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A B S T R A C T

Alzheimer’s disease (AD) is a severe neurodegenerative disorder characterized by the accumu
lation of β-amyloid (Aβ) plaques and tau phosphorylation-induced neurofibrillary tangles. This 
review comprehensively summarizes AD pathogenesis and related factors, drawing on a wealth of 
authoritative reports and research findings. Specifically, we delve into the intricate mechanisms 
underlying AD pathology, including Aβ deposition, tau protein phosphorylation, cholinergic 
dysfunction, neuroinflammation, mitochondrial oxidative stress, ferroptosis, imbalance in the gut 
microbiota, and microRNA dysregulation. We also explored the effects of these factors on the 
brain, including synaptic damage and cognitive impairment. Moreover, our review highlights the 
associations between the pathogenesis of AD and inflammatory cytokines in the peripheral blood 
and cerebrospinal fluid, dysbiosis of the gut microbiota, and changes in microRNA expression. 
Overall, we provided a systematic and illustrative overview of the pathogenesis and therapeutic 
drugs for AD, offering help in the prevention and treatment of this condition.

1. Introduction

With global economic and medical advancements, population aging is becoming increasingly evident, making dementia in older 
adults a significant challenge. Among the various types of dementia, Alzheimer’s disease (AD) is the most prevalent. The hallmark 
features in patients with AD are β-amyloid (Aβ) deposition, neurofibrillary tangles (NFTs), and the loss of neurons and synapses in the 
brain. The 2018 World Health Organization (WHO) report on AD highlights the global crisis posed by dementia, estimating 50 million 
patients worldwide in 2018. Projections indicate that this number will continue to rise, reaching 82 million by 2030, imposing a 
significant healthcare burden on a global scale [1]. Consequently, an increasing number of researchers are investigating the etiological 
mechanisms of AD [2]. AD is named after Alois Alzheimer, the neurologist who first discoverd it [3]. His discovery paved the way for 
further research into the pathogenesis of AD, with the initial identification of Aβ plaques as a contributing factor [4]. Subsequently, 
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Iqbal et al. isolated NFTs from the brains of patients with AD [5]. As research has progressed, an increasing number of hypotheses 
regarding AD have been proposed. Extensive research has revealed that the pathogenesis of AD is associated with Aβ deposition [6], 
tau protein phosphorylation [7], cholinergic dysfunction [8], neuroinflammation [9], mitochondrial oxidative stress [10], ferroptosis 
[11], an imbalance in the gut microbiota [12], and alterations in microRNA (miRNA) expression [6]. These factors can interact with 
and exacerbate each other, further accelerating AD progression. This review aims to organize the multiple mechanisms and medi
cations for AD to provide insights into its prevention and treatment.

2. Molecular mechanisms of AD

2.1. Aβ

There are two hallmark pathological features in the periphery of hippocampal neurons in patients with AD, one of which is Aβ 
deposition, primarily formed by smaller fragments of amyloid precursor protein (APP). APP generates Aβ peptides of different lengths 
after successively undergoing β-secretase and γ-secretase [13]. Aβ1-40 and Aβ1-42 are particularly neurotoxic and are frequently 
associated with AD [14]. The in-depth understanding of the process of secretase-induced Aβ formation and the mechanism of Aβ 
damage to neurons provides more theoretical basis for the future development of Aβ-targeted drugs for the treatment of AD.

2.1.1. Role of secretory enzymes on Aβ formation
β-secretase 1 (BACE1), an aspartyl protease predominantly found in brain neurons, is known for cleaving APP to produce Aβ [13,

15]. Scientists have studied BACE1 in various aspects, including the genes that regulate BACE1 and its post-translational modifications 
[16]. Bao et al. found that both the activity and stability of BACE1 were enhanced following SUMOylation at residue K501 [17]. The 
stability-enhanced BACE1 is not easily degraded by the lysosome, which can promote APP shearing, leading to Aβ accumulation [17]. 
BACE2, which shares 64 % amino acid similarity with BACE1, is predominantly expressed in peripheral tissues [18,19]. However, its 
level is increased in the brains of patients with AD and has been regarded as a marker that is highly correlated with AD. Moreover, the 

Fig. 1. Tau phosphorylated sites and related kinases. (A) The adult full-length tau protein has 85 potential phosphorylation sites, including 45 
serine, 35 threonine, and 5 tyrosine residues. The phosphorylation sites shown in the figure are associated with the development of AD. (B) Aβ 
oligomers bind to the receptor, which then upregulates E2F1. This, in turn, induces the expression of PAX6 and c-Myb. PAX6 and c-Myb can directly 
regulate the transcription of GSK-3β, thereby promoting tau phosphorylation. CDK5 also promotes tau phosphorylation, and CDK5 is regulated by 
p35, p39, and p25. In addition, tau interacts with Nup98, leading to defects in nucleocytoplasmic transport.
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amount and activity of BACE2 are related to BACE1 levels in the brain [20]. Thus, BACE2 was initially assumed to have a similar 
function to BACE1 in cleaving APP at the β-site to produce Aβ. However, later research questioned this idea and proposed that BACE2 
may play a protective role for neurons [21,22]. Evidence indicates that elevated levels of BACE2 do not exacerbate the deposition of 
Aβ40 and Aβ42 but rather reduce them [23]. However, Wang Z et al. has found that under specific conditions, BACE2 is able to cleave 
APP at the β-site [2]. Hence, scientists hold different views on the role of BACE2 in Aβ formation and AD processes. We are currently 
unable to clearly determine whether BACE2 promotes or inhibits the production of Aβ, possibly due to varying experimental condi
tions. Therefore, its specific mechanism of action remains to be studied.

2.1.2. Aβ is aggressive to nerve cells
Research suggests that Aβ impairs neuronal cell function and reduces cell viability through multiple pathways.
Shankar et al. revealed that Aβ oligomers impaired learning and memory abilities in rats [24]. Evidence indicates that Aβ oligomers 

significantly increased long-term depression, and the density of dendritic spines was decreased around the rodent hippocampus [24]. 
Clinical trials revealed that removing amyloid plaques does not improve symptoms of AD, whereas inhibiting Aβ oligomers resulted in 
better clinical outcomes, so Aβ oligomers are considered the more neurotoxic forms [25]. Moreover, Aβ oligomers are duplicated in 
astrocytes over time and induce neural damage [26]. Teng et al. discovered that the number of the C-terminal fragment of the synaptic 
adhesion protein N-cadherin amplifies the synaptotoxic effects of Aβ [27]. Furthermore, a delay in synaptic vesicle endocytosis 
promotes the binding of Aβ oligomers to synaptic vesicle membranes and facilitates their internalization, resulting in synaptic 
impairment. Aβ not only affects hippocampal neurons but also causes injury to microglia. Microglia are mononuclear macrophages of 
the central nervous system (CNS) that relate to the growth and development of neuronal cells [24]. Baron has found that the microglia 
surrounding the Aβ acquired the specifically activated phenotype, accompanied by a light increase in cytokines [25]. Additionally, Liu 
Q et al. discovered that Aβ aggregates up-regulate the expression and function of α7 nicotinic acetylcholine receptor (nAChR), leading 
to decreased cell viability [23].

2.2. Tau phosphorylation

Tau-phosphorylated proteins, commonly found in the mammalian brain, are primarily located in axons, and regulate axonal 
transport [28]. The C-terminal domain of tau comprises four repeating regions: R1, R2, R3, and R4 [29]. Phosphorylated tau (p-tau) is 
a key factor in the formation of NFTs. We examined both the phosphorylation sites of tau and the effects of p-tau on neuronal structure 
and function to understand the role of phosphorylated tau in AD pathogenesis.

2.2.1. Tau phosphorylated sites involved in AD
Tau protein has 85 sites potentially linked to phosphorylation [30]. At these sites, approximately 40 residues are phosphorylated, 

which are considered high-risk factors for AD [31].
Aberrant phosphorylation of Ser289 and Ser293 significantly destabilizes microtubules and promotes tau accumulation by 

inducing structural changes in the monomeric R2 peptides (Fig. 1A) [30]. In the monomer, Ser289 phosphorylation enhances 
ordered-disordered structural transitions and intramolecular interactions, resulting in a more compact phosphorylated R2. In contrast, 
in dimers, phosphorylation of Ser289 promotes β-fold formation, which can lead to the oligomerization of R2 peptides. Oligomeri
zation of tau during aggregation is the most neurotoxic form, inducing neuroinflammatory factors, binding to astrocytes and microglia, 
and triggering apoptosis [32].

Furthermore, a lot of tau phosphorylation sites involved in AD, including Ser199, Ser214, and Ser231, are reported (Fig. 1A) 
[33–36]. However, our current understanding of these sites is limited by their association with tau phosphorylation, and investigating 
their upstream and downstream mechanisms and interactions poses challenges for future research.

2.2.2. Kinase promoting tau phosphorylation
Phosphorylation of tau relies on the action of phosphorylases, and an in-depth examination of the function of phosphorylases 

contributes to a further understanding of the pathogenesis of AD and provides a crucial theoretical basis for targeting p-tau for the 
treatment of AD.

Glycogen synthase kinase-3β (GSK-3β) is an important phosphorylating enzyme that affects axonal transport function and rapidly 
inhibits mitochondrial and neurotrophic factor receptor TrkA movement [37,38]. Moreover, Singh T et al. revealed that tau proteins 
need to be preprocessed by CDK-5 before GSK-3β [39]. Additionally, Aβ can enhance tau phosphorylation by mediating GSK-3β and 
CDK-5, particularly GSK-3β (Fig. 1B). Recent findings by Yalun Zhang suggest that the upstream pathway leading to GSK-3β-induced 
tau phosphorylation is regulated by multiple factors [40]. Aβ upregulates E2F1, which in turn induces the expression of PAX6 and 
c-Myb. Both PAX6 and c-Myb are direct targets of E2F1 (Fig. 1B). PAX6 directly regulates GSK-3β transcription and induces tau 
phosphorylation at Ser356, Ser396, and Ser404 [40].

2.2.3. P-tau promotes neuronal nuclear envelope damage
While the sites and kinases associated with tau phosphorylation are known, the mechanism through which p-tau damages neurons 

and induces AD remains unclear. The nuclear envelope (NE) is vital for maintaining a stable nuclear environment. The nuclear pore 
complex, located on the NE, facilitates the exchange of materials and information between the cytoplasm and nucleus (Fig. 1B). Lisa 
Diez et al. suggests that the accumulation of p-tau near the neuronal NE impairs the transport of substances within and outside the 
nucleus [41]. Further research has demonstrated that tau interacts with phenylalanine-glycine (FG)-rich nucleoporins 98 (Nup98), 
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forming aggregates in the nuclear pores and obstructing material exchange [41]. Impaired transport of substances within the nucleus 
may contribute to cellular dysfunction and death, which are closely associated with AD [42].

3. Systemic factors in AD

3.1. Cholinergic dysfunction

Acetylcholine (ACh), the first neurotransmitter discovered in humans, is crucial for neuronal function. The cholinergic hypothesis 
suggests that cognitive impairment causes the destruction of cholinergic neurons. Cholinergic neurons participate in various physi
ological functions of the brain, including attention and memory [43]. Three key factors affect the action of ACh: (1) its synthesis; (2) 
binding of ACh to its receptor; and (3) degradation of ACh by acetylcholinesterase (AChE).

3.1.1. ACh synthesis disorder
In cholinergic neuronal terminals, ACh is formed from choline and acetyl coenzyme A (acetyl-CoA) by the enzyme choline ace

tyltransferase (ChAT) (Fig. 2) and plays an important role in transporting information between reportors [44]. ACh is a product of the 
pyruvate produced during the tricarboxylic acid (TCA) cycle. However, the deposition of Aβ significantly reduces the efficiency of 
pyruvate participation in the TCA cycle [45], leading to decreased production of ACh and ATP. Excess glutamate causes postsynaptic 
Ca2+, activating pyruvate dehydrogenase kinase, which inhibits pyruvate dehydrogenase complex and compromises mitochondrial 

Fig. 2. ACh plays an important role in the nervous system and influences memory and recognition. (1) Synthesis of ACh. Acetyl-CoA and choline are 
the raw materials for the synthesis of ACh, and most of the ACh comes from the TCA cycle. However, Aβ reduces pyruvate utilization, thus leading to 
a reduction in ACh production during the TCA cycle. Ca2+ overload can activate pyruvate dehydrogenase kinase (PDHK), which inhibits pyruvate 
dehydrogenase complex (PDHC) and ultimately affects the TCA cycle and production of ACh. (2) Receptors for ACh. ACh is transported out of the 
axonal region by VAChT and then combined with muscarinic or nicotinic receptors. This process plays an important role in information transfer. 
However, Aβ binds α7nAChR, thereby reducing ACh binding to α7nAChR. AF2671 (M1 mAChR) increased α-secretase and decreased Aβ synthesis. 
Meanwhile, AF2671 decreased the level of tau by inhibiting the activation of GSK-3β. (Image created using Biorender.com.)
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activity [46,47]. According to the cholinergic hypothesis, cognitive decline in patients with AD is the result of a combination of ACh 
and ATP deficiencies.

3.1.2. Impaired ACh receptor function and impaired transport
ACh activates two types of receptors: muscarinic and nicotinic. Among the five known isoforms of muscarinic ACh receptors 

(mAChRs), M1 mAChR has the highest distribution in the CNS and is involved in numerous brain activities [48,49]. Stimulation of 
AF267B (an M1 mAChR agonist) increases α-secretase activity and decreases Aβ synthesis [50,51]. Additionally, stimulation of 
AF267B inhibits GSK-3β activity, resulting in reduced tau levels. These studies suggest that the activation state of M1 mAChR affects 
brain cognitive functions by regulating Aβ and tau. The neuronal nAChR consists of α and β subunits, which combine to form a 
pentameric receptor complex [52]. In the CNS, most nicotinic receptors are expressed on the membranes of presynaptic neurons, and 
their main role is to regulate the release of neurotransmitters [43,53–55] such as glutamate, GABA, dopamine, 5-hydroxytryptamine, 
norepinephrine, and ACh [56–61]. Moreover, Aβ demonstrates a strong affinity for α7nAChRs [62], which results in compromised ACh 
transport. In addition, Aβ interacts with cholinergic components in various ways, including impairing cholinergic function, inhibiting 
the activity of ChAT and ACh, and increasing AChE activity [63]. Aβ and p-tau can not only directly damage neurons but also indirectly 
impair neuronal function by disrupting the cholinergic system.

3.2. Neuroinflammation

Neuroinflammation is the inflammation of the CNS, which is regulated by the involvement of neuroglia, including microglia and 
astrocytes [9]. The activation of microglia and astrocytes contributes to neuronal growth, development, and repair; however, pro
longed activation induces neuroinflammation, impairs the ability of glial cells to clear amyloids, and exacerbates neurodegenerative 
diseases.

3.2.1. Microglia-related neuroinflammation
Microglia, the brain’s innate immune cells [64] and about 10 % of the cells in the nervous system [65]. Microglia are divided into 

resting (M0) and activated (M1 and M2) states and play different roles in the brain. M0 microglia are highly branched, constantly 
moving through synaptic stretches, and act as the CNS [66]. After being activated by pathogens and Aβ, M0 microglia differentiate 
through the regulation of damage-associated molecular patterns or pathogen-associated molecular patterns [67,68]. M1 microglia, 
activated by Toll-like receptors or interferon-gamma, lead to neuronal damage and impaired phagocytosis through the production of 
large amounts of NO, reactive oxygen species (ROS), interleukin (IL)-1β, IL-6, IL-18, and TNF-α [69,70]. In contrast, M2 microglia is 
activated by IL-4 or IL-13, which exerts reparative effects and phagocytosis by releasing anti-inflammatory factors, including trans
forming growth factor-β, IL-4, IL-10, and IL-13 [69,70]. However, the M1/M2 phenotypic nomenclature is not widely recognized, 
mainly because it crudely divides microglia into two types.

Recent studies have revealed that the microglial activation phenotype extends far beyond the M1/M2 phenotype. Analysis of all 
immune cells (CD45+) derived from the brains of 5XFAD mice using massive parallel single-cell RNA-seq revealed two clusters of 
microglia expressing unique genes, including apolipoprotein E (ApoE), lipoprotein lipase, and Cystatin F, and defined microglia as 
disease-associated microglia (DAM) [71]. DAM aggregates near Aβ and exhibits phagocytic activity [71]. To date, a variety of 
microglia surface receptors have been found to interact with Aβ, including scavenger receptors, TLR, CD36, RAGE, TREM 2, and late 
glycosylation end product receptors [72,73]. In addition to classical HLA-DR upregulation, recently identified microglia activation 
markers include F4/80, CD68, CD45, and ionized calcium-binding adapter molecule 1 [66,74].

3.2.2. Astrocytes-related neuroinflammation
Astrocytes are involved in the regulation of blood-brain barrier (BBB) stability, secretion of neurotrophic factors, and modulation of 

synaptic function and plasticity [66,75], and play an important role in the maintenance of homeostasis in the CNS. Astrocytes stim
ulated by pathogens or Aβ can develop two phenotypes with completely opposite activation states, the neurotoxic A1 phenotype (A1 
astrocytes) and the neuroprotective A2 phenotype (A2 astrocytes) [76–78]. Activated microglia induce A1 astrocytes by IL-1α, TNF, 
and C1q, resulting in the loss of the ability of A1 astrocytes to promote neuronal survival, growth, synaptogenesis, and phagocytosis 
[79]. In the brain of patients with AD, A1 astrocytes highly express glial cell acidic protein, S100 calcium-binding protein B (S100B), 
and complement C3 (C3) [78]. S100B is a cytokine that activates cyclooxygenase-2 in microglia by upregulating nitric oxide synthase, 
ultimately leading to neuronal death [64]. Astrocytes extensively release inflammatory cytokines, including IL-1, IL-6, and TNF-α, 
when activated by pathogens or Aβ, which can have beneficial or harmful consequences [80]. Additionally, since astrocytes express 
BACE and presenilin-1, cytokine stimulation may induce Aβ production in astrocytes [64].

In AD, astrocytes that specifically express ApoE are thought to have a role in degrading Aβ [81]. A variety of receptors exist on the 
surface of astrocytes that can bind to Aβ, including the receptor for advanced glycosylation end products, lipoprotein 
receptor-associated proteins, membrane-associated proteoglycans, and scavenger receptor-like receptors [82,83]. Therefore, we know 
that the phagocytosis of glial cells is very important for the protection of the CNS.

3.3. Mitochondrial oxidative stress

Mitochondria produce ATP through oxidative phosphorylation (OXPHOS), which plays a key role in maintaining endogenous 
neuroprotective and repair mechanisms [84]. However, with age, mitochondria accumulate oxidative damage, leading to 
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neurodegeneration, impaired synaptic plasticity, and associated cognitive deficits [84]. An in-depth investigation of the relationship 
between mitochondrial functional impairment and neurons can help further understand AD pathogenesis and provide a more 
comprehensive theoretical basis for the future development of AD therapeutic drugs.

The severe imbalance between ROS and reactive nitrogen species production and oxidative stress induces antioxidant defenses, 
which are significantly increased in the brains of patients with AD and occur earlier than Aβ accumulation [85]. The cell membrane 
contains more unsaturated fatty acids, whereas the catalase content of neurons is low; therefore, the brain is more prone to oxidative 
damage [86,87]. Recently, studies have shown that Aβ can insert into cellular membranes, leading to the generation of ROS and the 
occurrence of lipid peroxidation in the membranes [10,88]. Even Aβ aggregation at the mitochondrial membrane disrupts mito
chondrial transport, leading to a decrease in OXPHOS enzyme activity and a decrease in the transmembrane electrochemical gradient, 
which impairs mitochondrial function and increases ROS levels [89,90]. In tau-knockout mice, ROS are significantly reduced, mito
chondrial fusion is increased, mitochondrial permeability transition pore and cyclophilin D is inhibited, and ATP production is 
increased, suggesting that tau overexpression can cause aberrant mitochondrial fusion and oxidative stress [91,92]. Tau inhibits the 
binding of dynamin-related protein 1 to mitochondria by binding to the actin cytoskeleton, resulting in mitochondrial elongation and 
increased fusion [86]. Mitochondria provide energy to support membrane ion exchange and synaptic transmission, and maintain Ca2+

homeostasis [86,90]. When mitochondria take up excess Ca2+, it impairs mitochondrial function, leading to elevated ROS levels, 
inducing Aβ deposition and tau phosphorylation, further damaging neurons [93].

Fig. 3. Gut microbes activate C/EBPβ/AEP signaling, elevating pro-inflammatory enzymes and resulting in increasing levels of APOE4, APP, Aβ, and 
Tau. These metabolites can be released from the intestinal epithelium into the peripheral bloodstream. exacerbating the inflammatory response, 
including neuroinflammation. Bile acids may increase BBB permeability and allow intestinal metabolites to enter the CNS, leading to inflammation 
and AD. (Image created using Figdraw).
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3.4. Ferroptosis

Iron is a trace element in the body that is involved in the regulation of many physiological activities. Fe3+ and Fe2+ are storage and 
transport forms, respectively, in the CNS. However, under conditions of iron overload or excessive free iron, the equilibrium of the 
antioxidant system is disrupted [94,95], leading to oxidative stress and neuronal cell death [96,97].

Normally, ferroportin 1 acts as a remote regulator of intracellular iron homeostasis and transports excess ferritin outside the cells 
[98]. However, nuclear receptor coactivator 4 degrades ferritin to free iron, and excessive intracellular iron accumulation can lead to 
elevated ROS levels and oxidative stress, promoting cellular ferroptosis [98,99], leading to neuronal cell damage. Iron transporter 
protein 1 (Fpn-1) is the only known non-heme iron transporter protein in mammals [100]. Its primary function is to regulate systemic 
iron homeostasis by binding to transferrin and transporting iron to iron-demanding tissues. Bao observed morphological and molecular 
features indicative of ferroptosis in Fpnfl/fl/NEXcre and AD mice [100]. Fpn deficiency in the hippocampus is accompanied by AD-like 
phenomena, including brain atrophy and memory deficits.

NADPH oxidase 4 is a major source of ROS and induces ferroptosis by impairing mitochondrial function in astrocytes [101]. Philip 
et al. found that white matter-degenerating microglia are enriched in the iron-binding protein light chain ferritin, which accumulates 
lipid droplets and undergoes peroxidative damage [102]. GPX4 is indispensable for the reduction of H2O2 and is the only enzyme 
capable of reducing phospholipid hydroperoxides. The loss of GPX4 activity is an important cause of lipid peroxide formation and 
accelerates ROS production, ultimately inducing ferroptosis in cells [103,104]. Recent research suggests that ferroptosis is not 
independently involved in the pathological response to AD; it also forms a complex network of linkages with p-tau to participate in AD. 
This can occur via Cys-Cys binding or hyperphosphorylation of tau proteins via the kinase pathway and ferroptosis [105].

The concept of ferroptosis was first introduced 10 years ago by Dr. Brent R. Stockwell and is related to the development of diverse 
diseases, including AD. However, ferroptosis remains a relatively new area of research, and its study in the context of AD has a large 
scope.

3.5. Imbalance of intestinal flora

The human gut contains 10–100 trillion commensal microbial cells [106]. Gut microorganisms secrete neurotransmitters, neu
romodulators, and other amino acid-derived metabolites [107,108]. Indeed, both the microbes and the synthetics released have the 
potential to cause an inflammatory response or accelerate amyloid formation, leading to impaired memory and cognitive functioning. 
Therefore, maintaining a balance between intestinal microorganisms is important.

3.5.1. Gut microbial metabolites and inflammation
Several genetic changes in gut microbes are associated with CCAAT-enhancer-binding protein (C/EBPβ)/asparagine endopeptidase 

(AEP) signaling, which increases levels of pro-inflammatory enzymes associated with polyunsaturated fatty acid metabolism (Fig. 3) 
[12,109]. In addition, the activation of C/EBPβ signaling would further elevate AEP, resulting in increasing levels of APOE4, APP, Aβ, 
and tau [109], eventually inducing inflammation and cognitive impairment. The gut flora and the gut form a microbial gut axis that 
communicates bidirectionally through cytokines, hormones, and neural signals (Fig. 3) [110]. Furthermore, the diversity of gut mi
croorganisms is strongly linked to the oral flora [111,112]. Periodontitis greatly increases the number and variety of oral pathogens, 
such as lipopolysaccharides (LPS), flagellins, peptides, as well as pro-inflammatory molecules. If these molecules overactivate systemic 
inflammatory responses, they may lead to neuroinflammation and AD [113].

3.5.2. Gut-microbe-brain axis
Intercommunication between the gut flora and brain was first introduced by William James and Carl Lange in the 1880s [114]. 

Evidence indicates that the microbiota continuously produces LPS and amyloids in healthy individuals. When these substances 
accumulate to a certain level in the body, they can be harmful, particularly when the permeability of the gut-blood-brain barrier 
undergoes significant changes in adult individuals [110,115]. When tight junctions between gut cells are compromised, permeation is 
enhanced and these tight junctions are unable to prevent LPS from entering the circulation, exacerbating the inflammatory response 
(Fig. 3) [116]. Intraperitoneal administration of LPS promotes the production of inflammatory factors and Aβ in the mice hippo
campus. Additionally, mice develop cognitive dysfunction [117]. LPS activates microglia surface receptors through myeloid differ
entiation factor 88 and nuclear factor-kappa beta (NF-κB)-dependent signaling pathways, thereby promoting cytokine (Fig. 3) and 
chemokine production [118,119]. Extracellular LPS has also been reported to trigger microglial NOD-like receptor protein 3 
inflammasome activation, increasing the level of ROS and IL-1β [120], which may be related to AD. In conclusion, the intestinal 
secretion of LPS induces an inflammatory response by binding to multiple neuronal cell receptors and promoting AD.

Gut microbes also produce bile acids (BAs) [121]. Increased bacterially produced BAs may increase BBB permeability and allow 
peripheral cholesterol to reach the CNS by disrupting tight junctions. This refers to the allowance of BAs, or cholesterol, from the 
periphery for entry into the CNS [122]. Cellular cholesterol in the brain can directly bind to APP, contributing to the insertion of APP 
into the lipid raft phospholipid monolayers that form Aβ and ultimately promoting Aβ production [123]. Microbial amyloid and Aβ42 
are also recognized by the TLR2/TLR1 receptor, which activates the production of inflammatory factors. Microglia play an important 
role in preventing Aβ damage to neurons in healthy humans. Normally, activated microglia surround Aβ and prevent its diffusion, thus 
reducing the binding of Aβ to nearby neurons and mitigating neuronal damage [124]. Moreover, maintenance of intestinal microbial 
homeostasis is a prerequisite for the maturation and function of microglia, thereby protecting neurons from Aβ damage [125].

In summary, compounds produced and secreted by bacteria induce a systemic inflammatory response, increase BBB permeability, 
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and ultimately contribute to the development of neurodegenerative diseases, including AD [126,127].

3.6. miRNA dysregulation

miRNAs are usually dysregulated in the brains of patients with AD; they regulate neuronal growth, synapse formation, and 
plasticity.

3.6.1. miRNA dysregulation leads to Aβ deposition
Research has shown that miR-409-5p [128] and miR-30b [129] are upregulated in the brains of patients with AD. These miRNAs 

are thought to be involved in the process of AD by regulating Aβ formation. The overexpression of miR-409-5p had deleterious effects 
on neurite growth, reduced neuronal survival, and accelerated Aβ accumulation [128]. Song et al. provided the first evidence that 
miR-30b strongly upregulates ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate receptor subunit 2 (GluA2) to protect 
synapse integrity [129]. Their further research found that Aβ42 and cytokines promote miR-30b overexpression through NF-κB and 
then impair synaptic integrity by downregulating ephB2, sirt1, and GluA2, ultimately resulting in AD. In addition, Long J.M. et al. 
identified a novel miRNA region, miR-346, which up-regulates APP by targeting the 5′-untranslated region (UTR) of APP mRNA [130].

Additionally, miRNAs regulate Aβ levels by controlling the expression of BACE1 and APP. Wang et al. discovered that specific 
cortical regions implicated in AD pathology showed decreased neuronal miR-107 expression and increased BACE1 levels [131]. The 
3′-UTR of BACE1 mRNA is targeted by miR-107, promoting the production of Aβ and contributing to the development of AD. In 
addition to BACE1, miRNAs can influence Aβ production by modulating α-secretase. α-Secretase ADAM10 inhibits Aβ formation, while 
miR-144 promotes AD progression by suppressing ADAM10 production through its 3′-UTR [132].

3.6.2. miRNA dysregulation leads to tau phosphorylation
Tau is a critical marker of AD and, several miRNAs regulate tau phosphorylation. In vivo, the expression of miR-125b contributes to 

tau phosphorylation, and Banzhaf-Strathmann found that miR-125b inhibits the expression of DUSP6, PPP1CA, and Bcl-W [133]. 
Downregulation of phosphatases and Bcl-W is accompanied by tau phosphorylation. Signals involved in tau phosphorylation, 
including p35, CDK5, and p44/42-MAPK, were upregulated [133]. Additionally, the deletion of miR-132 increases tau phosphory
lation by activating ERK1/2 and BACE1 and upregulating inositol 1,4,5-trisphosphate 3-kinase B [134]. Downregulation of miR-34a 

Table 1 
miRNAs associated with AD.

NO. miRNA Function Target gene Expression in 
AD

Reference

1 miR-409- 
5p

Accelerated Aβ accumulation Plek 3′UTR or Sdcbp2 3′UTR ↑ in AD [128]

2 miR-30b Affects synaptic integrity 3′UTR of ephB2, sirt1 or GluA2 ↑ in AD [129]
3 miR-346 accelerated APP formation 5′UTR of APP mRNA ↑ in AD [130]
4 miR-107 Elevated BACE1 levels 3′UTR of the BACE1 mRNA ↓ in AD [131]
5 miR-144 Accelerated Aβ accumulation by suppressing the production of 

ADAM10
3′UTR of ADAM10 mRNA ↑ in AD [132]

6 miR- 
125b

Leads to tau phosphorylation and inducing neuro-inflammation by 
NF-κB

3′UTRs of DUSP6, PPP1CA, Bcl- 
W,15-LOX and mRNAs

↑ in AD [133,
137]

7 miR-132 Leads to tau phosphorylation 3′UTR of ITPKB ↓in AD [134]
8 miR-34a Leads to tau phosphorylation 3′UTR of tau ↓ in AD [135]
9 miR- 

106b
Leads to tau phosphorylation 3′UTR of CDK5 ↓in AD [133]

10 miR-743a Suppress malate dehydrogenase activity to reduce ATP 3′UTR of mdh2 ↓ in AD [138]
11 miR-146a switched the microglial phenotype, reduced pro-inflammatory 

cytokines, and en-hanced phagocytic function
3′UTR of Nkd2 ↓ in AD [139]

12 miR-331- 
3p

Accelerated Aβ accumulation 3′UTR of Sqstm1 ↑ in AD [140]

13 miR-9-5p Accelerated Aβ accumulation 3′UTR of Optn ↑ in AD [140]
14 miR-504- 

3p
Reduces tau phosphorylation 3′UTR of p39 ↓ in AD [141]

15 miR-124 Accelerated Aβ accumulation 3′UTR of PTPN1 ↑ in AD [142]
16 miR-22- 

3p
Reduced Aβ accumulation Sox9 ↓ in AD [143]

17 miR-338 Decreases metabolic activity in axonal mitochondria 3′UTR of COXIV ↑ in AD [144]
18 miR-98 reduced the production of Aβ and improved oxidative stress and 

mitochondrial dysfunction
3′UTR of HEY2 ↓ in AD [145]

Abbreviation: Ple, pleckstrin; Sdcbp2, syndecan Binding Protein 2; UTR, untranslated region; EphB2, ephrin type-B receptor 2; Sirt1, sirtuin1; GluA2, 
glutamate ionotropic receptor AMPA type subunit 2; APP, amyloid-β peptide precursor protein; BACE1, β-site APP cleaving enzyme 1; DUSP6, dual- 
specific phosphatase 6; PPP1CA, protein phosphatase 1 catalytic subunit alpha isoform; Bcl-W, Bcl-2-like protein 2; 15-LOX, 15-lipoxygenase; 
mRNAs, VDR messenger RNAs; ITPKB, inositol 1,4,5-trisphosphate 3-kinase B; CDK5, Cyclin-dependent Kinase 5; mdh2, mitochondrial tricarboxylic 
acid cycle gene; Sqstm1, Sequestosome 1; Optn, Optineurin; PTPN1, tyrosine-protein phosphatase non-receptor type 1; HEY2, split (Hes)-related with 
YRPW motif protein 2.
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[135] and miR-106b [136] is also involved in tau phosphorylation, resulting in cognitive impairment.
In addition to Aβ and tau phosphorylation, miRNAs can also regulate various AD processes, such as mitochondrial function, 

enzyme, and microbial activities. The relevant information is presented in Table 1.

4. Drugs for the treatment of Alzheimer’s disease

4.1. FDA-approved drugs in the past

Over the past 20 years, only five drugs have been approved by the FDA for the treatment of AD, the most common of which are 
AChE inhibitors, including tacrine, donepezil, rivastigmine, galantamine, and an N-methyl-D-aspartic acid (NMDA) receptor antag
onist, memantine. Tacrine was the first clinically approved cholinesterase inhibitor but was withdrawn because of its high hepato
toxicity [146]. Donepezil demonstrated equal efficacy and a better safety profile than other AChE inhibitors [147]. Memantine was the 
first drug approved by the FDA to treat moderate-to-severe AD in 2003 [148,149]. These drugs have a significant limitation in that they 
can only alleviate symptoms without preventing or slowing disease progression, and both classes of drugs are associated with serious 
side effects. As a result, the current phase of drug development has shifted to targeting the pathogenesis of AD, with the largest number 
of drugs targeting Aβ and Tau for the treatment of AD. In recent years, AD drugs approved by the Food and Drug Administration (FDA) 
include aducanumab, lecanemab, and donanemab. The details are presented in Table 2.

4.2. FDA-approved drugs in recent years

4.2.1. Aducanumab
Aducanumab, a monoclonal antibody to the Aβ protein, was approved by the FDA in 2021 [150]. However, the aducanumab 

research process has not been completed. Aducanumab’s two global Phase III clinical trials, code-named ENGAGE and EMERGE, 

Table 2 
FDA-approved drugs in AD.

No. Name of the 
Drug

Mechanism of Action Efficacy 
(Drug group vs. placebo group)

Side effects Reference

1 THA AchE inhibitors Improving the patient’s cognitive ability high hepatotoxicity [146]
2 Donepezil AchE inhibitors Improving the patient’s cognitive ability Gastrointestinal side effects [151]
3 Revastigmine AchE inhibitors Improving the patient’s cognitive ability Gastrointestinal side effects [152]
4 Galantamine AchE inhibitors Improving the patient’s cognitive ability Gastrointestinal side effects [149]
5 Menantine NMDA receptor 

antagonists
Improving the patient’s cognitive ability Dizziness, headache, confusion, diarrhea, 

and constipation
[149]

6 Aducanumab monoclonal antibody to 
Aβ protein

1 .CDR-SB score decreased by 22 % in the 
drug group (P = 0.012);

2 . MMSE decreased by 18 % in the drug 
group (P = 0.049);

3 . ADAS-Cog 13 decreased by 27 % in the 
drug group (P = 0.010);

4 . ADCS-ADL-MCI decreased by 40 % in the 
drug group (P < 0.001).

ARIA-E, headache, ARIA-H, 
nasopharyngitis, falls, and dizziness

[153]

No. Name of the 
Drug

Mechanism of Action Efficacy 
(Drug group vs. placebo group)

Side effects Reference

7 lecanemab humanized IgG1 
monoclonal antibody to Aβ 
protein

1 CDR-SB score decreased by 27 % in 
the drug group (P < 0.001);

2 ADAS-cog14 score decreased by 26 % 
in the drug group (P < 0.001);

3 ADCOMS decreased by 23 % in the 
drug group (P < 0.001);

4 ADCS-MCI-ADL score decreased by 
36 % in the drug group (P < 0.001).

headache, infusion-related reactions, and 
ARIA, Lecanemab to be used with caution in 
patients with ApoEε4 homozygotes

[154]

8 donanemab An antibody drug that 
targets N3pG (modified β 
amyloid plaques)

1 iADRS decreased by 22 % in the drug 
group (P < 0.0001);

2 CDR-SB score decreased by 29 % in 
the drug group (P < 0.0001);

3 Reduce the risk of progression to the 
next stage of the disease by 37 % (HR 
= 0.626; p < 0.0001).

Severe ARIAs may occur [155]

Abbreviation: THA, Tacrine; AchE, acetylcholinesterase; NMDA, N-Methyl-D-aspartic acid; CDR-SB score, Clinical Dementia Rating–Sum of Boxes 
score; MMSE, Mini-Mental State Examination; ADAS-Cog 13, Alzheimer’s Disease Assessment Scale–Cognitive Subscale–13 items; ADCS-ADL-MCI, 
Alzheimer’s Disease Cooperative Study-Activities of Daily Living Scale for Mild Cognitive Impairment; ARIA, amyloid-associated imaging abnor
malities; ARIA-E, Amyloid-related imaging abnormalities due to edema/sulcal effusion; ARIA-H, Amyloid-related imaging abnormalities due to 
haemosiderin deposition; ADAS-cog14 score, 14-item cognitive subscale of the Alzheimer’s Disease Assessment Scale; ADCOMS, Alzheimer’s Disease 
Composite Score; iADRS, integrated Alzheimer Disease Rating Scale.
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showed different results. However, after analyzing a larger dataset, medical data statisticians found that aducanumab had a significant 
effect compared with the placebo. Clinical Dementia Rating-Sum of Boxes (CDR-SB) is the primary endpoint score, with higher scores 
indicating greater impairment. High-dose aducanumab (10 mg/kg target dose) reduced CDR-SB scores by 22 % at week 78 compared 
to the placebo group. Three other pre-specified secondary endpoints were as follows: an 18 % decrease in Minimum Mental State 
Examination, a 27 % decrease in Alzheimer’s Disease Assessment Scale–Cognitive Subscale13, and a 40 % decrease in The Alzheimer’s 
Disease Cooperative Study - Activities of Daily Living Scale for use in Mild Cognitive Impairment in the high-dose group relative to the 
placebo group. The details are presented in Table 2.

4.2.2. Lecanemab
Lecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils, is being tested in 

patients with early AD, which reverses the pathological progression of AD and delays the clinical course of the disease by removing 
toxic Aβ proteins from the brain. This study [154] showed a 27 % slowing of cognitive and memory function decline in patients after 18 
months of treatment with lecanemab compared to placebo. Lecanemab became the first Aβ-targeted drug in history to be fully 
approved by the FDA for AD treatment. The details are presented in Table 2.

4.2.3. Donanemab
Donanemab is an antibody drug that targets N3pG (modified β amyloid plaques), a subtype of amyloid [156]. Donanemab binds to 

and promotes the clearance of amyloid plaques. The results showed that donanemab significantly alleviated cognitive decline in 
patients with AD, with a more pronounced effect in patients with low-to-moderate tau levels. Patients with low-to-moderate tau levels 
had a 35 % decrease in the Integrated Alzheimer’s Disease (AD) Rating Scale (iADRS) (p < 0.0001) and a 36 % decrease in CDR-SB 
scores (p < 0.0001) compared with 22 % and 29 % for all patients, respectively [155]. The details are presented in Table 2.

4.3. Common side effects of drugs

Amyloid-related imaging abnormalities (ARIA) are prevalent side effects of current Aβ antibody drugs, which can manifest as brain 
edema or sulcal effusion (ARIA-E) or as hemosiderin deposits in the brain parenchyma (ARIA-H microhemorrhage) or on the pial 
surface (ARIA-H superficial siderosis) [157]. The most common side effects of aducanumab are ARIA-E, headache, cerebral micro
haemorrhage (ARIA-H microhaemorrhage), nasopharyngitis, falls, localized superficial scurfing (ARIA-H superficial scurfing), and 
dizziness [150]. In terms of safety, the incidence of cerebral edema and cerebral hemorrhage caused by lecanemab was relatively low 
compared to other comparable anti-Aβ drugs, at 12.6 % and 17.3 %, respectively [154]. In addition, a higher incidence of ARIA was 
found in patients who were homozygous for the ApoE ε4 allele after receiving lecanemab, and lecanemab should therefore be used 
with caution [154]. Of the patients treated with donanemab, 24 % developed ARIA-E and 31 % developed ARIA-H, most of which were 
mild to moderate. The details are presented in Table 2.

4.4. Future directions for drug development

Based on the existing FDA-approved drugs, most of the drugs are AChE inhibitors and Aβ amyloid-targeting drugs. Future in
vestigations may focus on targeting the upstream molecules of Aβ, such as α-secretase, BACE1, BACE2, and γ-secretase to inhibit Aβ 
deposition, including lanabecestat and umibecestat. However, lanabecestat has been associated with adverse events during clinical 
trials [158], forcing the termination of the trials. Neuregulin 1 plays an important role in normal human psychiatric behaviors, and 

Table 3 
Selected AD drugs in clinical trial phase 3. The information comes from [160,161].

No. Name of the Drug Mechanism of Action Clinical Trial

1 Gantenerumab Anti-amyloid monoclonal antibody NCT01760005
2 Remternetug Anti-amyloid monoclonal antibody NCT05463731
3 Solanezumab Anti-amyloid monoclonal antibody NCT01760005
4 Lanabecestat BACE1 reversible inhibition NCT0224573, 

NCT02783573
5 Umibecestat BACE1 reversible inhibition NCT03131453
6 Verubecestat BACE1 reversible inhibition NCT02910739
7 Elenbecestat BACE1 reversible inhibition NCT02956486
8 Atabecestat BACE1 reversible inhibition NCT03587376, 

NCT02569398
9 Semagacestat γ-secretase inhibitor NCT01035138
10 Tarenflurbil (MPC- 

7869)
γ-secretase inhibitor NCT00322036

11 E2814 Anti-tau monoclonal antibody NCT01760005, 
NCT05269394

12 Fosgonimeton Activates signaling via the HGF/MET receptor system; promotes survival of neurons, enhances 
hippocampal synaptic plasticity.

NCT04488419,
NCT04886063

13 Levetiracetam Modulator of the SV2A to reduce aberrant neuronal hyperactivity NCT05986721

Abbreviation: HGF, hepatocyte growth factor; SV2A, synaptic vesicle protein.
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seizure protein 6 contributes to the maintenance of dendritic strength and prolonged sustained tension, both of which are substrates for 
BACE1; thus, the use of BACE1 inhibitors leads to adverse psychiatric events [158]. Although, BACE inhibitors have shown good 
performance in reducing Aβ deposition, they are inadequate in terms of safety. Other BACE inhibitors may also cause adverse reactions 
for similar reasons. Additional information is presented in Table 3. In addition, the pathogenesis of AD is complex and varied, including 
p-tau, neuroinflammation, ferroptosis, imbalance of the intestinal flora, miRNA dysregulation, and many other mechanisms. In future, 
we plan to develop more targeted and universal drugs based on these pathogenic mechanisms of AD. Additional information is pre
sented in Table 3.

In addition to the pathogenesis of AD, some scientists are now proposing that neural stem cell (NSC) transplantation could emerge 
as a novel therapy for neurodegenerative diseases [159]. The primary objective of NSC replacement was to restore degenerating 
neurons, thereby delaying neuronal function and cognitive decline. Furthermore, recent reports suggest that NSCs also exhibit the 
ability to promote neurotrophin secretion [159]. The pathogenesis of AD is complex, and AD drugs cannot be studied in a single 
direction. The development of AD drugs should not only improve the cognitive dysfunction of patients with AD and slow down the 
disease process, but also, increase the safety of the drugs as much as possible. Therefore, based on an in-depth study of the different 
mechanisms, discovering the interactions between different mechanisms is very important for the development of new AD drugs.

5. Conclusion

AD involves various triggers, including family genetics, old age, and lifestyle habits. The prevalence of AD is increasing every year 
as the standard of living improves and the population ages significantly. In response to this global health problem, the drugs approved 
by the FDA are mainly divided into three categories, namely AChE inhibitors, NMDA receptor antagonists, and Aβ protein monoclonal 
antibodies [146,150]. To date, no drug can completely cure AD, which may be related to the complex and intertwined pathogenic 
mechanisms of AD. Consequently, many drugs that target pathogenic mechanisms, such as p-tau, neuroinflammation, mitochondrial 
oxidative stress, ferroptosis, the intestinal environment, and miRNA, are present [160]. Most drugs are terminated during clinical trials 
for a variety of reasons, with common reasons such as drug ineffectiveness and serious side effects. Therefore, the development of new 
therapeutics for AD remains challenging. However, owing to the complex pathological mechanisms of AD, a single target may have 
little effect. Perhaps we should consider a combination of drugs for multi-targeted therapy. For example, the combination of donepezil 
and memantine is associated with greater improvements in cognitive and daily activities and neuropsychiatric symptoms than 
monotherapy [162]. In the future, multi-target AD therapy may be a powerful means of treating AD.
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