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The T-box transcription factor 3 is a promising biomarker
and a key regulator of the oncogenic phenotype of a diverse
range of sarcoma subtypes
T Willmer1,3, A Cooper1,3, D Sims1, D Govender2 and S Prince1

Sarcomas represent a complex group of malignant neoplasms of mesenchymal origin and their heterogeneity poses a serious
diagnostic and therapeutic challenge. There is therefore a need to elucidate the molecular mechanisms underpinning the
pathogenesis of the more than 70 distinguishable sarcoma subtypes. The transcription factor TBX3, a critical developmental
regulator, is overexpressed in several cancers of epithelial origin where it contributes to tumorigenesis by different molecular
mechanisms. However, the status and role of TBX3 in sarcomas have not been reported. Here we show that a diverse subset of soft
tissue and bone sarcoma cell lines and patient-derived sarcoma tissues express high levels of TBX3. We further explore the
significance of this overexpression using a small interferring RNA approach and demonstrate that TBX3 promotes the migratory
ability of chondrosarcoma, rhabdomyosarcoma and liposarcoma cells but inhibits fibrosarcoma cell migration. This suggested that
TBX3 may play a key role in the development of different sarcoma subtypes by functioning as either an oncoprotein or as a brake to
prevent tumour progression. To further explore this, TBX3 knockdown and overexpression cell culture models were established
using chondrosarcoma and fibrosarcoma cells as representatives of each scenario, and the resulting cells were characterized with
regard to key features of tumorigenesis. Results from in vitro and in vivo assays reveal that, while TBX3 promotes substrate-
dependent and -independent cell proliferation, migration and tumour formation in chondrosarcoma cells, it discourages
fibrosarcoma formation. Our findings provide novel evidence linking TBX3 to cancers of mesenchymal origin. Furthermore, we
show that TBX3 may be a biomarker for the diagnosis of histologically dynamic sarcoma subtypes and that it impacts directly on
their oncogenic phenotype. Indeed, we reveal that TBX3 may exhibit oncogene or tumour suppressor activity in sarcomas, which
suggests that its role in cancer progression may rely on cellular context.
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INTRODUCTION
Sarcomas are cancers derived from mesenchymal tissue and while
they only account for a small percentage of neoplasms, they
represent some of the most aggressive cancers in children,
adolescents and young adults.1,2 They therefore contribute to a
considerable loss of years of life in comparison with other cancers.
Sarcomas are frequently resistant to conventional radiation- and
chemo-therapies and the heterogeneity that they exhibit, even
within histological subtypes, complicates patient care and limits
the options of current therapies.3 In light of this, there is a growing
appreciation of the need to understand the molecular mechan-
isms underlying the pathogenesis of individual sarcoma subtypes
with the view to identifying more effective diagnostic markers and
novel treatment strategies. Indeed, the development of subtype or
pathway-specific therapies is a rapidly evolving field and recent
advances in understanding sarcoma biology have led to the
identification of several molecular determinants of different soft
tissue and bone sarcoma subtypes. For example, the identification
of c-Kit and PDGFRαmutations in gastrointestinal stromal tumours
has led to the successful treatment of these cancers by the
tyrosine kinase inhibitor, imatinib.4 More recently, monoclonal

antibodies targeting insulin-like growth factor type 1 receptor
have shown promise in phase I and II clinical trials for the
treatment of paediatric sarcomas including osteosarcoma, Ewing
sarcoma and rhabdomyosarcoma.5,6 Sorafenib and pazopanib,
small-molecule inhibitors of vascular endothelial growth factor
receptor, have also shown anticancer activity in leiomyosarcomas,
angiosarcomas and synovial sarcomas.7,8 In addition, the mechan-
istic target of rapamycin inhibitor, AP23573, has shown promising
clinical efficacy in patients with advanced soft tissue sarcomas.9,10

It is therefore evident that improved sarcoma cure rates will likely
be driven by new types of treatment that target specific
deregulated proteins within these tumours.
TBX3 is a T-box transcription factor that plays critical roles in

embryonic development but it has also been implicated in a wide
range of carcinomas.11 For example, it is overexpressed in, among
others, a subset of breast carcinomas, melanoma, ovarian,
pancreatic, cervical, liver and bladder carcinomas and there is
evidence that it contributes to multiple aspects of the
oncogenic process.11 TBX3 negatively regulates apoptosis in rat
bladder12 and liver carcinoma,13,14 can bypass senescence and
promote proliferation by repressing the key cell cycle regulators
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p14/p19ARF, p21WAFI/CIPI/SDII (referred to as p21) and the tumour
suppressor phosphatase and tensin homologue (PTEN).14–19

Importantly, TBX3 plays a critical role in promoting breast tumour
and melanoma formation, invasion and metastasis in part through
its ability to directly repress the cell adhesion protein
E-cadherin.15,20–24 Although there is compelling evidence to
support a direct link for TBX3 in the development of carcinomas,
and indeed it has been identified as a novel anticancer drug
target, whether it is overexpressed in sarcomas and whether it
contributes to oncogenesis in these cancers are not known.
In the present study, we screened a panel of sarcoma cell lines

and patient-derived tissue and show that TBX3 is highly expressed
in sarcomas representative of diverse histological subtypes and
that, similar to its role in carcinomas, it promotes migration of
chondrosarcoma, liposarcoma and rhabdomyosarcoma cells.
Interestingly, we found TBX3 to inhibit migration of fibrosarcoma
cells, suggesting that it may function to either promote or inhibit
tumorigenesis depending on the cellular context. We further
explore this possibility by establishing and characterizing cell
culture models in which TBX3 is either knocked down or
overexpressed in chondrosarcoma and fibrosarcoma cell lines.
Similar to what has been described for TBX3 in carcinomas we
show that it directly contributes to the oncogenic phenotype of
chondrosarcoma cells. Importantly, we provide evidence for a
novel tumour suppressor role for TBX3 in fibrosarcomas where it
inhibits cell proliferation, migration and tumour-forming ability.
Taken together, this study shows for the first time that TBX3 is
overexpressed in several sarcoma subtypes and that it functions as
either an oncoprotein or a tumour suppressor depending on the
cellular context. Our findings suggest that TBX3 may be a
candidate diagnostic marker and a common therapeutic target
for a diverse range of sarcoma subtypes.

RESULTS
TBX3 is overexpressed in soft tissue and bone sarcomas
To begin to explore the status of TBX3 in sarcomas we firstly
analysed TBX3 expression in a panel of normal and transformed
fibroblast cell lines by western blotting. Compared with the
normal WI38 fibroblast cells, TBX3 was upregulated in transformed
(CT-1 and SV-WI38) fibroblasts as well as the naturally occurring
HT1080 human fibrosarcoma cells (Figure 1a). We next
determined if this overexpression of TBX3 may be a feature of
sarcomas and to this end we screened a panel of soft tissue and
bone sarcomas for TBX3 protein. Indeed, compared with the
normal human skin fibroblast cell lines, FG0 and DMB, TBX3 was
highly expressed in chondrosarcoma (ATDC5 and SW1353),
synovial sarcoma (SW982), liposarcoma (SW872) and embryonal
rhabdomyosarcoma (RD) cell lines (Figure 1b). Furthermore,
immunohistochemical analyses revealed that TBX3 was expressed
in patient-derived fibrosarcoma, synovial sarcoma, liposarcoma,
chondrosarcoma and rhabdomyosarcoma tissue sections (Figure 1c).

TBX3 impacts on sarcoma cell migration
TBX3 has a well-established role in promoting migration of several
carcinomas where it is overexpressed.15,20–24 In light of our results
showing that TBX3 is upregulated in sarcomas, we therefore next
investigated whether it also impacts on the migration of sarcoma
cells. To this end, we transiently knocked down TBX3 using siRNA
(small interfering RNA) in five histologically diverse sarcoma
subtypes and performed scratch motility assays. While TBX3
depletion had no effect on the migratory ability of synovial
sarcoma (SW982) cells (Figure 2a), it led to a significant reduction
in the migration of chondrosarcoma (SW1353) (Figure 2b),
rhabdomyosarcoma (RD) (Figure 2c) and liposarcoma (SW872)
(Figure 2d) cells. Quite unexpectedly, knocking down TBX3

Figure 1. TBX3 is overexpressed in soft tissue and bone sarcomas. Protein from (a) the WI38 normal human fibroblast, transformed SV-WI38
and CT-1 fibroblast, and HT1080 fibrosarcoma cell lines and (b) the DMB and FGO normal human fibroblast, CT-1 transformed fibroblast,
ATDC5 and SW1353 chondrosarcoma, SW982 synovial sarcoma, SW872 liposarcoma and RD rhabdomyosarcoma cell lines were screened for
TBX3 expression using western blotting with an antibody specific to TBX3. p38 was used as a loading control. (c) Archival patient-derived
fibrosarcoma (N= 4), synovial sarcoma (N= 2), liposarcoma (N= 3), chondrosarcoma (N= 1) and rhabdomyosarcoma (N= 3) tissue sections
were immunohistochemically stained using an antibody specific to TBX3. Representative images are shown (scale bars, 100 μm; insets are
magnified images from selected areas).
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Figure 2. TBX3 impacts on sarcoma cell migration. Left panels: (a) SW982 synovial sarcoma, (b) SW1353 chondrosarcoma,
(c) RD rhabdomyosarcoma, (d) SW872 liposarcoma and (e) HT1080 fibrosarcoma cell lines were transfected with transfection reagent only
(mock), control siRNA or siTBX3 and 48 h later scratch motility assays were performed. Data are the mean± s.d. of three independent
experiments, **Po0.01; ***Po0.001. Right panels (a–e): Western blot analyses were performed to assess TBX3 knockdown using an antibody
specific to TBX3 and p38 was used as a loading control.
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Figure 3. TBX3 promotes proliferation of chondrosarcoma cells by repressing key cell cycle regulators. (a, b) Protein extracts from indicated
cell lines were analysed by western blotting using an antibody specific to TBX3 and p38 was used as a loading control. (b) Right panel,
immunocytochemistry with an antibody specific to FLAG shows TBX3 overexpression in SW1353 FLAG-Tbx3 cells. Hoechst was used to stain
the nuclei. Representative images are shown (scale bars, 50 μm). (c, f) Growth curve analyses of (c) shCtrl and shTBX3 cells and (f) FLAG-empty
and FLAG-Tbx3 cells. (d, g) Cells were pulsed with BrdU and processed for immunocytochemistry using an antibody specific to BrdU and
visualized by fluorescence microscopy. Bar graphs show the average percentage of BrdU-positive cells in 20 fields of view. (e) Western blotting
with antibodies specific to TBX3, p14ARF, p53 and p21. p38 was used as a loading control. (c, d, f, g) Data are the mean± s.d. of three
independent experiments, *Po0.05; ***Po0.001.
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resulted in increased migration of fibrosarcoma (HT1080) cells
(Figure 2e).

Establishment of chondrosarcoma and fibrosarcoma cell lines in
which TBX3 was either stably knocked down or overexpressed
The above data gave an initial indication that TBX3 may have
different oncogenic roles in sarcomas and we therefore further
investigated this in fibrosarcoma and chondrosarcoma cell lines in
which TBX3 was either knocked down or overexpressed. To knock
down TBX3, cells were stably transfected with a pSuper.neo/GFP
expression vector containing a short-hairpin (sh) RNA sequence
targeting TBX3 (shTBX3) or a nonspecific control sequence (shCtrl).
A number of G418-resistant clones were isolated and TBX3
knockdown was confirmed by western blotting and the clones
further characterized are shown in Figures 3a and 6a. Stable cell
lines in which TBX3 was ectopically overexpressed were generated
by transfecting cells with a FLAG-tagged pCMV-Tbx3 or a control
pCMV-Empty vector and western blotting and immunocyto-
chemistry show the G418-resistant clones overexpressing TBX3
that were used for further analyses (Figures 3b and 6b).

TBX3 promotes proliferation of chondrosarcoma cells by
repressing key cell cycle regulators
To determine the effect of TBX3 on chondrosarcoma cell
proliferation, growth curve analyses and 5-bromo-2-deoxyuridine
(BrdU) incorporation assays were performed and results showed
that compared with their control cells, ATDC5 and SW1353 shTBX3
chondrosarcoma cells exhibited a significantly slower growth rate
under normal and reduced serum conditions (Figures 3c and d).
Consistent with this finding, levels of the previously identified
TBX3 targets, p14/p19ARF and p21, increased in both shTBX3
chondrosarcoma cell lines (Figure 3e), which suggest that TBX3
promotes proliferation of chondrosarcoma cells by, in part,
repressing key cell cycle regulators.18,19 It is worth noting that
knockdown of TBX3 in the SW1353, but not the ATDC5 (data not
shown), cells also resulted in increased p53 protein levels, which
suggest that the proproliferative ability of TBX3 in chondro-
sarcoma cells may be both p53 dependent and independent.
In support of the above data, when TBX3 was ectopically

overexpressed in chondrosarcoma cells the proliferative ability of
the cells increased (Figures 3f and g) which correlated with, as
expected, undetectable levels of p53, p21 and p14ARF (data not
shown).

TBX3 is required for anchorage-independent growth, migration
and in vivo tumour-forming ability of chondrosarcoma cells
We next determined the impact of TBX3 on anchorage-
independent growth of chondrosarcoma cells using soft agar
assays. Our results show that in the absence of a substrate shTBX3
cells had reduced proliferative ability and formed significantly
fewer and smaller colonies (Figure 4a). On the other hand,
compared with their control cells, the SW1353 cells that
ectopically overexpress TBX3 (SW1353 FLAG-Tbx3) formed more
and larger colonies (Figure 4b). Consistent with this ability of TBX3
to promote anchorage-independent growth in vitro, when NOD
scid gamma (NSG) mice were injected subcutaneously with
SW1353 FLAG-Tbx3 cells or FLAG-Empty cells, the tumour volume
and weight for cells overexpressing TBX3 were significantly
greater (Figure 4c)
Results shown in Figure 2 suggested that TBX3 promotes

migration in chondrosarcoma cells. To confirm this in our
chondrosarcoma cell lines in which TBX3 was either stably
knocked down or overexpressed, we performed scratch and
transwell motility assays. As expected, whereas depleting TBX3
inhibited the migration of chondrosarcoma cells (Figure 5a),
ectopic overexpression of TBX3 promoted their migration

(Figure 5b). Together these results provide compelling evidence
to support a role for TBX3 as an oncogene in chondrosarcomas.

TBX3 exhibits tumour suppressor activity in fibrosarcoma cells
in vitro
To further explore the putative tumour suppressor activity of TBX3
in fibrosarcomas, we characterized the impact of stably knocking
down TBX3 in CT-1 and HT1080 fibroblasts (Figure 6a) or
overexpressing the Tbx3 and Tbx3+2a isoforms in the HT1080
cells (Figure 6b) on key features of the cancer phenotype. The two
Tbx3 isoforms were included because they may have opposite
effects on oncogenesis, which may account for the unexpected
tumour suppressor function observed in Figure 2. Growth curve
analyses and BrdU incorporation assays show that compared with
control cells, shTBX3 cells had significantly enhanced proliferative
ability while both FLAG-Tbx3 and FLAG-Tbx3+2a cells grew
significantly more slowly than their control cells (Figures 6c
and d). A similar trend was seen when cells were cultured under
reduced serum conditions (Figures 6e and f). The negative impact
of TBX3 on the proliferative ability of fibroblasts correlated with
levels of the key cell cycle regulators p53 and p21 (Figures 6g
and h). Taken together these results suggest that TBX3 may inhibit
fibroblast cell proliferation by activating p53 and its downstream
target p21 and that the TBX3 and TBX3+2a isoforms are
functionally similar in this context.
Consistent with it having antitumour activity in fibroblasts,

depleting TBX3 led to an increase in their anchorage-independent
cell proliferation in soft agar assays (Figure 7a) while over-
expressing either TBX3 isoform had the opposite effect
(Figure 7b). Similarly, while knocking down TBX3 enhanced the
migratory ability of both CT-1 and HT1080 cells in motility assays
(Figure 7c), overexpressing either isoform reduced this ability
(Figure 7d). It is worth noting that compared with Tbx3 the activity
of the Tbx3+2a isoform appears more pronounced. We believe
that this is due to the different levels of overexpression achieved
for the two isoforms, that is, Tbx3+2a expressed at much higher
levels than Tbx3 (see Figures 6b and h). Together these results
confirm that TBX3 and TBX3+2a have tumour suppressor activity
in fibroblasts in vitro.

TBX3 exhibits tumour suppressor activity in fibrosarcoma cells
in vivo
To confirm that TBX3 functions as a tumour suppressor in
fibrosarcomas in vivo, HT1080-shTBX3, HT1080-FLAG-Tbx3+2a and
their control cells were injected subcutaneously into the right
flank of nude mice and tumour growth was monitored in situ over
2 weeks. While both the HT1080 shCtrl and HT1080-shTBX3 cells
were able to form tumours, the volume and average mass of
those produced by the shTBX3 cells were significantly greater
(Figure 8a). Furthermore, the overexpression of Tbx3+2a was able
to significantly reduce the tumour volume and weight (Figure 8b).
Histopathological analyses revealed the tumours to be spindle cell
masses consistent with fibrosarcomas and sections stained
positive for the mesenchymal marker, vimentin (data not shown).
Taken together, data from our chondrosarcoma and fibrosarcoma
cell culture models provide compelling evidence for a novel
tumour suppressor role for TBX3 in fibroblasts and suggest that
TBX3 may play opposite roles in the development of sarcomas.

DISCUSSION
There is a significant body of evidence implicating TBX3 as an
oncoprotein in several carcinomas; however, nothing is known
about its status and role in sarcomas.12,13,24–29 Here we show
that TBX3 is highly expressed in a panel of soft tissue and
bone sarcoma cell lines and patient-derived sarcoma tissue.
Significantly, chondrosarcoma and fibrosarcoma cell culture
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Figure 4. TBX3 promotes anchorage-independent growth and in vivo tumour-forming ability of chondrosarcoma cells. Cell growth in soft agar
of (a) ATDC5 (top) and SW1353 (bottom) shCtrl and shTBX3 cells and (b) SW1353 FLAG-Empty and FLAGTbx3 cells was assessed by staining
viable colonies with p-iodinitrotetrazolium chloride. Quantitative analyses of number of colonies and colony diameter were calculated from 20
fields of view. (a, b) Data are the mean± s.d. of three independent experiments, *Po0.05; **Po0.01; ***Po0.001. (c) Left panel: SW1353
FLAG-Empty and FLAG-Tbx3 cells were subcutaneously injected into the flanks of NSG immunocompromised mice (N= 5 each). In situ tumour
volume (mm3) was measured using callipers. Right panel: Following euthanasia, tumours were excised and weighed (grams). Data represent
mean± s.d. (N= 5 each), *Po0.05; **Po0.01; ***Po0.001.
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models in which TBX3 was either depleted or overexpressed
revealed that while TBX3 contributes to cell proliferation,
migration and tumour formation in chondrosarcoma cells, it has
an inhibitory effect on these processes in fibrosarcomas. A positive
effect of TBX3 on cell migration was also observed in liposarcoma
and rhabdomyosarcoma cells. Together these findings provide
evidence that the overexpression of TBX3 may be a feature of a
wide range of sarcoma subtypes and that TBX3 impacts directly
on their development as either an oncogene or a tumour
suppressor.
Sarcomas represent a diverse cluster of malignancies with vastly

different biology and clinical behaviour and this presents a serious
obstacle to early and reliable diagnosis as well as therapy.30–32

In addition, many sarcoma subtypes are associated with poor
prognosis due to resistance to conventional therapies such as
surgery, chemotherapy and radiation, and hence a major goal in
sarcoma research has been to develop molecular targetted
therapies.30–32 Our observations that TBX3 expression is elevated

in sarcoma cell lines and patient-derived tissue sections repre-
sentative of both simple (synovial sarcoma) and complex
(fibrosarcoma, chondrosarcoma, liposarcoma and embryonal
rhabdomyosarcoma) karyotypes suggest that TBX3 is a
common feature in multiple signalling networks involved in
sarcomagenesis.32 This raises the possibility that TBX3 may
represent a promising diagnostic marker for a diverse range of
sarcoma subtypes. Moreover, early and accurate diagnosis of
sarcomas is often masked by the high occurrence of benign soft
tissue masses that largely outnumber malignant sarcomas.33,34

Our observation that TBX3 is expressed in tumour cells and tissues
indicates that TBX3 expression may be useful to differentiate
sarcomas from benign soft tissue masses which will assist with
appropriate treatment planning. However, the sample size of our
study was small due to the rarity of these tumours and future
studies will be necessary to confirm our observations in many
more patient samples. Furthermore, our data showing that
depleting TBX3 inhibits the cancer phenotype of several sarcoma

Figure 5. TBX3 promotes migration of chondrosarcoma cells. Scratch (left panels) and transwell (right panels) motility assays were performed
to measure the migration of (a) shCtrl and shTBX3 ATDC5 cells (top panel) and shCtrl and shTBX3 SW1353 cells (lower panel) and (b) SW1353
FLAG-Empty and FLAG-Tbx3 cells. (a, b) Data are the mean± s.d. of three independent experiments, **Po0.01; ***Po0.001.
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Figure 6. TBX3 represses proliferation of fibrosarcoma cells by activating key cell cycle regulators. (a, b) Protein extracts from indicated cell
lines were analysed by western blotting using an antibody specific to TBX3 and p38 was used as a loading control. (b) Right panel,
immunocytochemistry with an antibody specific to FLAG shows TBX3 overexpression in HT1080 FLAG-Tbx3 cells and FLAG-Tbx3+2a. Hoechst
was used to stain the nuclei. Representative images are shown (scale bars, 50 μm). (c–f) Growth curve analyses and BrdU incorporation assays
for (c, e) shCtrl and shTBX3 and (d, f) FLAG-empty and FLAG-Tbx3 cells. For the BrdU incorporation assays cells were pulsed with BrdU and
processed for immunocytochemistry using an antibody specific to BrdU and visualized by fluorescence microscopy. Bar graphs show the
average percentage of BrdU-positive cells in 20 fields of view. (c–f) Data are the mean± s.d. of three independent experiments, *Po0.05;
**Po0.01; ***Po0.001. (g, h) Western blotting with antibodies specific to TBX3, p53 and p21. p38 was used as a loading control.
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subtypes suggests that it may also represent a common target to
treat diverse sarcomas.
We and others have previously shown that TBX3 promotes

migration of breast and bladder carcinomas and melanoma cells
by a process involving its ability to repress the cell adhesion
molecule, E-cadherin.20,23,24,35 Here we show that TBX3 similarly
impacts on migration of chondrosarcoma, liposarcoma and
rhabdomyosarcoma cells, but they did not however express
detectable levels of E-cadherin (data not shown). This would be
consistent with numerous other studies that have shown that only
a fraction of sarcomas express E-cadherin and indeed 90%
of epithelioid sarcoma cases were reported to be E-cadherin
negative.36 The molecular mechanism(s) underlying the
promigratory role of TBX3 in carcinomas and sarcomas therefore
appears to be different and future studies identifying TBX3 target
genes as well as signalling pathways that upregulate TBX3 in
sarcomas would likely shed light on this. Of interest would be the
Wnt/β-catenin and PI3K/Akt signalling pathways because they

promote metastasis of a number of sarcoma subtypes.31,37,38 For
example, high levels of β-catenin and aberrant activation of Wnt
signalling are frequently observed in sarcomas and this pathway
promotes sarcoma metastasis by modulating the Wnt target
genes, MMP-9 and c-Myc.39 Furthermore, constitutive activation of
AKT, in part due to the repression of PTEN, is observed in 55% of
soft tissue sarcoma cases31,40 and targeting AKT was shown to
reduce pulmonary metastasis in osteosarcoma bearing mice.41

Interestingly, TBX3 is positively regulated by AKT, Wnt/β-catenin
and c-Myc in melanoma, liver cancer and chondrosarcomas,
respectively, and it directly represses PTEN to promote head and
neck carcinomas.13,42,43 It will thus be worth investigating whether
these signalling networks regulate TBX3-induced sarcoma cell
migration.
Unexpectedly, our study also revealed a novel role for TBX3 as a

tumour suppressor in fibrosarcomas. Indeed, whereas knocking
down TBX3 in transformed fibroblasts resulted in a more
aggressive cancer phenotype, ectopic overexpression of Tbx3,

Figure 7. TBX3 represses anchorage-independent growth and migration of fibrosarcoma cells. (a) CT-1 (left) and HT1080 (right panel) shCtrl
and shTBX3 cells and (b) HT1080 FLAG-Empty, FLAG-Tbx3 and FLAG-Tbx3+2a cells were suspended in soft agar-medium slurry and allowed to
proliferate for 21–35 days. Whole dishes were stained with p-iodinitrotetrazolium chloride to indicate viable populations and images of
colonies were taken at × 10 magnification. (c) Migration of CT-1 (left) and HT1080 (right) shCtrl and shTBX3 cells and (d) HT1080 FLAG-empty,
FLAG-Tbx3 and FLAG-Tbx3+2a cells was analysed using scratch (top) and transwell motility assays (bottom). For the transwell assay the results
show the percentage of cells that migrated through the transwell insert. (c, d) Data are the mean± s.d. of three independent experiments,
*Po0.05; **Po0.01; ***Po0.001.
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or its splice variant Tbx3+2a, was sufficient to inhibit key features
of the cancer phenotype in the aggressive HT1080 cell line. While
this is the first study to provide a full characterization of a tumour
suppressor function for TBX3, there are a few high-throughput
studies that have hinted at this possibility. Using microarray
analyses, Lyng et al.29 showed that TBX3 expression was down-
regulated in cervical and uterine cancer samples and that this
strongly correlated with lymph node metastasis and reduced
progression-free survival. In addition, the silencing of TBX3 by
methylation has been associated with progression to muscle-
invasive bladder tumours and with more aggressive prostate
tumours and this correlated with significantly lowered survival
rate.44–47 The apparent paradoxical ability of TBX3 to either
promote or inhibit tumorigenesis has also been reported for
other developmental transcription factors with prime examples
including FOXO3,48,49 TGFβ,50 Sox451 and other T-box factors.
For example, while the overexpression of Brachyury contributes to
a number of tumour types through its ability to promote
epithelial–mesenchymal transition,52,53 a high-throughput study
has revealed that Brachyury is epigenetically silenced in lung
cancer and may be a tumour suppressor.54 TBX5 has also been
shown to induce apoptosis and inhibit tumour formation in
osteosarcoma, lung and colon cancer,55,56 but also to interact with
YAP1 and β-catenin to activate the expression of a number of
antiapoptotic genes in β-catenin-driven cancers.57 Taken together,
our findings reveal that, depending on cellular context, TBX3 plays
opposite roles in cancer and it will be important to elucidate the
mechanism(s) that enables it to switch between these functions.
We speculate that it involves protein co-factors and studies are
therefore underway to identify TBX3 interacting partners in
chondrosarcomas and fibrosarcomas.
In summary, results from this study contribute significantly to an

understanding of the role of TBX3 in cancer biology and provide
new evidence that TBX3 also impacts on sarcomagenesis.

MATERIALS AND METHODS
Cell culture
Human embryonic lung fibroblast WI38 cells (ATCC CCL-75), γ-radiation
transformed WI38 fibroblast cells (CT-1),58 SV40 transformed WI38 cells
(SV-WI38),59 HT1080 human fibrosarcoma cells (ATCC CCL-120), FG0 and
DMB human skin fibroblasts,60 SW1353 human chondrosarcoma cells
(ATCC HTB-94), SW982 human synovial sarcoma cells (ATCC HTB-93),
SW872 human liposarcoma (ATCC HTB-92) and RD human embryonal
rhabdomyosarcoma cell (ATCC CCL-136) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Sigma Aldrich, St Louis, MO, USA),
supplemented with 10% heat-inactivated foetal bovine serum (FBS), 100 U/
ml penicillin and 100 μg/ml streptomycin. ATDC5 mouse chondrosarcoma
cells were maintained in DMEM:nutrient mixture F-12 (DMEM/F-12; 1:1;
Sigma Aldrich), supplemented with 5% FBS, 100 U/ml penicillin, 100 μg/ml
streptomycin, 10 μg/ml human transferrin (Sigma Aldrich) and 3× 10− 8

M

sodium selenite (Sigma Aldrich). All cells were maintained as previously
described.20

Immunohistochemistry
Paraffin-embedded tissue sections (N= 13) were obtained from the
Division of Anatomical Pathology, University of Cape Town and this study
was approved by and performed in accordance with the University of Cape
Town Human Research Ethics Committee. Paraffin-embedded tumour
tissues from surgical specimens were cut in 5-μm-thick sections. Antigen
retrieval was performed with citric acid buffer at pH 6 for 90 s using a
pressure cooker and cooled for an additional 30 min. Tissue sections were
blocked with 5% goat serum (X090710; Dako, Glostrup, Denmark) in
phosphate-buffered saline and incubated with rabbit polyclonal anti-TBX3
(1:25; Zymed, Invitrogen, Carlsbad, CA, USA) overnight. Secondary antibody
(K400211; Dako) and DAB chromogen (K346711; Dako) were applied
according to the manufacturer’s instructions. Slides were counrtstained
with hematoxylin, the nuclei stained with Scott’s solution and mounted
using Entellan (107960; Merck, Darmstadt, Germany).

Small interferring RNA
Transient suppression of TBX3 cellular expression was achieved using
50 nm siRNA specifically designed to target TBX3 mRNA. The cells were

Figure 8. TBX3 represses in vivo tumour-forming ability of fibrosarcoma cells. (a) HT1080 shCtrl and shTBX3 cells and (b) HT1080 FLAG-empty
and FLAG-Tbx3+2a cells were subcutaneously injected into the flanks of MF-1 nude mice. Top: In situ tumour volume (mm3) was measured
using callipers. Bottom: Following euthanasia, tumours were excised and weighed (g). (a, b) Data represent mean± s.d. (N= 5 each), *Po0.05;
***Po0.001.
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transfected with siTBX3 (SI00083503; Qiagen, Valencia, CA, USA) or a
control (non-silencing) siRNA (1027310; Qiagen) using HiPerFect (Qiagen)
according to the manufacturer's instructions.

Generation of stable cell lines
For the generation of stable TBX3 knockdown lines, CT-1, HT1080, SW1353
and ATDC5 cells were stably transfected with a pSuper.neo/GFP expression
vector containing a sequence targeted to TBX3 or a nonspecific control,
as previously described.20 Stable transfectants were selected in growth
medium containing 400 μg/ml G418 (Promega, Madison, WI, USA) (ATDC5
and CT-1 cells) or 800 μg/ml G418 (HT1080 and SW1353 cells). Effective
knockdown of TBX3 was assessed by western blot analysis. TBX3
overexpressing cell lines were generated by stably transfecting HT1080
and SW1353 cells with a FLAG-tagged pCMV-empty vector or pCMV
constructs expressing the mouse Tbx3 (pCMV-Tbx3) or mouse Tbx3+2a
(pCMV-Tbx3+2a) (kindly provided by Professor Colin Goding at the Ludwig
Institute of Cancer Research, Oxford, London, UK) using FuGENEHD (Roche
Molecular Biochemicals, Mannheim, Germany) according to the manufac-
turer's instructions. Stable transfectants were selected for with 800 μg/ml
G418 antibiotic (Promega). Effective overexpression of Tbx3 and Tbx3+2a
was assessed by western blot analysis.

Western blot analysis
Cells were harvested and protein prepared as described previously.61

Primary antibodies used were as follows: rabbit polyclonal anti-TBX3
(42-4800; Zymed, Invitrogen), rabbit polyclonal anti-p38 (M0800) and
mouse monoclonal anti-FLAG M2 (F1804; Sigma, St Louis, MO, USA), rabbit
polyclonal p19ARF (sc-1063), mouse polyclonal anti-p53 (sc-6243), rabbit
polyclonal anti-p21 (C-19, Santa Cruz Biotechnology, Santa Cruz, CA, USA).

BrdU incorporation assay
BrdU incorporation assays were performed as described previously61 using
10 μM BrdU and a mouse monoclonal anti-BrdU antibody (6 μg/ml; Roche),
followed by a secondary IgG coupled to Alexa-488 (1:1000; Molecular
Probes, Carlsbad, CA, USA). Slides were mounted with Mowial mounting
medium and visualized by fluorescence microscopy using an Axiovert
fluorescent microscope (Zeiss, Oberkochen, Germany). Data were obtained
from three independent experiments.

Proliferation assays
Short-term growth of the TBX3 knockdown and overexpression lines was
performed in DMEM supplemented with 10% or 2% FBS (CT-1, HT1080 and
SW1353 cells) or 5% or 0% FBS (ATDC5 cells). Cells were plated in triplicate
in 12-well plates as follows: 1 × 104 per well for CT-1 cells and 0.5 × 104 cells
per well for HT1080, SW1353 and ATDC5 cell lines. Growth curves were
performed over an 8-day period, as previously described.62 Data were
obtained from three independent experiments.

Anchorage-independent assay
Soft agar assays were performed as described previously.61 Dishes (35 mm)
were layered first with 0.5% agar in cell culture medium followed by 0.35%
agar in cell culture medium containing 5000 cells. Colonies were stained
with p-iodonitrotetrazolium chloride (1 mg/ml), incubated overnight at
37 °C and photographed. Data were obtained from three independent
experiments.

Cell migration assays
Cell migration was measured using a two-dimensional in vitro scratch
motility assay as previously described.20 The wound areas were measured
over time and calculated using ImageJ software (National Institutes of
Health, Bethesda, MD, USA). For the transwell assay, transwell plates with
an 8- μm pore size were used (ThinCert cell culture inserts; Kremsmünster,
Greiner, Austria). Cells were seeded at 1 × 105 cells in the top chamber, in
DMEM supplemented with 2% FBS and incubated for 24 h at 37 °C. The
bottom chamber contained DMEM supplemented with 10% FBS. Twenty-
four hours later, cells were fixed in 100% methanol and cotton swabs were
used to remove cells in the upper surface of the transwells. Migrated cells
attached to the undersurface of the transwell were stained with crystal
violet solution and then air-dried. Crystal violet-stained cells were
solubilized in 50% acetic acid and quantified using a microplate reader
at 595 nm. Data were obtained from three independent experiments.

Xenograft mouse models
All protocols employed in this study were approved by and performed in
accordance with the University of Cape Town Animal Research Ethics
Committee guidelines for care and use of laboratory animals. Unblinded
tumorigenicity experiments were performed by subcutaneously injecting
1× 107 SW1353 FLAG-Empty or FLAG-Tbx3 cells in 100;μl phosphate-
buffered saline into the right flanks of randomly selected 4- to 6-week-old
NOD/Lt-scid/IL2Rγnull (NSG) mice (N= 5 per group) (The Jackson
Laboratory, Bar Harbor, ME, USA). For HT1080 cells, 5 × 106 shCtrl or
shTBX3 cells or 4 × 106 FLAG-Empty or FLAG-Tbx3+2a cells were injected
into the right flanks of randomly selected 6-week-old MF-1 nude mice
(N= 5 per group). Tumour growth was measured using the formula
(volume mm3= (length) × (width2) x 0.5). Once tumour volume had
reached a length of 12mm, mice were killed and organs, including
tumours, were removed for histopathological analyses (IDEXX Laboratories
(Pty) Ltd, Cape Town, South Africa). Power analysis to determine sample
size was performed using PS (Power and Sample size) freeware.

Immunocytochemistry
Cells were grown on glass coverslips and fixed with flash treatment of
ice-cold methanol before permeabilization with 0.25% Triton X-100 in
phosphate-buffered saline for 5 min at room temperature. Slides were
incubated with mouse monoclonal anti-FLAG M2 antibody (1:500;
F1804; Sigma) for 2 h at 37 °C, followed by incubation with the appropriate
secondary antibody coupled to Alexa-488 (1:1000; Jackson ImmunoRe-
search Laboratories Inc., West Grove, PA, USA). All cells were co-stained
with Hoechst (33342; Invitrogen). Cells were mounted using Mowiol
mounting medium and examined by fluorescence microscopy using an
Axiovert fluorescent microscope (Zeiss).

Statistical analysis
Statistical significance was determined using Student’s t-test (Excel,
Microsoft, Redmond, WA, USA) or two-way ANOVA (Graphpad Prism 4,
San Diego, CA, USA). Significance was accepted at Po0.05. Power analysis
to determine sample size for xenograft studies was performed using PS
(Power and Sample size) freeware.
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