of these NDRTs cause high physical or cognitive
load, which make an input that increases them not preferable.

• Voice + Hand gesture: Participants reported no significant differences in using voice
+ hand gesture between the four NDRTs. Thus, using hand gesture input could be
considered as a neutral input between the four NDRTs where no significant difference
in usage could be noticed. This finding confirms [17], where voice + hand gesture
was most preferred and shown as more naturalistic than voice + touch input for
intervening in the FAV.

• Voice + Gaze: Participants preferred to use voice + gaze while eating or working on a
laptop significantly higher that when relaxing or watching a video. Although voice input
alone was not preferred to use while eating, combining gaze with voice interaction
compensates for the drawbacks of using voice input alone; e.g., drivers could use gaze
to select an intended object while chewing, then use voice to confirm the selection via
a trigger word between bites. This decreases the physical load voice input causes in
talking which make its usage while eating or working on a laptop preferable. On the
other hand, it may not work well while watching a video, where any voice commands
and diversion of gaze would interrupt the experience or while relaxing where drivers
would not want to initiate physical activity like speaking or moving their eyes and
risk losing their relaxing state.

• Gaze + Hand gesture: Participants preferred gaze + hand gesture while eating sig-
nificantly higher than while relaxing or working on laptop. Again, gaze input is not
preferred while relaxing, yet seems helpful when the participant is engaged in a high
physical load task like eating because drivers are physically active. This matched with
the case of using hand gesture alone. It was also less preferable while relaxing.

Each input interaction is best suited for one situation. Voice input, for example,
is preferred when there is no sound in the car, whereas touch input and hand gesture
input are not preferred in high physical load and low physical load activities, respectively.
This implies that NDRT highly influences preference of input interaction.

Physical and Cognitive Load Variation Effect

We explored the influence of participants’ physical and cognitive load of performing
NDRTs on preference of the input interaction regardless of intervention scenario.

To identify the influence of physical load of NDRT on the proposed input interactions,
we assessed average preference by using each input interaction in high physical load and
low physical load of NDRT conditions, as shown in Figure 9. Participants highly preferred
to use hand gesture, voice + gaze, and gaze + hand gesture inputs while engaged in a
high physical load compared to low physical load tasks, where touch, voice + touch and
voice + hand gesture input interactions while engaged in a low physical load compared to
high physical load tasks. Referring to the finding discussed in Section 4.2, since gaze input
interaction causes driver distraction [21], participants did not prefer to use any gaze-based
input interactions while they are engaged in relaxing or watching a video (low physical
load NDRTs); this causes its presence in the high physical load. In addition, hand gesture
input was preferred when the participant’s body was physically active, which causes its
preference while engaged in high physical load NDRTs.

To identify the influence of cognitive load of NDRT on the proposed input interactions,
we assessed average preference of using each input interaction in high cognitive load
and low cognitive load of NDRT conditions, as shown in Figure 10. Since hand gesture
was shown as a lower cognitive load input in a previous study [21] and was significantly
preferred when watching a video and working on a laptop (high physical load NDRTs), it is
significantly preferred by drivers involved in a high cognitive load task.

In summary, in high physical load and high cognitive load NDRTs, hand gesture
could be a strong candidate. In addition, voice input was the only input interaction that
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showed no significant differences with varying low or high physical and cognitive load,
whereas the preference of the other input interactions changed based on the physical load
levels only.

4.3. Effect of Intervention Scenario Category

To understand the influence of the intervention scenarios on the preference rate of
input interactions, we assessed the average preference of using each input interaction in
maneuver and nonmaneuver-based intervention scenarios. Since MBI scenarios are highly
related to vehicle operation, including lateral and longitudinal controls, and align with
driver’s safety and increase cognitive load (compared to NMBI scenarios, which are related
to vehicle infotainment system and do not increase cognitive load), MBI can be described as
a critical intervention and NMBI scenarios as a noncritical intervention. Previous work [16]
suggested that input interaction for the MBI should offer high controllable input, low input
errors, and short input times. Therefore, participants prefer trusted input interactions
to perform MBI, such as touch and voice + touch. Generally, we found touch-based
input interactions are more trusted by participants, who rated both inputs as highly
controllable and familiar, as shown in Figure 6. Consequently, they prefer to use touch-
based inputs for more critical interventions. On the other hand, participants prefer gaze
+ hand gesture input, which are less controlling, for noncritical interventions such as
requesting information or operating car features (e.g., running music, or controlling air
conditioner) than for critical interventions in FAVs.

Most input interactions could be used for both MBI and NMBI scenarios. Voice input
interaction scored the highest in the preference rate for both MBI and NMBI scenarios,
while touch inputs were more preferred for MBI scenarios and gaze-hand gesture was
more preferred in NMBI scenarios. Overall, after checking the proposed factors that affect
the selection of input interaction, we can find that:

1. Different types of NDRTs and accompanying variation in the levels of physical and
cognitive load primarily influence the selection of input interactions.

2. Different categories for intervention scenarios (maneuver and nonmaneuver-based
interventions) are secondary factors that influence the selection of input interactions.

4.4. Driver’s Decision-Making Model for Naturally Intervening FAV

Our aforementioned findings can be synthesized through hypothesizing a decision-
making model diagram (inspired by [67,68]) by which people subconsciously determine
the most naturalistic ways to intervene in the vehicle system in an instant, tailored to the
level of experienced physical and cognitive workload, then rationally compromised to fit
the intervention demand and driver preference in FAVs [67,69].

NDRTs could be a relatively long-term event if the driver keeps performing it for a
prolonged period while driving. As shown in Figure 12, each NDRT could be classified
to a smaller component (physical and cognitive load), wherein the level of each affects
significantly the set of input interactions the driver could utilize (Set 1). In FAVs, the driver’s
desires trigger the intervention stage where the driver seeks to perform an MBI or NMBI
scenario. The category of the intervention scenario has a job similar to the saturation
function, which defines whether to select a highly familiar and trusted input interaction to
perform the MBI or a less familiar and trusted input interaction to perform the NMBI from
Set 1. The output of this stage is a segmented set of input interactions (Set 2) which fit most
the intervention category and the physical and cognitive load levels. One input interaction
could be picked from Set 2 depending on personal choice. Considering that, the driver has
many input interactions to accommodate the designated level of NDRT and the existing
intervention scenario. Therefore, the driver’s personal choice selection should inform the
selection of available input interactions from Set 2 [24].
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FAV Suggesting Input Interactions

The model above could be inversely used to develop a way for FAVs to regulate
the selection of input interactions. As the driver’s physical and cognitive load could
be observed by the FAV (e.g., using image processing and AI techniques), the vehicle
will then predict the Set 1 input interactions that are suitable for the driver’s condition.
The vehicle could not confirm the exact intervention scenario, but it could prepare two
smaller segmented sets from Set 1, one segmented set for MBI scenarios and another for
NMBI scenarios. Learning driver behavior and preferences over time will assist the vehicle
in the second elimination stage (Mixer 2). The point from this discussion is to clarify
that advancements in FAV technology could enable the vehicle to suggest the best input
interactions instantaneously and dynamically during the trip (e.g., display most suited
input interactions over the dashboard). These suggestions can guide the driver to intervene
in the FAV system quickly and comfortably without need to change position or disengage
from the NDRT.

4.5. Limitations

Our study covered both maneuver- and nonmaneuver-based intervention scenar-
ios, single and multimodel input interactions, and physical and cognitive load NDRTs.
Intervention scenarios, input interactions, and NDRTs were selected based on previous stud-
ies [4,5,12,17] that showed that these functions and features are the most frequently used
and common in actual driving situations. However, other scenarios, inputs, and NDRTs
would be worth studying, such as adjusting driver’s seat or asking the FAV to exit the
highway, using a button input, or using a smartphone NDRT.

Although researchers have implemented online survey-based videos for AV
studies [30,31], which our survey followed, there are still limits in replicating an in-vehicle
experience. In-vehicle studies with a real AV are needed to investigate how well participants’
online responses reflect their experience in real-life situations and how other real-world
factors may also influence driver acceptance and preferences for input interactions.

This study shows the results across participant age groups; however, discriminating
between age groups may show more interesting results.

Roughly 80% of our participants were from United States; the remaining ~20% of
participants were from India, UK, Egypt, and Brazil. Distributing our survey across a
larger geographical area may give us clearer information about how different cultural
backgrounds may affect driving intervention behavior in FAVs.

5. Conclusions and Future Work

We conducted an online video-based survey, where we focus on the relatively new en-
vironment for the FAV to determine the most possible natural input interactions that match
the driver’s in-vehicle activities and the interaction situation. The preference order of seven
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input interactions was evaluated while considering different physical and cognitive loads
of NDRTs through various possible intervention scenarios in order to investigate the factors
that influence driver input interaction preferences. Regardless of NDRT and intervention
scenarios, single input interactions were generally more preferred than multimodal inputs,
yet participants preferred multimodal inputs when they are in a resting condition, reclining,
and looking forward. Moreover, voice input interaction was the most preferred among
all input interactions. The preference order for the other input interactions were mainly
influenced by the controlling, naturalistic, and easy to use parameters.

Driver engagement in an NDRT was the primary factor influencing interaction input
preferences; secondarily, preference of input interaction was influenced by the intervention
scenario. The effect of cognitive load of NDRTs influences choice of input interaction less
than the effect of physical load of NDRTs. Hand gesture could be a strong candidate for
high physical load and high cognitive load NDRTs. In addition, voice input was the only
input interaction that showed no significant differences with varying low or high physical
and cognitive load.

Understanding the factors that influence driver preference of natural input interaction
can help researchers to develop better FAV user interfaces and enhance user experience by
considering drivers’ needs and design requirements. Therefore, we presented a driver’s
decision-making model to describe the driver’s selection process that helps to promote
better design strategy for input interaction in a FAV and suggests more pathways in which
a FAV could regulate a driver’s interactions.

We aim to continue this study with more scenarios and more physical and cognitive
load NDRTs to understand common and special causes across contexts that influence
participant preferences of input interactions.

In future work, as a confirmation stage for this study, we will create an experiment
that simulates the FAV environment using a driving simulator or a real autonomous vehicle
where participants will be involved physically in NDRTs with the proposed intervention
scenarios and the same set of natural input interactions. Afterwards, we could implement
the concept where a FAV could regulate the driver’s interactions by constantly updating
the proper interaction channels for the driver according to the suggested driver–decision-
making diagram. Discriminating between ages in future work, however, may show other-
wise; i.e., the cognitive load of NDRTs may show greater influence for older participants
than younger participants.
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