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Abstract
Recent advances in DNA sequencers are accelerating genome sequencing, especially in microbes, and

complete and draft genomes from various species have been sequenced in rapid succession. Here, we
present a comprehensive gene prediction tool, the MetaGeneAnnotator (MGA), which precisely predicts
all kinds of prokaryotic genes from a single or a set of anonymous genomic sequences having a variety of
lengths. The MGA integrates statistical models of prophage genes, in addition to those of bacterial and
archaeal genes, and also uses a self-training model from input sequences for predictions. As a result,
the MGA sensitively detects not only typical genes but also atypical genes, such as horizontally transferred
and prophage genes in a prokaryotic genome. In this paper, we also propose a novel approach for analyz-
ing the ribosomal binding site (RBS), which enables us to detect species-specific patterns of the RBSs. The
MGA has the ingenious RBS model based on this approach, and precisely predicts translation starts of
genes. The MGA also succeeds in improving prediction accuracies for short sequences by using
the adapted RBS models (96% sensitivity and 93% specificity for 700 bp fragments). These features of
the MGA expedite wide ranges of microbial genome studies, such as genome annotations and meta-
genome analyses.
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1. Introduction

Identification of genes on genomic sequences is the
indispensable first step in every genome analysis,
including individual genome analysis of a single
organism and metagenomic analyses. Sequence
similarity-based methods of gene predictions enable
us to detect reliably the genes if their DNA or amino
acid sequences have strong similarities to those of
known genes. However, a significant portion of
genes has no sequence similarities to known genes,

and ab initio gene-finding methods are necessary for
identifying all genes on newly sequenced microbial
genomes, particularly those of uncharacterized or
poorly characterized species. Computational gene
finding from genomic sequences has a long
history1–3, and a number of tools have been devel-
oped for predicting prokaryotic genes. These gene-
finding tools have been widely used for annotation
processes of prokaryotic genomes.

Although conventional gene-finding tools have
achieved extremely high prediction performances,
they have some critical limitations. Most conventional
tools require predetermined statistical models of
the known genes of a target species4–11 or a long
enough input sequence for statistical models to
perform self-training12–16. This is because the tools
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are designed to predict genes on complete genomes
having several million base pairs. However, a target
genomic sequence is not always long enough. For
example, second-generation DNA sequencers, which
have put high throughput sequencing into practice,
especially those of microbial genomes17,18, produce
vast amounts of very short sequence reads. The
short reads are assembled into some longer contig
sequences, but the contigs are usually still short [far
shorter than 1 mega bases (Mb)]19–22. A fosmid
clone, which has �40 kb in insert length, is another
example of a short genomic sequence. Moreover,
metagenomic analyses produce large amounts of
short sequences derived from multiple species’
genomes. Most of the conventional gene-finding
tools cannot be applied to such sequences.
MetaGene23 (MG) is one of the new tools that is
applicable to gene prediction on such short anon-
ymous sequences.

MG is a gene-finding program originally developed
for metagenomic sequence data, which is a mixture
of (short) sequences derived from various prokaryotic
genomes. MG assumes correlations between the GC
content and the di-codon frequencies of an input
sequence, and enables us to predict genes accurately
on short anonymous sequences without any training.
MG can be successfully applied to wide varieties of
prokaryotic genomic sequences24–27, but two major
limitations exist: one is the lack of a ribosomal
binding site (RBS) model, and the other is less sensi-
tivity to atypical genes, whose codon usages are differ-
ent from those of typical genes. When MG is applied
to very short sequences containing one or two
partial genes, these limitations are not significant.
However, such limitations are undesirable when MG
is applied to longer genomic sequences for precise
annotations. To overcome these limitations and to
improve the usability of the program, we developed
a new version of the MG, the MetaGeneAnnotator
(MGA). The MGA has statistical models of prophage
genes and can automatically detect them in addition
to chromosome backbone genes even when input
genomic sequences have mosaic structures attributed
to lateral gene transfers and/or phage infections. The
MGA also has an adaptable the RBS model based on
complementary sequences of the 30 tail of 16S riboso-
mal RNA, and precisely predicts translation starts of
genes even when input genomic sequences are short
and anonymous sequences. These features of the
MGA remarkably improve prediction accuracies of
genes on a wide range of prokaryotic genomes.
Here, we report the results of a performance test of
the MGA applied to various types of genomic
sequences, such as complete genomes, plasmids and
their subsequences of various lengths, under con-
ditions of anonymity.

2. Materials and methods

2.1. Construction of prophage gene model
In addition to the bacterial and archaeal gene

models of MG23, prophage models were constructed
as follows. Genomic sequences and their annotations
for 439 phages were obtained from the RefSeq data-
base28 (release 27). As a preprocessing, a mono-
codon usage was calculated from each phage
genome, and the Euclidean distances of all pairs of
the codon usages were calculated. When the distance
between two phages’ usages was ,0.02, one of them
was removed from the dataset because they might
have been related (or identical) phages. Then, the
codon frequencies of the remaining 244 phages
were plotted against their GC contents, and we con-
firmed that the codon frequencies of phage were
highly correlated with their GC contents, as seen in
bacterial and archaeal genomes. For gene prediction,
the MGA used di-codon frequencies that represent
conditional probabilities of codon occurrences provid-
ing a previous codon (61 � 61 frequencies). Because
each phage did not have enough genes to calculate
di-codon frequencies, phage genomes having about
the same range of GC contents were treated as a
unit, and then di-codon frequencies were calculated
from all genes annotated in the grouped genomes.
Finally, a logistic regression analysis was performed
in the same manner as the prokaryotic di-codon
model construction in MG.

2.2. Procedures for predicting typical and atypical
genes

The self-training model for typical genes is con-
structed as follows. Initially, genes are predicted
using an optimal set of the di-codon regression
models (bacterial, archaeal or prophage models).
Then, these predicted genes are used for the self-
training of the di-codon statistics of typical genes.
The self-training model is defined as the weighted
averages of the di-codon frequencies derived from
the predicted genes, and from the regression models
used for the initial prediction. A di-codon frequency
of the self-training model, fself, is defined by the fre-
quency of the predicted genes, fpred, and of the
regression models, freg, as follows:

fselfðajbÞ ¼
k� fregðajbÞ þ l� fpredðaþ bÞ

kþ l
; ð1Þ

where a and b are codons, k and l are the numbers of
di-codons used to calculate freg and fpred, respectively.
In the MGA, k was heuristically set to 30 000, which
corresponds approximately to the number of di-
codons in a 100 kb genomic sequence. The value
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was determined by testing prediction performances
on the training data of MG23 and was meant to be
enough to avoid overfitting of the self-training
model to a few genes on a short input sequence. If a
significant number of di-codons are extracted from
the predicted genes, the self-training model is nearly
equal to the di-codon frequencies of the predicted
genes. If not, the self-training model comes closer to
the di-codon frequencies derived from the regression
models.

After training, four sets (self, bacteria, archaea and
prophage) of di-codon frequencies are applied for
scoring candidate genes. Unlike the original MG algor-
ithm, each open-reading frame (ORF) is individually
scored according to its own GC content in this step to
detect atypical genes. Typical genes are expected to
score the highest mark with the self-training model,
and atypical genes to score the highest mark with
one of the other models. Then, a maximal scoring com-
bination of genes is calculated as the definitive predic-
tion. While this procedure (ORF-by-ORF) is sensitive to
atypical genes, some more false-positives are included
in the prediction. So, the ORF-by-ORF procedure is
applied only to the sequences longer than 5000 bp
(containing multiple genes). For shorter sequences,
the conventional procedure, in which all ORFs are
scored by one of the four sets of the di-codon models
according to the GC content of the input sequence, is
applied.

2.3. The RBS map analysis and the RBS model
construction

We defined nine hexamers derived from the follow-
ing sequence, which was complementary to a tail of
16S rRNA, as the potential RBS motifs: G(A/T)(A/
T)AGGAGGT(G/A)ATC. Starting from the left, the
motifs were named Motif-1, . . ., Motif-9 [e.g. Motif-3
is ‘(A/T)AGGAG’]. An exact match or one-base mis-
match sequence of the motifs was sought against an
upstream region of a start codon, and the best
match motif and location were determined. In the
RBS map analysis (see below), upstream sequences
of the annotated start codons range from 22 to
221 were used for analysis. In the RBS prediction
model, upstream sequences of the predicted start
codons (in the previous step) range from 23 to
219 were used for model construction and predic-
tion. The detected sequences were considered to be
representative RBSs of the species, and the proportion
of genes having representative RBSs (an RBS ratio,
wRBS) was stored for the use in scoring RBSs. Then, a
two-dimensional frequency distribution of the repre-
sentative RBSs was calculated to construct the RBS
map. For the analysis, distances between the con-
structed RBS maps were defined by the Euclidean

distance, and the neighbor joining method29 was
applied to make clusters of the RBS maps. This RBS
map analysis was performed using 591 annotated
microbial genomes obtained from the RefSeq data-
base (Supplementary Table S1). As the RBS prediction
model, a position weight matrix (PWM) for each motif
was constructed using the representative RBS
sequences detected earlier. In the prediction process,
the RBS scores for all candidate genes were calculated
using the constructed PWMs and the frequency distri-
butions of the positions. Here, the RBS score, SRBS, was
heuristically weighted using a frequency of a motif m,
wm, and the RBS ratio (wRBS) to reduce noise in less
frequently used motifs.

SRBS ¼max
m;j

wRBS �wm �
X6

i¼1

log2
pmðxi;jÞ
qðxi;jÞ

" #
; ð2Þ

where xi,j is an ith nucleotide of a hexamer j appeared
in an upstream of a gene, pm (xi,j) is a frequency of xi,j

at a position i of a PWM for a motif m, and q(xi,j) is a
background frequency of xi,j calculated from a GC
content of an input sequence. A value of wm was stan-
dardized, and was 1 when a motif m was the most fre-
quently used. For each gene, the best motif, which
marked the highest RBS score, was selected, and the
RBS score was added to the score of the genes. Then,
the optimal combination of genes with the recalcu-
lated scores was estimated by the dynamic program-
ming procedure used in MG23. All of these steps
were iterated until the prediction results stopped
changing.

2.4. Performance evaluation
Prediction performances of gene-finders were eval-

uated using datasets, including the MetaGene
dataset23. The MetaGene dataset consists of nine bac-
terial and three archaeal genomic sequences
(Supplementary Table S2). In addition to these com-
plete sequences, their subsequences (1 Mb, 500,
100, 40, 10, 5, 3 and 1 kb, 700 and 100 bp
sequences) having 1� genome coverage (i.e. the
total length of the subsequences is equal to the com-
plete genome size) were also used for the evaluation.
These sequences were not used for constructing stat-
istical models of the MGA. The ratios of true-positives,
including partially matching predictions with correct
reading frames, relative to all annotated genes (sensi-
tivity) and to all predicted genes (specificity) were
used as indices for the evaluation. In addition,
sensitivity to the start codons, in which only exactly
matching predictions were counted as true-positives,
was also utilized.
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3. Results and discussion

3.1. Predicting prophage genes
The MGA is based on the algorithm of the MG and

utilizes logistic regression models of the GC content
and the di-codon frequencies23 (di-codon models).
In addition to the bacterial and archaeal di-codon
models of MG, prophage models are constructed
and integrated into the MGA (Fig. 1A). Although the
proportions of prophage genes in the prokaryotic
genomes are ordinarily not so large, they usually
have biologically important functions, such as patho-
genicity and niche adaptation, in the organisms.
Therefore, detecting prophage genes is fundamental
to understanding the genetic background of an
organism.

Because most prophage genes have codon frequen-
cies similar to those of bacteria and archaea, MG (and
probably other prokaryotic gene finders as well) can
predict prophage genes with relatively high accuracies
(Supplementary Table S3). However, Fig. 2A and B
shows that certain other (non-codon) properties of

prophage genes are different from those of prokaryo-
tic genes: prophage genes are generally shorter
(�660 bp in average) than bacterial and archaeal
genes (�940 bp in average), and most genes are
organized in tandem (.90%). This means that gene
densities are higher in prophage genomes than in pro-
karyotic genomes, and most genes are packed in a few
operons. These observations and statistics, in addition
to the prophage di-codon models, are utilized to
predict prophage genes. As a result, the sensitivities
of the MGA to prophage genes are remarkably
improved (from 88 to 93%) without any decrease in
specificity (90%) (Supplementary Table S3).

3.2. Predicting atypical genes
MG predicts genes using the di-codon frequencies

(and other parameters) estimated by the GC
content of an input genomic sequence. That is to
say, all genes in the same genomic sequence are pre-
dicted by the same set of di-codon frequencies. In this
procedure, typical genes can be accurately and specifi-
cally predicted, but atypical genes, such as horizon-
tally transferred and prophage genes, cannot be
detected because their di-codon frequencies are
different from those of typical genes. To overcome
this limitation, we employ an ORF-by-ORF procedure,
in which each candidate ORF is treated as an individ-
ual anonymous sequence (Fig. 1B). This procedure
assumes that every ORF has a potentially different
origin and contributes to improving the sensitivities
of the MGA to atypical genes.

To predict properly the typical genes under the
ORF-by-ORF procedure, we arranged a self-training
model of di-codon frequencies in addition to the
logistic regression models (Fig. 1A). In the self-training
model, di-codon frequencies are calculated from the
initially predicted genes using the conventional
scoring procedure of the MG, and then the weighted
averages of di-codon frequencies derived from the
predicted genes and from the regression models are
calculated as the di-codon frequencies of typical
genes. The self-training model fits well to typical

Figure 1. A schematic diagram of the MGA algorithm. (A)
Prediction protocol of the MGA. (B) ORF-by-ORF procedure.

Figure 2. Statistics of prophage genes. (A) Frequency distributions of gene lengths in prokaryote and prophage. (B) Proportions of the
consecutive gene arrangements in prokaryote and prophage.
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genes compared with the regression models, and
improves both sensitivity and specificity of the MGA
to typical genes.

To evaluate the effectiveness of these procedures,
prediction performances were tested on the chromo-
some and plasmid of enterohemorrhagic Escherichia
coli O157:H7 strain Sakai30,31 (Supplementary Table
S4). Sensitivities of the MGA are extremely higher
than those of the MG, especially in S-loops, which
are O157:H7 strain-specific regions identified from
comparisons with the E. coli K12 genome and that
contain many horizontally acquired virulence-related
genes. Higher sensitivities are also observed for a
large virulence plasmid (pO157). Specificities of the
MGA are slightly lower than those of MG, but are
still higher than those of GeneMarkS16 and
GeneMark.heuristics32. These results indicate that
our ORF-by-ORF procedure works well for predicting
atypical genes and can be applied to genomes
having mosaic structures with high specificity.

3.3. Analyzing species-specific patterns of the RBS
The other notable feature of the MGA is an adapt-

able model of the RBS. An RBS, which is also known
as the Shine-Dalgarno (SD) sequence33, is located
on the 50 flanking region of the start codon, and inter-
acts with a part of the 30 end of 16S ribosomal RNA
(rRNA) to control translation initiations of the gene.
Although RBSs are complementary to the 30 tail of
the 16S rRNA in every organism, their sequences
(motifs) and preferred locations relative to start
codons (or ‘spacer’ lengths) differ slightly from organ-
ism to organism. In gene-finding programs, the Gibbs
sampling algorithm is widely used for training the
motifs and the spacer length distribution of the
target species’ RBSs16,17, although this algorithm
takes no thought for the observation that the RBSs
are complementary to the tail of the 16S rRNA.
This approach basically assumes one motif and one
frequency distribution of the spacer lengths in

Figure 3. The average RBS map. The horizontal axis represents
relative positions from the start codons [equal to –(spacer
length+1)], and the vertical axis represents motif numbers.

Figure 4. The clustering result of the RBS maps derived from 229 of
591 prokaryotic genomes (one species per genus).
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each species. However, our analysis suggests that this
assumption is not appropriate for most species.

We examined the upstream sequences of annotated
genes from 229 prokaryotic genomes and con-
structed RBS maps that show a two-dimensional fre-
quency distribution of the best match motif (out of
the nine candidate motifs we suggested) and the
spacer lengths of the RBSs for each species. The
average RBS map (Fig. 3) shows that Motif-3 is most
frequently used, but all nine motifs are potential
RBSs. The higher the motif number, the shorter the
spacer lengths. This is reasonable because it means
that the position of the main body of the 16S rRNA
is fixed even if the hybridization position of 16S
rRNA tail is moved.

The observed patterns of the RBS maps vary from
organism to organism, while phylogenetically related
species show similar patterns (Figs 4 and 5).
Although some species such as Helicobacter pylori
(Fig. 5A) and Buchnera aphidicola, predominantly use
Motif-2 and -3 and are therefore congruous with
the one motif assumption described earlier many
other species show broader distributions. For
example, some Firmicutes, including Clostridium
(Fig. 5B), and Thermotogae indicate broad and clear
patterns of the RBS maps. Some archaea, including
methanogens (Fig. 5C), also indicate broad patterns,

but the preferred motifs are different between these
bacteria and archaea (e.g. Clostridium acetobutylicum
prefers Motif-3 and -4, but Methanobrevibacter
smithii prefers Motif-8.). Overall, bacterial species
tend to prefer motifs of 30 side of a tail of 16S rRNA,
while archaeal ones tend to prefer motifs of 50 side
of the tail. Only very weak signals of the RBS motifs
are found in some species belonging to Bacteroidetes
and Cyanobacteria (Fig. 5D). In these species, no
other significant motif is found. These results
suggest that our RBS map with nine fixed motifs is
effective for capturing the species-specific pattern of
the RBSs. Hence, we used this two-dimensional fre-
quency distribution and the PWMs of the nine RBS
motifs as an RBS model of the MGA. Parameters of
the RBS model are estimated from upstream
sequences of predicted genes. To predict the RBSs on
very short input sequences (having no training data),
a general model of the RBS was manually constructed,
based on the average RBS map and was integrated
into the MGA (Fig. 1A).

3.4. Prediction performances on long genomic
sequences

The prediction performances of the MGA and con-
ventional gene-finding tools based on unsupervised
learning, such as GeneMarkS16 and Glimmer317,

Figure 5. The RBS maps for four species. (A) Helicobacter pylori (B) Clostridium acetobutylicum (C) Methanobrevibacter smithii (D)
Prochlorococcus marinus.
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were evaluated on various datasets. Fig. 6A shows the
prediction accuracies on the MetaGene dataset, which
consists of nine bacterial and three archaeal genomic
sequences (Supplementary Table S2) and their subse-
quences having 1� genome coverage (i.e. the total
length of the subsequences is equal to the complete
genome size).

For complete genomes and 1 Mb subsequences, all
prediction tools indicate almost identical sensitivities

(�97%), while specificity is significantly higher in
the MGA (93%) compared with the others (90% in
GeneMarkS and 86–87% in Glimmer3). In other
words, the sensitivities of the MGA are potentially
higher than the others at the same specificity level.
Sensitivities to start codons are also identical in the
MGA (78%) and GeneMarkS (77%), but Glimmer3
shows lower values (72–75%), although both
GeneMarkS and Glimmer3 utilize the Gibbs sampling
procedure to train their RBS models. In contrast, the
mean sensitivity to start codons in Glimmer3 is
better than that in GeneMarkS on the other dataset
(Table 1), which consists of six complete genomes
(one archaea and five bacteria) having relatively
broad distributions of the RBS maps. The performance
of the MGA is stable and exceeds the others also in
this dataset, especially in Clostridium acetobutylicum.
In comparison with the original MG (Fig. 6B), the
MGA remarkably improves sensitivities to both genes
and start codons without reducing specificities.
These results indicate that our simple RBS model
works well for detecting various types of the RBS.

3.5. Prediction performances on short genomic
sequences

For sequences shorter than 1 Mb, the MGA retained
high accuracies in every index (Fig. 6A). Both sensi-
tivities and specificities of Glimmer3 are relatively
high when input sequences are longer than 40 kb,
but the performance of the start codon prediction is
rapidly degraded as the input sequences become
shorter. This is because the Gibbs sampling algorithm
requires a significant number of positive (RBS)
sequences to detect the correct motif. A 40 kb-
sequence has ,40 genes (or RBSs) on average, and
the sensitivity to start codons declines to 57% in
Glimmer3. GeneMarkS does not accept a shorter
input sequence than 1 Mb, probably because it has
the same weak point as Glimmer3. Unlike the RBS
models of these tools, the MGA assumes only nine
hexamers as candidate’s RBSs, and relatively few
sequences are needed to estimate the parameters of
the RBS model. As a result, the MGA requires just
500 kb (or �500 genes) to adapt the RBS model
fully to the input sequence, and its sensitivity to
start codons is sufficiently high (75%) even in 40 kb
sequences. Furthermore, Fig. 6B and Table 2 show
that the general RBS model of the MGA also works
well for predicting the start codons of genes on very
short sequences. Although most genes on 700 bp-
subsequences lack their 50 sequences (including
start codon and RBSs), the results also indicate that
the RBS model contributes to improving prediction
specificities by deselecting false-positive translation
starts.

Figure 6. Prediction performances of gene finders on the
MetaGene dataset. (A) Accuracy comparisons of the MGA,
GeneMarkS and Glimmer3. In the Glimmer3 prediction, a
script ‘g3-iterated.csh’ is used. (B) Accuracy comparisons of the
MGA and MG. In the MGA prediction, two different running
options, which treat multiple input sequences individually
(MGA) or as a unit (MGA-s), are used. (C) Relationship
between accuracies and number of 40 kb-sequences in the
MGA-s prediction. Sn, exact and Sp indicate sensitivity,
sensitivity to start codons and specificity, respectively.
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3.6. Advantage of self-training using a set
of genomic sequences

If multiple (short) input sequences can be assumed
as the genomic sequences of the same species, predic-
tion accuracies on the sequences are improved by self-
training of the models as well as on a long-genomic
sequence (the MGA-s in Fig. 6B and C). Fig. 6C
shows the relationships between prediction accuracies
and the number of 40 kb-sequences treated as a
unit. Fig. 6C also suggests that a total of about
500 kb (10–20�40 kb) are needed for full adap-
tation of the RBS model, but the prediction accuracies
steadily improve if the number of input sequences are
increased. When a sufficient amount of sequences are
available, the MGA provides prediction performances
comparable to the complete genome analyses, even
if each sequence is very short (Table 2). So, if multiple

contig sequences are obtained by sequencing a single
species’ genome, or if metagenomic sequences are
phylogenetically classified into groups using some
classification methods34,35, genes on the sequences
can be more precisely predicted by the MGA.

3.7. Conclusion
As mentioned, the MGA successfully overcomes the

limitations of the MG, and archives high prediction
accuracies especially in the start codon predictions.
Although some gene-finding tools advocating high
sensitivity to start codons, such as GeneMarkS and
Glimmer3 tend to sacrifice specificities for improving
sensitivities, the RBS model of the MGA enables the
sensitive detection of start codons without reducing
specificities. Our RBS model is based on previous
knowledge about the RBS and 16S rRNA, and requires

Table 1. Prediction performances on the complete genomes

Species GC% RBS% MGA GeneMarkS Glimmer3

Sn (exact) (%) Sp (%) Sn (exact) (%) Sp (%) Sn (exact) (%) Sp (%)

S. marinus 35.7 85.4 99.4 (87.8) 94.5 99.6 (87.2) 92.5 99.8 (87.6) 90.8

C. acetobutylicum 30.9 93.7 98.3 (92.1) 96.1 98.5 (74.1) 92.8 98.0 (90.9) 94.5

F. nodosum 35.0 90.2 99.6 (91.2) 94.8 99.8 (90.6) 92.8 99.7 (91.1) 94.0

L. lactis 35.3 81.1 98.5 (88.0) 95.1 98.9 (88.4) 92.7 98.2 (86.2) 93.2

D. radiodurans 67.0 47.9 97.8 (63.5) 93.6 96.3 (56.7) 93.1 96.5 (58.3) 92.1

A. caulinodans 67.3 64.8 99.2 (66.2) 95.4 98.8 (61.5) 95.8 98.6 (63.6) 93.6

Average 98.7 (80.2) 95.0 98.5 (74.3) 93.4 98.2 (78.0) 93.5

RBS%, the RBS ratio (the proportion of genes having representative RBSs); Sn, sensitivity to genes; (exact), sensitivity to start
codons; Sp, specificity.

Table 2. Prediction performances on 700 bp subsequences (1� genome coverage)

Species GC% RBS% MGA-s MGA MG

Sn (exact) (%) Sp (%) Sn (exact) (%) Sp (%) Sn (exact) (%) Sp (%)

M. jannaschii 31.4 87.6 98.3 (79.3) 95.8 97.7 (80.3) 94.1 97.8 (82.4) 94.1

A. fulgidus 48.6 61.7 96.7 (82.9) 94.1 95.7 (81.7) 93.5 95.8 (81.5) 93.7

N. pharaonis 63.4 39.6 97.4 (88.3) 97.1 97.1 (87.1) 94.5 97.1 (86.2) 93.0

B. aphidicola 26.3 60.9 98.4 (91.5) 93.6 98.6 (91.7) 93.2 98.2 (90.9) 92.7

P. marinus 31.2 21.0 95.2 (88.8) 93.0 94.9 (87.4) 92.3 95.5 (87.6) 92.7

W. endosymbiont 34.2 40.1 93.8 (85.8) 74.5 93.6 (82.9) 72.7 93.1 (80.8) 76.0

H. pylori 39.2 78.3 96.8 (88.1) 95.1 93.5 (82.9) 92.4 92.6 (77.7) 92.7

B. subtillis 43.5 92.6 97.3 (88.8) 94.5 93.9 (82.2) 92.9 92.3 (73.5) 92.5

E. coli 50.8 77.6 96.4 (83.5) 94.6 95.0 (82.9) 94.0 95.3 (81.2) 93.2

C. tepidum 56.5 45.4 88.8 (75.3) 93.5 87.6 (73.7) 90.6 88.1 (73.2) 89.6

C. jeikeium 61.4 72.8 95.7 (83.9) 95.1 94.9 (82.8) 93.3 94.0 (78.5) 91.4

B. pseudomallei 1 67.7 56.2 96.6 (83.1) 93.7 96.9 (82.9) 90.6 96.8 (81.2) 87.9

B. pseudomallei 2 68.5 56.3 96.2 (83.9) 91.6 96.4 (82.8) 89.0 96.6 (81.2) 85.7

96.0 (84.9) 92.8 95.1 (83.2) 91.0 94.9 (81.2) 90.4

RBS%, the RBS ratio (the proportion of genes having representative RBSs); Sn, sensitivity to genes; (exact), sensitivity to start
codons; Sp, specificity; MGA-s, MGA with –s option in which multiple sequences are treated as a unit.
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little training data for estimating its parameters. As a
result, the MGA can precisely predict genes even on
short genomic sequences unlike the other tools.
Both typical and atypical genes can be sensitively
and precisely detected while keeping high specificity.
The MGA can detect not only chromosome backbone
genes but also prophage genes and provides a com-
plete set of genes on a genomic sequence. The MGA
also provides information about the selected di-
codon model (bacteria, archaea, prophage or self)
for predicting each gene, and the information is
helpful for further analyses of genes because it reflects
statistical differences among the genes.

In addition to the precise prediction ability of the
MGA, the RBS map analysis proposed here is helpful
for genome annotations and is useful for analyzing
translation initiation mechanisms and their evol-
utions. It is important for annotators to comprehend
a specific RBS pattern of a target species and its
related species. The MGA can automatically extract
the pattern, and outputs information on RBSs in
addition to location information on genes. We
believe that the MGA accelerates not only metage-
nomic analyses but also the annotation processes of
all kinds of prokaryotic and phage genomes.

Availability

MetaGeneAnnotator are freely available at http://
metagene.cb.k.u-tokyo.ac.jp.
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