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To obtain the online solution of complex-valued systems of linear equation in complex
domain with higher precision and higher convergence rate, a new neural network based
on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network
for complex-valued systems of linear equation in complex domain is proposed and
theoretically proved to be convergent within finite time. Then, the illustrative results show
that the new neural network model has the higher precision and the higher convergence
rate, as compared with the gradient neural network (GNN) model and the ZNN model.
Finally, the application for controlling the robot using the proposed method for the
complex-valued systems of linear equation is realized, and the simulation results verify
the effectiveness and superiorness of the new neural network for the complex-valued
systems of linear equation.

Keywords: complex-valued systems of linear equation, recurrent neural network, finite-time convergence, robot,
gradient neural network, motion tracking

1. INTRODUCTION

Today, the complex-valued systems of linear equation has been applied into many fields (Duran-
Diaz et al., 2011; Guo et al., 2011; Subramanian et al., 2014; Hezari et al., 2016; Zhang et al., 2016;
Xiao et al., 2017a). Inmathematics, the complex-valued systems of linear equations can be written as

Az(t) = b ∈ Cn, (1)

whereA ∈ Cn×n and b ∈ Cn are the complex-valued coefficients, and z(t) ∈ Cn is a complex-valued
vector to be computed. Xiao et al. (2015) proposed a fully complex-valued gradient neural network
(GNN) to solve such a complex-valued systems of linear equation. However, the corresponding
error norm usually converges to the theoretical solution after very long time. So to increase the
convergence rate, a kind of neural network called Zhang neural network (ZNN) is proposed tomake
the lagging error converge to 0 exponentially (Zhang and Ge, 2005; Zhang et al., 2009). However,
in Xiao (2016) and Xiao et al. (2017b), Xiao pointed that the original ZNN model cannot converge
to 0 within finite time, and its real-time calculation capability may be limited (Marco et al., 2006; Li
et al., 2013; Li and Li, 2014; Xiao, 2015). So, Xiao (2016) presented a new design formula, which can
converge to 0 within finite time for the time-varying matrix inversion.
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Considering that a complex variable can be written as the com-
bination of its real and imaginary parts, we have A=Are + jAim,
b= bre + jbim, and z(t)= zre(t)+ zim(t), where the symbol j =√

−1 means an imaginary unit. Therefore, the equation (1) can
be presented as

[Are + jAim][zre(t) + jzim(t)] = bre + jbim ∈ Cn, (2)

where Are ∈ Rn×n,Aim ∈ Rn×n, zre ∈ Rn, zim ∈ Rn, bre ∈ Rn,
and bim ∈ Rn. According to the complex formula, the real (or
imaginary) part of the left-side and right-side of equation is equal
(Zhang et al., 2016). Then we have{

Arezre(t) − Aimzim(t) = bre ∈ Rn,

Aimzre(t) + Arezim(t) = bim ∈ Rn.
(3)

Thus, we can express the equation (3) in a compact matrix
form as: [

Are −Aim
Aim Are

] [
zre(t)
zim(t)

]
=

[
bre
bim

]
∈ R2n. (4)

We can write the equation (4) as

Cx(t) = e ∈ R2n, (5)

where C =
[
Are −Aim
Aim Are

]
, x(t) =

[
zre(t)
zim(t)

]
, and e =

[
bre
bim

]
. Now

the complex-valued system of linear equation can be computed
in real domain. In this situation, most methods for solving real-
valued system of linear equation can be used to solve the complex-
valued system of linear equation (Zhang and Ge, 2005; Zhang
et al., 2009; Guo et al., 2011). For example, a gradient neural
network (GNN) can be designed to solve such a real-valued system
of linear equation. The GNN model can be directly presented as
follows (Xiao et al., 2015):

ẋ(t) = −γCT(Cx(t) − e), (6)

where design parameter γ > 0 is employed to adjust the conver-
gence rate of the GNN model. Zhang et al. (Zhang et al., 2016)
used the recurrent neural network to solve the complex-valued
quadratic programming problems. Hezari et al. (2016) solved a
class of complex symmetric system of linear equations using an
iterative method. However, the above mentioned neural networks
cannot converge to the desired solution within finite time. Con-
sidering that the complex-valued system of linear equation can
be transformed into the real-valued system of linear equation, a
new neural network can be derived from the new design formula
proposed by Xiao for solving the complex-valued system of linear
equation (Xiao et al., 2015). In addition, the new neural network
possesses a finite-time convergence property.

In recent years, the research on robot has become a hot spot
(Khan et al., 2016a,b; Zanchettin et al., 2016; Guo et al., 2017),
and the neural network has been successfully applied into the
robot domain (He et al., 2016; Jin and Li, 2016; Woodford et al.,
2016; Jin et al., 2017; Xiao, 2017). However, the application of
the new design method for the complex-valued system of linear

equation in robot domain has not been reported. So this is the first
time to propose a new neural network, which can convergence
within finite-time for solving the complex-valued system of linear
equation and its application to robot domain.

The rest of this paper is organized into four sections. Section 2
proposes a finite-time recurrent neural network (FTRNN) to deal
with the complex-valued system of linear equation, and its con-
vergence analysis is given in detail. Section 3 gives the computer-
simulation results to substantiate the theoretical analysis and
the superiority. Section 4 gives the results of the application for
controlling the robotic motion planning. Finally, the conclusions
are presented in Section 5. Before ending this section, the main
contributions of the current work are presented as follows.

• The research object focuses on a complex-valued system of
linear equation in complex domain, which is quite different
from the previously investigated real-valued system of linear
equation in real domain.

• A new finite-time recurrent neural network is proposed and
investigated for solving complex-valued systems of linear equa-
tion in complex domain. In addition, it is theoretically proved
to be convergent within finite time.

• Theoretical analyses and simulative results are presented to
show the effectiveness of the proposed finite-time recurrent
neural network. In addition, a five-link planar manipulator is
used to validate the applicability of the finite-time recurrent
neural network.

2. FINITE-TIME RECURRENT NEURAL
NETWORK

Considering that the complex-valued system of linear equation
can be computed in real domain, the error function E(t) of
traditional ZNN can be presented as

E(t) = Cx(t) − e ∈ R2n. (7)

Then, according to the design formula Ė(t) = −γΦ(E(t)), the
original ZNN model can be presented as

Cẋ(t) = −γΦ(Cx(t) − e), (8)

where Φ(·) means an activation function array, and γ > 0 is used
to adjust the convergence rate. In this paper, the new design
formula in Xiao (2016) for E(t) can be directly employed and
written as follows:

dE(t)
dt = −γΦ

(
ρ1E(t) + ρ2Ej/f(t)

)
, (9)

where the parameters ρ1 and ρ2 satisfy ρ1 > 0, ρ2 > 0, and f and j
mean the positive odd integer and satisfy f > j. Then we have

Cẋ(t) = −γΦ
(
ρ1(Cx(t) − e) + ρ2(Cx(t) − e)j/f(t)

)
. (10)

To simplify the formula, Φ(·) uses the linear activation func-
tion. Then we have

dE(t)
dt = −γ

(
ρ1E(t) + ρ2Ej/f(t)

)
, (11)
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and

Cẋ(t) = −γ
(
ρ1(Cx(t) − e) + ρ2(Cx(t) − e)j/f

)
, (12)

which is called the finite-time recurrent neural network (FTRNN)
model to online deal with the complex-valued system of linear
equation. In addition, for design formula (11) and FTRNNmodel
(12), we have the following two theorems to ensure their finite-
time convergence properties.

Theorem 1. The error function E(t) of design formula (11)
converges to zero within finite-time tu regardless of its randomly
generated initial error E(0):

tu =
f

γρ1(f − j) ln
ρ1hM(0)(f−j)/f + ρ2

ρ2
,

where hM(0)means the maximum element of the matrix E(0).
P. For design formula (11), we have

dE(t)
dt = −

(
γρ1E(t) + γρ2Ej/f(t)

)
. (13)

To deal with the dynamic response of the equation (13), the
above differential equation can be rewritten as below:

E−j/f(t) ⋄ dE(t)
dt + γρ1E(f−j)/f(t) = −γρ2, (14)

where the matrix-multiplication operator ⋄ means the Hadamard
product and can be written as

W ⋄ S =


W11S11, W12S12, · · · , W1nS1n
R21S21, W21S21, · · · , W2nS2n

...
...

. . .
...

Wm1Sm1, Wm2Sm2, · · · , WmnSmn,

 ∈ Rm×n.

Now let us define Y(t)=E(f–j)/f(t). Then, we have

dY(t)
dt =

f − j
f E−j/f(t) ⋄ dE(t)

dt .

Thus, the differential equation (14) can be equivalent to the
following first order differential equation:

dY(t)
dt +

f − j
f γρ1Y(t) = − f − j

f γρ2I. (15)

This is a typical first order differential equation, and we have

Y(t) =
(

ρ2

ρ1
I + Z(0)

)
exp

(
− f − j

f γρ1t
)

− ρ2

ρ1
I. (16)

So we have

E(f−j)/f(t) =
(

ρ2

ρ1
I + E(f−j)/f(0)

)
exp

(
− f − j

f γρ1t
)

− ρ2

ρ1
I,

(17)

and

E(t) =
[(

ρ2

ρ1
I + E(f−j)/f(0)

)
exp

(
− f − j

f γρ1t
)

− ρ2

ρ1

]f/(f−j)
.

(18)
From the equation (18), we can find the error matrix E(t) will

converge to 0 in tu, and(
ρ2

ρ1
I + E(f−j)/f(0)

)
exp

(
− f − j

f γρ1tu
)

− ρ2

ρ1
I = 0. (19)

Considering each element of the matrix E(t) has the same
identical dynamics, we have

tik =
f

γρ1(f − j) ln
ρ1h(f−j)/f

ik (0) + ρ2

ρ1
, (20)

where hik means the ikth element of thematrix E(0), and tik means
the ikth finite-time convergence upper bound of the matrix E(t).
Let hM(0)=max(hik). Then for any ikth element of the matrix
E(t), we have the maximum convergence time:

tu =
f

γρ1(f − j) ln
ρ1hM(0)(f−j)/f + ρ2

ρ2
.

According to the above analysis, we can draw a conclusion
that the error matrix E(t) will converge to 0 within the finite
time tu regardless of its initial value E(0). Now the proof is
completed. �

Theorem 2. The state matrix X(t) of FTRNN model (12) will
converge to the theoretical solution of (5) in finite time tu regardless
of its randomly generated initial state x(0), and

tu ∈

{
f

γρ1(f − j) ln
ρ1hL(0)(f−j)/f + ρ2

ρ2
,

f
γρ1(f − j) ln

ρ1hM(0)(f−j)/f + ρ2

ρ2

}
,

where hM(0) and hL(0) mean the largest and the smallest elements
of the matrix E(0), respectively.

P. Let x(FT)(t) represent the solution of the FTRNNmodel
(12), x(org)(t) represent the theoretical solution of the equation (5),
and x̃(t) represent the difference between x(FT)(t) and x(org)(t).
Then, we can obtain

x̃(t) = x(FT)(t) − x(org)(t) ∈ R2n×2n. (21)

The equation (21) can be written as

x(FT)(t) = x̃(t) + x(org)(t) ∈ R2n×2n. (22)

Substitutes the above equation into FTRNN model (12), we
have

C( ˙̃x(t) + ẋ(org)(t)) = −γ
(
ρ1(C(x̃(t) + x(org)(t)) − e)

+ρ2(C(x̃(t) + x(org)(t)) − e)j/f
)
. (23)
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Considering Cx(org)(t)− e= 0 and C ẋ(org)(t) = 0, the above
equation can be written as

C ˙̃x(t) = −γ
(
ρ1(Cx̃(t) − e) + ρ2(Cx̃(t) − e)j/f

)
.

Furthermore, considering E(t) = C(x̃(t) + x(org)(t)) − e,
Cx(org)(t)− e= 0, and E(t) = Cx̃(t), the above differential equa-
tion can be written as

dE(t)
dt = −γ

(
ρ1(E(t) − e) + ρ2(E(t) − e)j/f

)
.

Let Ẽ(t) = E(t) − e, then we have

dẼ(t)
dt = −γ

(
ρ1Ẽ(t) + ρ2Ẽ

j/f(t)
)
. (24)

So according to the equation (20), we have

t̃ik =
f

γρ1(f − j) ln
ρ1h̃

(f−j)/f
ik (0) + ρ2

ρ1
, (25)

where t̃ik means the time upper of ikth solution of the matrix Ẽ(t),
and h̃ik means the ikth initial error value of the matrix Ẽ(0).

Let us define h̃M = max(h̃ik(0)), and h̃L = min(h̃ik(0)) with
i, k= 1, 2, . . . n. Then for all possible i and k, we have

f
γρ1(f − j) ln

ρ1h̃
(f−j)/f
L (0) + ρ2

ρ1

6 t̃ik(t) 6 f
γρ1(f − j) ln

ρ1h̃
(f−j)/f
M (0) + ρ2

ρ1
.

A B

FIGURE 1 | Output trajectories of neural states x(t) synthesized by GNN model (6) with γ = 5. (A) Element of real part of x(t), (B) element of imaginary part of x(t).

A B

FIGURE 2 | Output trajectories of neural states x(t) synthesized by ZNN model (8) with γ = 5. (A) Element of real part of x(t), (B) element of imaginary part of x(t).
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The above equation shows that the state matrix x̃(t) =
x(FT)(t)− x(org)(t)will converges to 0 within finite time regardless
of its initial error value. In another word, the matrix x(FT)(t) for
the FTRNN model (12) will converge to the theoretical solution
x(org)(t) for the theoretical model (5) within finite time regardless
of its randomly generated initial state x(0). Now the proof is
completed. �

3. COMPUTER SIMULATION

In this section, a digital example will be carried out to show
the superiority of FTRNN model (12) to GNN model (6) and
ZNN model (8). We can choose the design parameters f and
j, which satisfy f > j. For example, we choose f = 5 and j= 1
in this paper. In addition to this, to substantiate the superiority

of FTRNN model (12), we choose the same complex-valued
matrix A and b as these of the paper (Xiao et al., 2015). Then
we have

A =


−0.7597 + 0.6503j −0.8391 − 0.5440j 0.2837 − 0.9589j 1
0.7597 + 0.6503j −0.8391 + 0.5440j −0.2837 − 0.9589j 1
0.7597 − 0.6503j −0.8391 − 0.5440j −0.2837 + 0.9589j 1

0 − 1.0000j −1.0000 0 + 1.0000j 1

.

So we have

Are =


−0.7597 −0.8391 0.2837 1
0.7597 −0.8391 −0.2837 1
0.7597 −0.8391 −0.2837 1

0 −1.0000 0 1

,

A B

FIGURE 3 | Output trajectories of neural states x(t) synthesized by FTRNN model (12) with γ = 5. (A) Element of real part of x(t), (B) element of imaginary part of x(t).

A B

FIGURE 4 | Output trajectories of residual functions ||E(t)||2 synthesized by different neural-network models with (A) γ =5 and (B) γ = 500.
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and

Aim =


0.6503 −0.5440 −0.9589 0
0.6503 0.5440 −0.9589 0

−0.6503 −0.5440 0.9589 0
−1.0000 0 1.0000 0

.
Now the randomly generated vector b= [1.0000,

0.2837+ 0.9589j, 0.2837− 0.9589j, 0]T in Xiao et al. (2015)
is employed in this paper. The theoretical solution of the
complex-valued linear equation system can be written as
z(org) = [−0.4683−0.2545j, 1.2425+ 0.3239j, −0.6126+ 0.0112j,
1.5082+ 0.4683j]. Then according to the equation (5), we have

C=



−0.7597 −0.8391 0.2837 1 −0.6503 0.5440 0.9589 0
0.7597 −0.8391 −0.2837 1 −0.6503 −0.5440 0.9589 0
0.7597 −0.8391 −0.2837 1 0.6503 0.5440 −0.9589 0

0 −1.0000 0 1 1.0000 0 −1.0000 0
0.6503 −0.5440 −0.9589 0 −0.7597 −0.8391 0.2837 1
0.6503 0.5440 −0.9589 0 0.7597 −0.8391 −0.2837 1

−0.6503 −0.5440 0.9589 0 0.7597 −0.8391 −0.2837 1
−1.0000 0 1.0000 0 0 −1.0000 0 1


,

and e= [1.0000, 0.2837, 0.2837, 0, 0, 0.9589, −0.9589, 0]T. So the
theoretical solution of the complex-valued linear equation system

can be rewritten as x(org) = [−0.4683, 1.2425, −0.6126, 1.5082,
−0.2545, 0.3239, 0.0112, 0.4683]T.

First, a zero initial complex-valued state z(0) ∈ C4 is generated,
which can be transformed into the real-valued state x(0) ∈ R8 in
real domain. To help facilitate the contrast, we choose the design
parameter γ = 5 and γ = 500, respectively.

NowGNNmodel (6), ZNNmodel (8), and FTRNNmodel (12)
are applied to solve this complex-valued systems of linear equation
problem. The output trajectories of the corresponding neural-
state solutions are displayed in Figures 1–3. As seen from such
three figures, we can conclude that the output trajectories of the
neural-state solutions can converge to the theoretical solutions,
but the convergence rates are different. By comparison, we can
easily find that FTRNN model (12) has a fastest convergence
property.

To directly show the solution process of such three neural-
network models, the evolution of the corresponding residual
errors, measured by the norm ||E(t)||2, is plotted in Figure 4
under the conditions of γ = 5 and γ = 500. From Figure 4A,
the results are consistent with those of Figures 1–3. In addition,
from Figure 4B, the convergence speeds of GNNmodel (6), ZNN
model (8), and FTRNN model (12) can be improved as the value
of γ increases.

A B

C D

FIGURE 5 | Simulative results synthesized by FTRNN model (12) when the end-effector of five-link planar manipulator tracking the square path. (A) Motion
trajectories of manipulator, (B) actual and desired path, (C) position error, (D) velocity error.
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A B

FIGURE 6 | Motion trajectories of joint angle and joint velocity synthesized by FTRNN model (12) when the end-effector of five-link planar manipulator tracking the
square path. (A) Motion trajectories of θ, (B) motion trajectories of θ̇.

Now we can draw a conclusion that, as compared with GNN
model (6) and ZNN model (8), FTRNN model (12) has the
most superiority for solving the complex-valued system of linear
equation problem.

4. APPLICATION TO ROBOTIC MOTION
TRACKING

In this section, a five-link planar manipulator is used to vali-
date the applicability of the finite-time recurrent neural network
(FTRNN) (Zhang et al., 2011). It is well known that the kinematics
equations of the five-link planar manipulator at the position level
and at the velocity level are, respectively, written as follows (Xiao
and Zhang, 2013, 2014a,b, 2016; Xiao et al., 2017c):

r(t) = f(θ(t)) (26)
ṙ(t) = J(θ)θ̇(t) (27)

where θ denotes the angle vector of the five-link planar manip-
ulator, r(t) denotes the end-effector position vector, f (·) stands
for a smooth non-linear mapping function, and J(θ)= ∂f (θ)/∂θ
∈ Rm×n.

To realize the motion tacking of this five-link planar manipu-
lator, the inverse kinematic equation has been solved. Especially,
equation (27) can be seen as a system of linear equations when the
end-effector motion tracking task is allocated [i.e., ṙ(t) is known
and θ̇(t) needs to be solved]. Thus, we can use the proposed
FTRNNmodel (12) to solve this system of linear equations. Then,
based on the design process of FTRNNmodel (12), we can obtain
the following dynamic model to track control of the five-link
planar manipulator [based on the formulation of equation (27)]:

Cẋ(t) = −γ
(
ρ1(Cx(t) − e) + ρ2(Cx(t) − e)j/f

)
,

where C= J, x = θ̇ and e = ṙ(t).
In the simulation experiment, a square path (with the radius

being 1m) is allocated for the five-link planar manipulator to

track. Besides, initial state of the mobile manipulator is set as
θ(0)= [π/4,π/4,π/4,π/4,π/4]T, γ = 103 and task duration is 20 s.
The experiment results are shown in Figures 5 and 6. From the
results shown in such two figures, we can obtain that the five-
link planar manipulator completes the square path tracking task
successfully.

5. CONCLUSION

In this paper, a finite-time recurrent neural network (FTRNN) for
the complex-valued system of linear equation in complex domain
is proposed and investigated. This is the first time to propose such
a neural networkmodel, which can convergence within finite time
to online deal with the complex-valued system of linear equation
in complex domain, and the first time to apply this FTRNN
model for robotic path tracking by solving the system of linear
equation. The simulation experiments show that the proposed
FTRNN model has better effectiveness, as compared to the GNN
model and the ZNN model for the complex-valued system of
linear equation in complex domain.
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